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Introduction: Although the global COVID-19 emergency ended, the real-world 
effects of multiple non-pharmaceutical interventions (NPIs) and the relative 
contribution of individual NPIs over time were poorly understood, limiting the 
mitigation of future potential epidemics.

Methods: Based on four large-scale datasets including epidemic parameters, 
virus variants, vaccines, and meteorological factors across 51 states in the 
United  States from August 2020 to July 2022, we  established a Bayesian 
hierarchical model with a spike-and-slab prior to assessing the time-varying 
effect of NPIs and vaccination on mitigating COVID-19 transmission and 
identifying important NPIs in the context of different variants pandemic.

Results: We found that (i) the empirical reduction in reproduction number 
attributable to integrated NPIs was 52.0% (95%CI: 44.4, 58.5%) by August and 
September 2020, whereas the reduction continuously decreased due to the 
relaxation of NPIs in following months; (ii) international travel restrictions, stay-
at-home requirements, and restrictions on gathering size were important NPIs 
with the relative contribution higher than 12.5%; (iii) vaccination alone could not 
mitigate transmission when the fully vaccination coverage was less than 60%, but 
it could effectively synergize with NPIs; (iv) even with fully vaccination coverage 
>60%, combined use of NPIs and vaccination failed to reduce the reproduction 
number below 1  in many states by February 2022 because of elimination of 
above NPIs, following with a resurgence of COVID-19 after March 2022.

Conclusion: Our results suggest that NPIs and vaccination had a high synergy 
effect and eliminating NPIs should consider their relative effectiveness, 
vaccination coverage, and emerging variants.
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1 Introduction

In the past 3 years, the value of non-pharmaceutical interventions 
(NPIs) in controlling infectious disease transmission has been greatly 
recognized in the context of the COVID-19 global pandemic. 
Implementing a series of containment NPIs, including school closing, 
workplace closing, canceling public events, gathering size restrictions, 
closing public transport, stay-at-home requirements, internal 
movement restrictions, and international travel restrictions (1), was 
one of the few tactics for such a new infectious disease. Many studies 
have reported the distinguished effects of NPIs on COVID-19 across 
the world (2–4), while long-term implementation of stringent NPIs 
also occasioned unintended issues in the economic recession (5), 
social problems (6, 7), and mental health outcomes (8). It has raised 
debates on whether and when an intervention could be  lifted or 
eliminated (9, 10), which heavily depends on a comprehensive 
understanding of the effectiveness of NPIs based on real-
world evidence.

Although we have trudged through the thorny forest with the end 
of the global health emergency of COVID-19 (11), there is still a risk 
of COVID-19 resurgence due to virus mutations. The risk of 
emerging infectious diseases has been increasing since the 21st 
century, with several viral infectious diseases being pandemic within 
the last 20 years (12), which makes it more important to effectively 
implement NPIs to mitigate the epidemic. The practice of controlling 
COVID-19 provides an opportunity to clarify the effectiveness of 
NPIs, however, our understanding of the real-world effects of NPIs 
on mitigating COVID-19 transmission is not enough. The 
effectiveness of NPIs could change over time due to different 
compositions of variants of concern, socioeconomic features, 
vaccination, and policy compliance (13–16). Most previous studies 
focused on the early stage of the pandemic with the SARS-CoV-2 
origin virus and the Alpha variant being dominant (3, 17, 18), 
however, evidence on the effectiveness in successive waves was 
relatively few, especially for the period of Omicron variant epidemic. 
Some modeling studies have discussed the varying effect of NPIs due 
to Omicron (19, 20), but the clues were not strong enough because 
the assumed population features and transmission parameters would 
be different from the real world.

Further, how vaccines worked with NPIs to eliminate the epidemic 
was also poorly understood. Several previous studies have explored 
the potential of lifting NPIs as the vaccination coverage increased to a 
pre-set level via mathematical models (20–23). Many of these 
modeling studies have provided constructive suggestions on delaying 
the relaxation of NPIs, but the reliability of simulation evidence would 
be challenged by the uncertainty of real-world vaccine efficacy and the 
emergence of new variants (24, 25). However, only one study has 
investigated the real-world combined effect of NPIs and vaccination 
and revealed a time-varying interaction effect between NPIs and 
vaccination (16).

Last but not least, multiple NPIs are always implemented and 
effective at the same time, but most previous studies failed to take this 
mechanism into consideration, which would limit the practical value 
in guiding policy decisions. Some studies were restricted to a specific 
combination of NPIs (e.g., lockdown) or regarded multiple NPIs as a 
whole by using a single index (13, 26, 27), which makes it hard to 
decide which kind of NPI could be modified. Another part of the 
study investigated the individual effect of a single NPI by constructing 

separate models for each NPI, ignoring the confounding of other NPIs 
(9, 15, 17). Some studies constructed a single model to simultaneously 
estimate the individual effect of multiple NPIs (18), but they did not 
consider the collinearity due to the high correlation among NPIs. 
Ignoring the collinearity issue can make results far away from the real 
effectiveness, leading to much uncertainty as to which NPIs are 
appropriate. Nevertheless, there is still no evidence untangling  
the complex effect of multiple highly correlated NPIs on 
COVID-19 transmission.

To provide more detailed evidence on the real-world effects of 
multiple NPIs across waves and pandemic variants, we revisited the 
complex time-varying role of NPIs in controlling COVID-19 
transmission in the United States (United States) through a two-stage 
modeling framework. We first estimated bimonthly effects of NPIs, 
vaccination, and their interaction in forms of percentage reductions 
from time-specific basic reproduction number (R t0, ) to effective 
reproduction number (Rt )  at the state level through a Bayesian 
hierarchical model with a spike and slab prior. Then, we utilized meta-
analysis to pool the state-specific results and obtain the overall impact 
of NPIs in the U.S. over time.

2 Materials and methods

2.1 Data sources

2.1.1 Outcome
To obtain a proper interpretation of the effectiveness of NPIs in 

mitigating COVID-19 transmission, we  used the effective 
reproduction number (Rt) to quantify the change in person-to-person 
transmission (27). Daily new diagnosed cases for the 51 states in the 
U.S. from 1 August 2020 to 31 July 2022 were obtained from The 
New York Times COVID-19 data repository, based on reports from 
state and local health agencies (28). To be consistent with Our World 
in Data and previous studies (16, 29), we estimated the daily state-
specific Rt  using the Kalman filter, a Bayesian method modeling the 
growth rate of COVID-19 infections (30).

To consider the variation of basic reproduction numbers over 
time due to various compositions of variants of concern, we also 
estimated time-specific basic reproduction numbers (R t0, ) to 
represent the basic transmission ability of the virus without any 
government response to the epidemic. First, we collected basic 
reproduction numbers for the original SARS-CoV-2 virus and the 
expansion factors for Alpha, Beta, Gamma, and Delta variants 
compared with the original virus from the literature 
(Supplementary Table S1). Due to a lack of evidence on the 
Omicron variant, we obtained its reported expansion parameter 
compared to the Delta variant. Then, the basic reproduction 
number for each variant was indirectly calculated by multiplying 
the expansion parameter with the basic reproduction number of 
the original virus or Delta variant (16, 31). Then, we collected the 
SARS-CoV-2 sequence data from the Global Initiative on Sharing 
All Influenza Data (GISAID) (32), and calculated the biweekly 
proportion of sequences of the above six variants between August 
2020 and July 2022. Finally, we calculated R t0,  by taking a weighted 
average of the basic reproduction numbers and proportions of the 
variants abovementioned.
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2.1.2 Measure of NPIs
Consistent with previous studies, we used the stringency index of 

NPIs assembled by the Oxford COVID-19 Government Response 
Tracker (OxCGRT) to quantify the intensity of overall and individual 
NPIs implemented by the governments (1). It is a composite measure 
based on multiple response indicators reflecting more or less intense 
government responses to the epidemic. We  mainly focused on 
containment policies, including school closing, workplace closing, 
canceling public events, gathering size restrictions, closing public 
transport, stay-at-home requirements, internal movement restrictions, 
and international travel restrictions. Each NPI had 3 to 4 levels of 
intensity and all of them were first normalized to a value between 0 
and 100 by a flag variable with a higher score indicating a stricter 
response (1). We defined the stringency index as the arithmetic mean 
of these eight NPIs index, indicating the overall intensity of NPIs 
implemented by the government. For a better model fit, these indexes 
were divided by 100 to downscale to 0–1 in this study.

2.1.3 Other covariates
The fully vaccination coverages, i.e., proportions of people who 

completed the initial COVID-19 vaccination protocol, for the 51 states 
in the United States were collected from Our World in Data (33). Fully 
vaccination coverage was defined as the proportion of people who 
received all doses prescribed by the initial vaccination protocol. 
We did not consider the various efficacies of different types of vaccines 
because there was no accepted evidence on efficacies for different 
vaccines as well as their temporal variation. Using results from other 
populations and times would both introduce unknown confounding. 
We  also considered temperature as a potential factor that would 
impact the relationship between NPIs and COVID-19 transmission 
(16). Thus, Hourly temperature gridded data (a resolution of 0.10 
degrees) were obtained from the ERA5-Land dataset in the Climate 
Data Store maintained by the European Center for Medium-range 
Weather Forecasts (34). We calculated the daily mean temperature for 
each state by averaging data at all hours a day across all grids in the 
state and divided it by 10 to estimate the effect of temperature with 
per-10 degrees.

2.2 Statistical modeling

2.2.1 The main model
We used a two-stage modeling framework to assess the effect of 

NPIs and their relative contributions in the United States by pooling 
state-level effects via meta-analysis with the random effect model. For 
each state, we assumed the effects of NPIs and vaccination to be stable 
within 2 months and estimated them through a Bayesian hierarchical 
model. The outcome in states was the natural logarithm of the state-
specific ratio of effective reproduction number (Rts) to time-specific 

basic reproduction number (R t
s
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where Ni ts,  is the intensity index of ith NPI among the above eight 
containment in states at day t. Vts and Tts represent corresponding fully 
vaccination coverage and temperature, respectively. θi b

s
, , β

1,b
s , and γ i b

s
,  

are the coefficients of individual NPI, vaccination and their interaction.

2.2.2 The shrinkage prior
The Bayesian hierarchical model with shrinkage priors is a 

compelling method to deal with high-dimensional and correlated 
structure of predictors (35). Many simulation and application studies 
have reported the robustness of the results in high-dimensional 
regressions by using shrinkage priors (36, 37). Depending on the 
number and forms of prior distribution settings for the coefficients, it 
could be roughly divided into discrete mixture shrinkage priors, such 
as the spike-and-slab prior, and global–local (GL) shrinkage priors, 
including the horseshoe prior and Dirichlet Laplace prior (37, 38). The 
mixture shrinkage priors are to set a discrete mixture of a normal 
distribution with high density around zero (the spike) and a normal 
distribution with a large shape parameter (38), whereas the global–
local shrinkage priors are continuous mixture of normal densities, 
which used the global parameter controlling the overall shrinkage of 
all the coefficients toward zero and the local parameters modifying the 
coefficient-specific shrinkage (39).

The spike-and-slab prior is often considered as the “gold standard” 
for sparse Bayesian estimation (39), so that we utilized it to cope with 
the collinearity issue due to the high correlation among NPIs, which 
could shrink small coefficients toward zero and assign large coefficients 
to the slab (40). We set each θi b

s
,  or γ i b

s
,  with a spike-and-slab prior as 

follows. For the sake of brevity with no loss of generality, we removed 
the state superscripts and the prior distribution could be written as,
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be negative. δi b,  is the inclusion probability of whether the coefficient 
equals zero with a noninformative prior of beta(1,1) indicating that 

each coefficient has a 50% probability to be zero. σ i b spike, ,
2  and σ i b slab, ,

2  

are the variances of normal distributions in which σ i b spike, ,
2  is much 

smaller than σ i b slab, ,
2  to make the probability density function closely 

around zero.
We put a half student-t prior with 3 degrees of freedom for these 

two hyperparameters to simultaneously ensure positivity and 
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s normal (0,0.5) and a student-t prior with 3 
degrees of freedom for the intercept αb
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2.2.3 Effectiveness and empirical effect of NPIs
To get the overall effect of integrated NPIs, we obtain the posterior 

distributions of the overall effect of eight integrated NPIs and their 
interaction with vaccination by summing the θi b

s
,  and γ i b

s
,  in each 

iteration, that is, θ θinte b
s

i
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s
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(41), indicating the importance weight for each 

NPI in the overall effect of integrated NPIs. We estimated the relative 
effectiveness and empirical effect of integrated NPIs and the relative 
contribution of each NPI for every bimester (two-month) to account 
for seasonality and the impact of changing composition of dominant 
variant of concern.

To assess the model robustness, we modified the hyper-parameters 
in the spike-and-slab prior. Specifically, we  changed the shape 
parameters in the half-student-t distribution to 0.3 and 0.03 for 
inclusion and exclusion, respectively. And we also alter the prior for 
δi b,  from beta(1,1) to beta(3,5) with the assumption that only three of 
eight NPIs worked in a bimester. We also changed the linear model to 
a generalized linear model assuming the outcome of Rt  following 
gamma distribution which was conducted in previous research (16). 
Finally, we used the horseshoe prior, one of the most commonly used 
global–local shrinkage priors, with a half student t− − ( )3 0 0 5, , .  for 
the global parameter, to evaluate the influence of various 
shrinkage priors.

All the analyses were conducted in the R software (version 4.3.2). 
The Bayesian hierarchical model was performed through Markov 
Chain Monte Carlo (MCMC) methods by calling the Stan software via 
the ‘cmdstanr’ package (42). We ran four parallel chains for 2,000 
iterations with the first 1,000 iterations of warmup to obtain 4,000 
posterior samples for each state and bimester. All plots were drawn 
using the ‘ggplot2’ package.

3 Results

During the study period, the variants of Alpha, Delta, and 
Omicron successively became dominant in April 2020, July 2021, and 
January 2022, respectively (Figure  1A). During August 2020 and 
February 2021, governments in the U.S. implemented NPIs with the 
stringency index being around 55. Since March 2021, governments 

continuously relaxed the intensity of NPIs and went to an “open” style 
in April 2022. Most of the pairwise correlations between individual 
NPIs were higher than 0.6, indicating a potential of collinearity should 
be  considered (Supplementary Figure S2). The U.S. government 
commenced the mass vaccination campaigns at the end of December 
2020. The fully vaccination coverage quickly climbed to 50% in August 
2021 and slowly increased to 67.6% on 31 July 2022 (Figure 1B).

3.1 Estimated empirical effects of 
integrated NPIs

In August and September 2020, the estimated empirical 
reduction in R t0,  attributable to integrated NPIs was 52.0% (95%CI: 
44.4, 58.5%). The relative effect of integrated NPIs stabilized at 
around 50.2% ~ 53.7% until the intensity of NPIs decreased in April 
and May 2021 (Figure  2A). Thereafter, the empirical effect of 
integrated NPIs decreased to 8.8% ~ 12.2% during December 2021 
and July 2022 no matter whether the fully vaccination coverage was 
continuously increasing. In the early stage of mass vaccination 
campaigns (February and March 2021), there was a negative effect 
of vaccination on reducing COVID-19 transmission, with 
reductions in R t0,  of −10.1% (95%CI: −15.8, −4.8%), while its effect 
climbed to 91.5% (95%CI: 85.2, 95.1%) by January 2022, with the 
fully vaccination coverage reaching 60% in the U.S (Figure 2A). Due 
to the decreased effect of vaccination in the context of the Omicron 
pandemic, the overall empirical effect of integrated NPIs was not 
high enough to reach the target R t0,  reductions in that period 
(Supplementary Figure S3).

3.2 Effect variations of integrated NPIs due 
to different pandemic variants of concern

In the original SARS-CoV-2 virus period, the effect of integrated 
NPIs was stable at about 74.5% ~ 78.1%. We found that the emergence 
of a new dominant variant of concern would decrease the effect of 
integrated NPIs. For instance, the effect decreased to 67.8% (95%CI: 
56.8, 75.9%) in June–July 2021 as the Alpha variant became the 
dominant variant of concerns. And the effect decreased to 59.4% 
(95%CI: 45.6, 69.7%) in December 2021 and January 2022 with 
Omicron becoming dominant (Figure  2B). we  observed that 
Louisiana, Kansas, and South Carolina had the lowest effects of 
integrated NPIs on R t0,  reductions (Figure 2C).

3.3 Vaccination and its interaction with 
integrated NPIs

When the fully vaccination coverage was less than 60%, per-10% 
increase in fully vaccination coverage could merely reduce the R t0, . 
The effectiveness of vaccination increased to 33.4% (95%CI: 27.1, 
39.2%) by January 2022 with the fully vaccination coverage exceeding 
60%, but it reduced to 12.8% ~ 13.2% with the Omicron being 
dominant after February 2022 (Figure  2D). The interaction effect 
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between vaccination and integrated NPIs was higher than 75% from 
August to November 2020. Although it decreased to around 40% in 
2021, it was much higher than the main effect of vaccination 
(Figure 2D).

Taking the practical vaccination coverage into consideration, 
we found that the empirical effect of vaccination in the early stage of 
mass vaccination campaigns was also small, but the combined effects 
of integrated NPIs and vaccination in that stage were higher than 
their separate effects. From February 2021 to March 2022, syntheses 
of NPIs and vaccination were always enough to reach the target R t0,  
reductions (reducing the R t0,  below 1) even the intensity of NPIs 

decreased. However, we saw the combined effect from April to July 
2022 was not high enough, followed with a resurgence of COVID-19 
after March 2022 (Figures 1A, 2A).

3.4 Relative contributions of individual NPIs

The relative contributions of individual NPIs over time are shown 
in Figure 3. In almost time, international travel restrictions, stay-at-
home requirements, and restrictions on gathering size contributed the 
most to the overall effects of integrated NPIs, with all corresponding 

FIGURE 1

The overall temporal distribution of the data in the United States from 1 August 2020 to 31 July 2022. (A) Daily diagnosed cases (black bar), pandemic 
variant (colored background, defined as variants of concern that had the highest proportion), and effective reproduction number (blue lines in the 
bottom). (B) The stringency index (blue lines) and documented fully vaccination coverage (red lines) across 51 states (thick lines for the whole country).
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relative contributions higher than 12.5%. However, the relative effect 
of international travel restrictions between October 2021 and January 
2022 was low, with the Delta variant being dominant. The relative 
contribution of school closing was higher than 12.5% before the Delta 
and Omicron variants being pandemic, but it decreased to 
8.9% ~ 11.1% after July 2021.

The average intensity of individual NPIs continuously decreased 
below 20 after March 2022, but daily diagnosed cases started to increase 
in that period (Supplementary Figure S1) and implementation of NPIs 
synthesis was unable to reach the target R t0,  reductions in the following 
months (Supplementary Figure S3). We  found that the relative 
contributions of school closing in Nebraska and Idaho, public events 
cancelation in Hawaii, restrictions on gathering size in California and 
Hawaii, as well as closed public events in Nebraska and Wisconsin were 
below 5% (Figure 4). However, the relative contributions of internal 
movement restrictions in Alaska, Florida, Hawaii, Louisiana, Nebraska, 
Oklahoma, and Wisconsin, stay-at-home requirements in Alaska, 
Hawaii, South Carolina, and Wisconsin, close public transport in 
Alabama and Hawaii, restrictions on gathering size in South Carolina 

and Wisconsin, public events cancelation in New Jersey, South 
Carolina, and Wisconsin, and workplace closing in Nebraska were 
higher than 15%.

3.5 Sensitivity analysis

The distribution of R-hat statistics for all coefficients indicated 
that the main model in this study properly converged 
(Supplementary Figure S4). To assess the robustness of the model, 
sensitivity analyses were conducted by altering the hyper-parameters 
for the inclusion probability and variance of individual NPI 
coefficients. The results showed that the overall trends of the estimated 
effects of integrated NPIs, vaccination, and their interaction were 
consistent in all scenarios (Supplementary Figures S5–S7). The 
estimated empirical effects of NPIs and vaccination with the horseshoe 
prior were basically the same as the main results with the spike-and-
slab prior in most bimesters, whereas the effect of NPIs in 2020 was 
lower when we used the horseshoe prior (Supplementary Figure S8).

FIGURE 2

The effects of NPIs, vaccination, and their interaction on reducing COVID-19 transmission in the United States over time. (A) The empirical reductions 
in R t0,  for integrated NPIs, vaccination, and their combined effects (integrated eight NPIs + vaccination + interaction). (B) The reductions in R t0,  for 
integrated NPIs when all NPIs set at the highest level. We can compare the absolute effects of NPIs across periods of different pandemic variants. 
(C) The spatial distribution of integrated effects of NPIs during December 2021 and January in 2022 where the daily diagnosed cases reached the peak 
due to the Omicron variant. (D) The (empirical) effects of vaccination and its interaction with NPIs.
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4 Discussion

In this study, we constructed a Bayesian hierarchical model to 
estimate the real-world effects of integrated NPIs, vaccination, and the 
relative impacts of individual NPIs on reducing COVID-19 
transmission among populations in the U.S. across multiple waves. 
We  found that the effect of integrated NPIs alone continuously 
decreased since April 2021, along with the lifting of NPIs. The main 
effect of vaccination was low when the fully vaccination coverage 
below 60%, whereas it could still synergize with NPIs to effectively 
control the epidemic. International travel restrictions, stay-at-home 
requirements, and restrictions on gathering size were identified as the 
most important individual NPIs, and the elimination of these NPIs in 
many states would be responsible for the resurgence of the epidemic 
after April 2022. The proposed method in this study could provide a 
good tool to obtain more detailed clues to formulate cost-effectively 
comprehensive NPIs strategies in the future potential epidemic.

We found that the effectiveness of integrated NPIs was weakened 
in the short term when the Alpha and Omicron variants were 
dominant in the United States. There was no previous evidence on the 
real-world effectiveness variation of NPIs due to the emergence of new 
dominant variants of concern. This short-term decline in NPIs 
efficiency would be related to a higher transmission probability and 
lower policy adherence (31, 43, 44). The largest decline was observed 
in December 2021 and January 2022 when the daily diagnosed cases 

exceeded 0.6 million people (Figure  1A), closely following the 
epidemic caused by the Delta variant. Long-term implementation of 
NPIs and successive waves caused pandemic fatigue and reduced 
people’s adherence to policies (44, 45). More importantly, the results 
showed that the impact of NPIs was more correlated with the intensity 
of NPIs, with a decline in empirical effect along with the relaxation of 
NPIs (Figure 2A), which was consistent with previous estimation in 
Europe (16). And we observed a rebound in the COVID-19 epidemic 
after April 2022 with the intensity of NPIs decreasing to a very low 
level. It suggested that we should appropriately increase the intensity 
of NPIs when a new variant of concern becomes dominant.

Consistent with previous studies, we  found vaccination alone 
could not mitigate the epidemic, especially in the early stage of mass 
vaccination campaigns. Many modeling studies have emphasized the 
necessity of maintaining the intensity of NPIs when the vaccination 
coverage is low (10, 16, 20). A more important finding in this study 
was that mass vaccination campaigns in the early stage could even 
increase the risk of transmission. Theoretically, mass vaccination 
campaigns could directly reduce individuals’ infection risk for 
vaccinated people and indirectly protect unvaccinated people by 
constructing herd immunity. However, the real-world efficacies of 
Pfizer-BioNTech and Moderna were lower than the results from 
clinical trials (46), and mass vaccination itself also increased the 
chance of contact and transmission due to large gatherings (47). 
Further, there is a threshold for fully vaccination coverage to achieve 

FIGURE 3

The bimonthly relative contribution of individual NPIs to the integrated effects.
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herd immunity, and it was estimated at least 60% of people in the 
U.S. needed to be  fully vaccinated to obtain vaccine-derived herd 
immunity, which was consistent with the results in this study (48). 
Lack of herd immunity and large-scale gatherings were responsible for 
the increased risk of transmission for vaccination alone in the early 
period of mass vaccination campaigns, but fortunately, our results 
indicated that vaccination could synergize with NPIs and more 
attention should be paid to maintaining NPIs in that period.

Great heterogeneity of the effect rank of NPIs existed in previous 
studies (2). Ge et al. found that gathering restrictions played significant 
roles in controlling transmission across waves (15), but Liu et  al. 
reported school closing as the most important NPI (18). The pairwise 
correlations of NPIs in this study indicated that a collinearity-related 
bias would exist in previous studies. There were very few studies 
considering this issue (49). In this study, we used a shrinkage prior in 
the Bayesian hierarchical model to solve this problem and estimated 
the relative contributions of individual NPIs. We  found that 
international travel restrictions, stay-at-home requirements, and 
restrictions on gathering size were the most important NPIs in the 
U.S., and the relative contributions of individual NPIs would change 
over time.

According to the relative contributions of individual NPIs, 
we  found that international travel restrictions, stay-at-home 
requirements, restrictions on gathering size, and cancelation of public 
events in some states should be strengthened after March 2022. There 
had long been calls to lift or eliminate NPIs because of the high 
socioeconomic costs and health trade-offs of NPIs, especially for 
school closing (50–52). We  found school closing did not have an 
obvious impact on reductions in R t0, , which was lifted in almost states 

across the country. But more importantly, there was a lack of 
counterbalance of NPIs to reduce the R t0,  below 1, following a 
resurgence of COVID-19. NPIs with high relative contributions, such 
as international travel restrictions, stay-at-home requirements, 
restrictions on gathering size, and cancelation of public events, might 
be eliminated too soon, especially in the states of Alaska, Hawaii, and 
Wisconsin. The results of this study suggested that mid-2022 was not 
the time to fully liberalize NPIs, and different states must lift individual 
NPIs according to their own conditions and should have 
corresponding hedging measures in other important NPIs.

By using a Bayesian hierarchical model with a shrinkage prior for 
highly correlated NPIs, this study provided elaborate evidence on the 
real-world effects of integrated and individual NPIs on mitigating 
COVID-19 transmission across time and populations. Some 
limitations in our analysis should be mentioned. First, due to lack of 
data availability, we  used the biweekly reported proportions of 
sequences of main variants of concern to represent their actual 
proportions in the population. It introduced uncertainty in the effect 
estimation of NPIs and vaccination which should be interpreted with 
caution. Further, it was reported that demographics and comorbidities 
could also have great impact on the transmission of COVID-19 (53, 
54), but there was not daily or monthly information on the state-level 
demographical status and comorbidity rate. More individual-level 
data were needed to investigate the role of these factors in COVID-19 
transmission. Second, we were unable to consider the interactions 
among the eight NPIs in this study because of the unidentifiable 
interactions in such a sparse NPIs data which would also change over 
time. There was also no evidence on the interaction effects among 
NPIs, which should be  further studied in the future. Third, 

FIGURE 4

Selected NPIs with the lowest and highest relative contributions across 51 states in the United States during February and March 2022. Each bubble 
represents the relative contribution of one specific NPI in a state, with the size being proportional to the strength of NPIs. We considered that those 
NPIs with relative contributions higher than 15% should be maintained or strengthened, especially for internal movement restrictions, stay-at-home 
requirements, public transport closure, restrictions on gathering size, and public events cancelation in some states (red small bubbles).

https://doi.org/10.3389/fpubh.2024.1343950
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wu et al. 10.3389/fpubh.2024.1343950

Frontiers in Public Health 09 frontiersin.org

we  observed the threshold of fully vaccination coverage for herd 
immunity would be 60%, but more targeted analyses are needed to 
properly identify the threshold with consideration of variation in 
vaccine effectiveness across time.

In summary, we found that the overall impact of integrated NPIs 
on mitigating the COVID-19 pandemic was influenced by the new 
dominant variants of concern, especially for Omicron. The high 
correlation between intensity of NPIs and interaction with vaccination 
required us to simultaneously implement NPIs and vaccination when 
the fully vaccination coverage was low. School closing in some states 
could be  lifted when the Omicron variant was dominant, but 
we should not eliminate internal movement restrictions and stay-at-
home requirements in Alaska, Hawaii, and Wisconsin too soon to 
prevent the rebound of COVID-19.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found at: https://github.com/DRGonghuaWu/USANPIspaper.

Author contributions

GW: Data curation, Formal analysis, Investigation, Methodology, 
Writing – original draft, Writing – review & editing. WFZ: Formal 
analysis, Resources, Validation, Writing – review & editing. WW: 
Methodology, Validation, Visualization, Writing – review & editing. 
PW: Writing – review & editing. ZH: Writing – review & editing. YW: 
Writing – review & editing. JL: Writing – review & editing. WJZ: 
Conceptualization, Supervision, Validation, Writing – review & 
editing. ZD: Conceptualization, Funding acquisition, Resources, 
Supervision, Writing – review & editing. YH: Conceptualization, 
Funding acquisition, Resources, Supervision, Writing – review & 
editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This study was 
funded by the Science and Technology Program of Guangzhou, China 
(202206080003) and National Natural Science Foundation of China 
(Nos. 82103947 and 81973150).

Acknowledgments

YH gratefully acknowledges the support of K. C. Wong 
Education Foundation.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpubh.2024.1343950/
full#supplementary-material

References
 1. Hale T, Angrist N, Goldszmidt R, Kira B, Petherick A, Phillips T, et al. A global 

panel database of pandemic policies (Oxford COVID-19 government response tracker). 
Nat Hum Behav. (2021) 5:529–38. doi: 10.1038/s41562-021-01079-8

 2. Mendez-Brito A, El Bcheraoui C, Pozo-Martin F. Systematic review of empirical 
studies comparing the effectiveness of non-pharmaceutical interventions against 
COVID-19. J Infect. (2021) 83:281–93. doi: 10.1016/j.jinf.2021.06.018

 3. Brauner JM, Mindermann S, Sharma M, Johnston D, Salvatier J, Gavenciak T, et al. 
Inferring the effectiveness of government interventions against COVID-19. Science. 
(2021) 371:9338. doi: 10.1126/science.abd9338

 4. Perra N. Non-pharmaceutical interventions during the COVID-19 pandemic: a 
review. Phys Rep. (2021) 913:1–52. doi: 10.1016/j.physrep.2021.02.001

 5. Fezzi C, Fanghella V. Tracking GDP in real-time using electricity market data: 
insights from the first wave of COVID-19 across Europe. Eur Econ Rev. (2021) 
139:103907. doi: 10.1016/j.euroecorev.2021.103907

 6. Armitage R, Nellums LB. COVID-19 and the consequences of isolating the elderly. 
The lancet. Public Health. (2020) 5:61. doi: 10.1016/s2468-2667(20)30061-x

 7. Campbell AM. An increasing risk of family violence during the Covid-19 pandemic: 
strengthening community collaborations to save lives. Forensic Sci. Int. (2020) 2:100089. 
doi: 10.1016/j.fsir.2020.100089

 8. Pfefferbaum B, North CS. Mental health and the Covid-19 pandemic. N Engl J Med. 
(2020) 383:510–2. eng. doi: 10.1056/NEJMp2008017

 9. Li Y, Campbell H, Kulkarni D, Harpur A, Nundy M, Wang X, et al. The temporal 
association of introducing and lifting non-pharmaceutical interventions with the time-

varying reproduction number (R) of SARS-CoV-2: a modelling study across 131 
countries. Lancet Infect Dis. (2021) 21:193–202. doi: 10.1016/s1473-3099(20)30785-4

 10. Yang J, Marziano V, Deng X, Guzzetta G, Zhang J, Trentini F, et al. Despite 
vaccination, China needs non-pharmaceutical interventions to prevent widespread 
outbreaks of COVID-19  in 2021. Nat Hum Behav. (2021) 5:1009–20. doi: 10.1038/
s41562-021-01155-z

 11. WHO. WHO director-General’s opening remarks at the media briefing. Geneva: 
WHO (2023).

 12. Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, et al. 
Infectious disease in an era of global change. Nat Rev Microbiol. (2021) 20:193–205. doi: 
10.1038/s41579-021-00639-z

 13. Singh S, Shaikh M, Hauck K, Miraldo M. Impacts of introducing and lifting 
nonpharmaceutical interventions on COVID-19 daily growth rate and compliance in 
the United States. Proc Natl Acad Sci. (2021) 118:118. doi: 10.1073/pnas.2021359118

 14. Paireau J, Charpignon M-L, Larrieu S, Calba C, Hozé N, Boëlle P-Y, et al. Impact 
of non-pharmaceutical interventions, weather, vaccination, and variants on COVID-19 
transmission across departments in France. BMC Infect Dis. (2023) 23:190. doi: 10.1186/
s12879-023-08106-1

 15. Ge Y, Zhang W-B, Liu H, Ruktanonchai CW, Hu M, Wu X, et al. Impacts of worldwide 
individual non-pharmaceutical interventions on COVID-19 transmission across waves and 
space. Int J Appl Earth Obs Geoinf. (2022) 106:102649. doi: 10.1016/j.jag.2021.102649

 16. Ge Y, Zhang WB, Wu X, Ruktanonchai CW, Liu H, Wang J, et al. Untangling the 
changing impact of non-pharmaceutical interventions and vaccination on European 

https://doi.org/10.3389/fpubh.2024.1343950
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://github.com/DRGonghuaWu/USANPIspaper
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1343950/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1343950/full#supplementary-material
https://doi.org/10.1038/s41562-021-01079-8
https://doi.org/10.1016/j.jinf.2021.06.018
https://doi.org/10.1126/science.abd9338
https://doi.org/10.1016/j.physrep.2021.02.001
https://doi.org/10.1016/j.euroecorev.2021.103907
https://doi.org/10.1016/s2468-2667(20)30061-x
https://doi.org/10.1016/j.fsir.2020.100089
https://doi.org/10.1056/NEJMp2008017
https://doi.org/10.1016/s1473-3099(20)30785-4
https://doi.org/10.1038/s41562-021-01155-z
https://doi.org/10.1038/s41562-021-01155-z
https://doi.org/10.1038/s41579-021-00639-z
https://doi.org/10.1073/pnas.2021359118
https://doi.org/10.1186/s12879-023-08106-1
https://doi.org/10.1186/s12879-023-08106-1
https://doi.org/10.1016/j.jag.2021.102649


Wu et al. 10.3389/fpubh.2024.1343950

Frontiers in Public Health 10 frontiersin.org

COVID-19 trajectories. Nat Commun. (2022) 13:3106. doi: 10.1038/s41467-022- 
30897-1 

 17. Wong MC, Huang J, Teoh J, Wong SH. Evaluation on different non-pharmaceutical 
interventions during COVID-19 pandemic: an analysis of 139 countries. J Infect. (2020) 
81:e70–1. doi: 10.1016/j.jinf.2020.06.044 

 18. Liu Y, Morgenstern C, Kelly J, Lowe R, Jit MGroup CC-W. The impact of non-
pharmaceutical interventions on SARS-CoV-2 transmission across 130 countries and 
territories. BMC Med. (2021) 19:40. doi: 10.1186/s12916-020-01872-8 

 19. Le Rutte EA, Shattock AJ, Chitnis N, Kelly SL, Penny MA. Modelling the impact 
of omicron and emerging variants on SARS-CoV-2 transmission and public health 
burden. Commun. Med. (Lond). (2022) 2:93. doi: 10.1038/s43856-022-00154-z 

 20. Wang B-G, Wang Z-C, Wu Y, Xiong Y, Zhang J, Ma Z. A mathematical model 
reveals the influence of NPIs and vaccination on SARS-CoV-2 omicron variant. 
Nonlinear Dyn. (2022) 111:3937–52. doi: 10.1007/s11071-022-07985-4

 21. Moore S, Hill EM, Tildesley MJ, Dyson L, Keeling MJ. Vaccination and non-
pharmaceutical interventions for COVID-19: a mathematical modelling study. Lancet 
Infect Dis. (2021) 21:793–802. doi: 10.1016/S1473-3099(21)00143-2 

 22. Giordano G, Colaneri M, Filippo AD, Blanchini F, Bolzern P, Dicolao GD, et al. 
Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-
pharmaceutical interventions in Italy. Nat Med. (2021) 27:993–8. doi: 10.1038/
s41591-021-01334-5

 23. Sonabend R, Whittles LK, Imai N, Perez-Guzman PN, Knock ES, Rawson T, et al. 
Non-pharmaceutical interventions, vaccination, and the SARS-CoV-2 delta variant in 
England: a mathematical modelling study. Lancet. (2021) 398:1825–35. doi: 10.1016/
S0140-6736(21)02276-5

 24. Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al. 
Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large 
integrated health system in the USA: a retrospective cohort study. Lancet. (2021) 
398:1407–16. doi: 10.1016/S0140-6736(21)02183-8 

 25. Afzal A, Saleel CA, Bhattacharyya S, Satish N, Samuel OD, Badruddin IA. Merits 
and limitations of mathematical modeling and computational simulations in mitigation 
of COVID-19 pandemic: a comprehensive review. Arch Comput. Methods Eng. (2022) 
29:1311–37. doi: 10.1007/s11831-021-09634-2

 26. Banholzer N, Lison A, Ozcelik D, Stadler T, Feuerriegel S, Vach W. The 
methodologies to assess the effectiveness of non-pharmaceutical interventions during 
COVID-19: a systematic review. Eur J Epidemiol. (2022) 37:1003–1024. doi: 10.1007/
s10654-022-00908-y

 27. Lison A, Banholzer N, Sharma M, Mindermann S, Unwin HJT, Mishra S, et al. 
Effectiveness assessment of non-pharmaceutical interventions: lessons learned from the 
COVID-19 pandemic. Lancet Public Health. (2023) 8:e311–7. doi: 10.1016/
S2468-2667(23)00046-4

 28. New York Times. Coronavirus (Covid-19) data in the United States Github. The 
New  York Times (2021). Available at: https://github.com/nytimes/covid-19-data. 
(Accessed Dec 2, 2022).

 29. Mathieu E, Ritchie H, Rodés-Guirao L, Appel C, Giattino C, Hasell J, et al. 
Coronavirus Pandemic (COVID-19): Our world in data. (2020). Available at: https://
ourworldindata.org/coronavirus. (Accessed Dec 2, 2022).

 30. Sartorius B, Arroyo-Marioli F, Bullano F, Kucinskas S, Rondón-Moreno C. 
Tracking R of COVID-19: a new real-time estimation using the Kalman filter. PLoS One. 
(2021) 16:e0244474. doi: 10.1371/journal.pone.0244474

 31. Liu Y, Rocklov J. The effective reproductive number of the omicron variant of 
SARS-CoV-2 is several times relative to Delta. J Travel Med. (2022) 29:37. doi: 10.1093/
jtm/taac037

 32. Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID's innovative 
contribution to global health. Global Chall. (2017) 1:33–46. doi: 10.1002/ 
gch2.1018

 33. Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, et al. A global 
database of COVID-19 vaccinations. Nat Hum Behav. (2021) 5:947–53. doi: 10.1038/
s41562-021-01122-8

 34. Muñoz SJ. ERA5-land hourly data from 1950 to present Copernicus climate change 
service (C3S) climate data store (CDS). (2019).

 35. Yi N, Ma S. Hierarchical shrinkage priors and model fitting for high-dimensional 
generalized linear models. Stat Appl Genet Mol Biol. (2012) 11:803. doi: 10.1515/1544- 
6115.1803

 36. Bhattacharyya A., Mitra R., Rai S.. Count data models and Bayesian shrinkage 
priors with real-world data applications. (2022).

 37. Bhattacharyya A, Pal S, Mitra R, Rai S. Applications of Bayesian shrinkage prior 
models in clinical research with categorical responses. BMC Med Res Methodol. (2022) 
22:126. doi: 10.1186/s12874-022-01560-6 

 38. van Erp S, Oberski DL, Mulder J. Shrinkage priors for Bayesian penalized 
regression. J Math Psychol. (2019) 89:31–50. doi: 10.1016/j.jmp.2018.12.004

 39. Piironen J, Vehtari A. Sparsity information and regularization in the horseshoe and 
other shrinkage priors. arXiv. (2017) 2017:694. doi: 10.48550/arXiv.1707.01694

 40. Antonelli J, Wilson AA-O, Coull BA. Multiple exposure distributed lag models 
with variable selection. Biostatitics. (2022) 25:kxac038. doi: 10.1093/biostatistics/kxac038

 41. Keil AP, Buckley JP, O’Brien KM, Ferguson KK, Zhao S, White AJ. A quantile-
based g-computation approach to addressing the effects of exposure mixtures. Environ 
Health Perspect. (2020) 128:47004. doi: 10.1289/ehp5838

 42. Team SD. Stan modeling language users guide and reference manual. (2023). 
Available at: https://mc-stan.org.

 43. Liu Y, Rocklov J. The reproductive number of the Delta variant of SARS-CoV-2 is 
far higher compared to the ancestral SARS-CoV-2 virus. J Travel Med. (2021) 28:124. 
doi: 10.1093/jtm/taab124

 44. Petherick A, Goldszmidt R, Andrade EB, Furst R, Hale T, Pott A, et al. A worldwide 
assessment of changes in adherence to COVID-19 protective behaviours and 
hypothesized pandemic fatigue. Nat Hum Behav. (2021) 5:1145–60. doi: 10.1038/
s41562-021-01181-x

 45. N'Konzi JN, Chukwu CW, Nyabadza F. Effect of time-varying adherence to non-
pharmaceutical interventions on the occurrence of multiple epidemic waves: a modeling 
study. Front Public Health. (2022) 10:1087683. doi: 10.3389/fpubh.2022.1087683

 46. Zheng C, Shao W, Chen X, Zhang B, Wang G, Zhang W. Real-world effectiveness 
of COVID-19 vaccines: a literature review and meta-analysis. Int J Infect Dis. (2022) 
114:252–60. doi: 10.1016/j.ijid.2021.11.009 

 47. WHO. Framework for decision-making: implementation of mass vaccination 
campaigns in the context of COVID-19. WHO (2021). Available at: https://www.who.int/
docs/default-source/coronaviruse/framework-for-decision-making-implementation-of-
mass-vaccination-campaigns-in-the-context-of-covid19-slide-deck.pdf?sfvrsn=438dcccS.

 48. Gumel AB, Iboi EA, Ngonghala CN, Ngwa GA. Toward achieving a vaccine-
derived herd immunity threshold for COVID-19 in the U.S. front. Public Health. (2021) 
9:709369. doi: 10.3389/fpubh.2021.709369 

 49. Haug N, Geyrhofer L, Londei A, Dervic E, Desvars-Larrive A, Loreto V, et al. 
Ranking the effectiveness of worldwide COVID-19 government interventions. Nat Hum 
Behav. (2020) 4:1303–12. doi: 10.1038/s41562-020-01009-0

 50. Panchal U, Salazar de Pablo G, Franco M, Moreno C, Parellada M, Arango C, et al. 
The impact of COVID-19 lockdown on child and adolescent mental health: systematic 
review. Eur Child Adolesc Psychiatry. (2021) 32:1151–77. doi: 10.1007/s00787-021-01856-w

 51. Bayham J, Fenichel EP. Impact of school closures for COVID-19 on the US health-
care workforce and net mortality: a modelling study. Lancet Public Health. (2020) 
5:e271–8. doi: 10.1016/s2468-2667(20)30082-7

 52. Munro AA-O, Faust SN. Children are not COVID-19 super spreaders: time to go 
back to school. Arch Dis Child. (2020) 105:618–9. doi: 10.1136/archdischild-2020-319474

 53. Bhattacharyya A, Seth A, Srivastava N, Imeokparia M, Rai S. Coronavirus 
(COVID-19): a systematic review and Meta-analysis to evaluate the significance of 
demographics and comorbidities. Res Sq. (2021). doi: 10.21203/rs.3.rs-144684/v1

 54. Das P, Nadim SS, Das S, Das P. Dynamics of COVID-19 transmission with 
comorbidity: a data driven modelling based approach. Nonlinear Dyn. (2021) 
106:1197–211. doi: 10.1007/s11071-021-06324-3 

https://doi.org/10.3389/fpubh.2024.1343950
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://doi.org/10.1038/s41467-022-30897-1
https://doi.org/10.1038/s41467-022-30897-1
https://doi.org/10.1016/j.jinf.2020.06.044
https://doi.org/10.1186/s12916-020-01872-8
https://doi.org/10.1038/s43856-022-00154-z
https://doi.org/10.1007/s11071-022-07985-4
https://doi.org/10.1016/S1473-3099(21)00143-2
https://doi.org/10.1038/s41591-021-01334-5
https://doi.org/10.1038/s41591-021-01334-5
https://doi.org/10.1016/S0140-6736(21)02276-5
https://doi.org/10.1016/S0140-6736(21)02276-5
https://doi.org/10.1016/S0140-6736(21)02183-8
https://doi.org/10.1007/s11831-021-09634-2
https://doi.org/10.1007/s10654-022-00908-y
https://doi.org/10.1007/s10654-022-00908-y
https://doi.org/10.1016/S2468-2667(23)00046-4
https://doi.org/10.1016/S2468-2667(23)00046-4
https://github.com/nytimes/covid-19-data
https://ourworldindata.org/coronavirus
https://ourworldindata.org/coronavirus
https://doi.org/10.1371/journal.pone.0244474
https://doi.org/10.1093/jtm/taac037
https://doi.org/10.1093/jtm/taac037
https://doi.org/10.1002/gch2.1018
https://doi.org/10.1002/gch2.1018
https://doi.org/10.1038/s41562-021-01122-8
https://doi.org/10.1038/s41562-021-01122-8
https://doi.org/10.1515/1544-6115.1803
https://doi.org/10.1515/1544-6115.1803
https://doi.org/10.1186/s12874-022-01560-6
https://doi.org/10.1016/j.jmp.2018.12.004
https://doi.org/10.48550/arXiv.1707.01694
https://doi.org/10.1093/biostatistics/kxac038
https://doi.org/10.1289/ehp5838
https://mc-stan.org
https://doi.org/10.1093/jtm/taab124
https://doi.org/10.1038/s41562-021-01181-x
https://doi.org/10.1038/s41562-021-01181-x
https://doi.org/10.3389/fpubh.2022.1087683
https://doi.org/10.1016/j.ijid.2021.11.009
https://www.who.int/docs/default-source/coronaviruse/framework-for-decision-making-implementation-of-mass-vaccination-campaigns-in-the-context-of-covid19-slide-deck.pdf?sfvrsn=438dcccS
https://www.who.int/docs/default-source/coronaviruse/framework-for-decision-making-implementation-of-mass-vaccination-campaigns-in-the-context-of-covid19-slide-deck.pdf?sfvrsn=438dcccS
https://www.who.int/docs/default-source/coronaviruse/framework-for-decision-making-implementation-of-mass-vaccination-campaigns-in-the-context-of-covid19-slide-deck.pdf?sfvrsn=438dcccS
https://doi.org/10.3389/fpubh.2021.709369
https://doi.org/10.1038/s41562-020-01009-0
https://doi.org/10.1007/s00787-021-01856-w
https://doi.org/10.1016/s2468-2667(20)30082-7
https://doi.org/10.1136/archdischild-2020-319474
https://doi.org/10.21203/rs.3.rs-144684/v1
https://doi.org/10.1007/s11071-021-06324-3

	Revisiting the complex time-varying effect of non-pharmaceutical interventions on COVID-19 transmission in the United States
	1 Introduction
	2 Materials and methods
	2.1 Data sources
	2.1.1 Outcome
	2.1.2 Measure of NPIs
	2.1.3 Other covariates
	2.2 Statistical modeling
	2.2.1 The main model
	2.2.2 The shrinkage prior
	2.2.3 Effectiveness and empirical effect of NPIs

	3 Results
	3.1 Estimated empirical effects of integrated NPIs
	3.2 Effect variations of integrated NPIs due to different pandemic variants of concern
	3.3 Vaccination and its interaction with integrated NPIs
	3.4 Relative contributions of individual NPIs
	3.5 Sensitivity analysis

	4 Discussion
	Data availability statement
	Author contributions

	References

