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The pandemic caused by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) is an emerging crisis affecting the public health system. 
The clinical features of COVID-19 can range from an asymptomatic state to 
acute respiratory syndrome and multiple organ dysfunction. Although some 
hematological and biochemical parameters are altered during moderate and 
severe COVID-19, there is still a lack of tools to combine these parameters 
to predict the clinical outcome of a patient with COVID-19. Thus, this study 
aimed at employing hematological and biochemical parameters of patients 
diagnosed with COVID-19  in order to build machine learning algorithms for 
predicting COVID mortality or survival. Patients included in the study had a 
diagnosis of SARS-CoV-2 infection confirmed by RT-PCR and biochemical and 
hematological measurements were performed in three different time points 
upon hospital admission. Among the parameters evaluated, the ones that stand 
out the most are the important features of the T1 time point (urea, lymphocytes, 
glucose, basophils and age), which could be possible biomarkers for the severity 
of COVID-19 patients. This study shows that urea is the parameter that best 
classifies patient severity and rises over time, making it a crucial analyte to 
be used in machine learning algorithms to predict patient outcome. In this study 
optimal and medically interpretable machine learning algorithms for outcome 
prediction are presented for each time point. It was found that urea is the most 
paramount variable for outcome prediction over all three time points. However, 
the order of importance of other variables changes for each time point, 
demonstrating the importance of a dynamic approach for an effective patient’s 
outcome prediction. All in all, the use of machine learning algorithms can be a 
defining tool for laboratory monitoring and clinical outcome prediction, which 
may bring benefits to public health in future pandemics with newly emerging 
and reemerging SARS-CoV-2 variants of concern.
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1 Introduction

The global panorama was abruptly reshaped at the end of 2019, 
when a new coronavirus, SARS-CoV-2, emerged, heralding the 
beginning of the COVID-19 pandemic. The virus quickly crossed 
borders and redefined the way biosciences worked. As nations faced 
the unprecedented challenges posed by this highly contagious and 
often serious respiratory disease, a collective call to action to control 
the infection through the production of an effective vaccine 
reverberated around the world with the greater aim of containing the 
virus. From frontline healthcare workers to research laboratories, the 
pandemic has demanded a comprehensive response.

Several countries started vaccination programs against SARS-
CoV-2, totalizing over 13 billion doses of vaccines administered by 
2023. Nonetheless, despite many efforts to improve vaccine coverage, 
less than 70% of the world population received at least one dose of 
these vaccines (1). Moreover, such rates are heterogeneous and may 
be under 30% in low-income regions. Overall, nearly 5.7 million new 
cases of COVID-19 were reported at the beginning of 2023 (2).

While most COVID-19 cases may remain asymptomatic or with 
mild symptoms, patients with severe COVID-19 may present 
cardiovascular problems, liver, neurological, gastrointestinal, kidney 
and hematological outcomes (3). In addition, the rate of mortality of 
critically ill COVID-19 patients without vaccination is high and post-
acute sequelae are common in patients who survive the disease. 
Therefore, it is essential to study and understand the mechanisms 
involved in mortality and survival of severe COVID-19 as well as 
developing tools based on ready-to-use laboratorial and clinical data.

Currently, there is no definite tool to predict mortality by COVID-
19, although several biomarkers have been proposed for such purpose 
(4). Tests such as blood count, creatine kinase (CK), D-dimer, lactate 
dehydrogenase (LDH), C-reactive protein (CRP), aspartate 
aminotransferase (AST), ferritin, prothrombin, glycemia, ferritin, cardiac 
biomarkers (troponin, CK-MB, Pro-BNP), 25 OH-Vitamin D, ions (Na/ 
K/Ca/Mg) and others should be taken into consideration in the diagnosis 
(5). However, there is no standard protocol, thresholds defined nor 
algorithms using those parameters to predict clinical outcome.

In this sense, the field of artificial intelligence (AI) and, more 
precisely, machine learning (ML) has been making remarkable strides 
in several sectors, demonstrating its potential to revolutionize various 
aspects of modern medicine. This convergence between the 
COVID-19 pandemic and the power of AI and ML underlines the 
importance of interdisciplinary collaboration in tackling complex 
challenges, offering diverse possibilities in a future when technology 
and healthcare interconnect to create more resilient, adaptable and 
efficient global systems.

The World Health Organization has recently called attention to 
the importance of AI as an aid to the healthcare system and has issued 
regulatory considerations on artificial intelligence for health (6), 
which highlights the importance of systems being efficient and safe, 
as well as being made quickly available to persons in need. In fact, the 
speed with which this technology is deployed and the possibility of 
errors during this process must be considered in order to prevent 
causing any high-scale harm to healthcare professionals and, 
consequently, patients. Therefore, the regulation of artificial 
intelligence in health is essential and could bring safe benefits to the 
population, as an important tool for health promotion and care.

The use of AI and ML in the context of the pandemic is centered 
on pattern detections that can be obtained from medical images to 

laboratory parameters. However, AI is not limited to this, since it can 
be equally used in therapy, prognosis and also extremely useful in 
public health management (7–9). These tools are invaluable for 
understanding, predicting, and responding to the spread of COVID-
19, demonstrating their ability to provide data-based information and 
facilitate evidence-based decision-making. In fact, our detection 
approach meets most of the World Health Organization (WHO) 
guidelines for point-of-care bioanalysis, including sensitivity, 
accessibility, ease of use, speed of delivery and rapidity (10, 11). This 
advantage contributes significantly to the creation of new diagnostic 
concepts. It should be noted that this strategy is promising for large-
scale individual testing, which is essential for an effective response to 
the pandemic and the gradual restoration of social circulation (12).

This study, therefore, uses machine learning (ML) to predict the 
clinical outcomes of severe COVID-19 patients, taking advantage of 
readily available laboratory parameters and clinical data. To achieve this 
goal, we  adopted a new methodological approach, using data from 
patients in the intensive care unit (ICU) of a central hospital of the 
metropolitan area of Belo Horizonte, (Minas Gerais state), one of the 
largest cities in Brazil, which was one of the most affected countries by 
COVID-19 worldwide. Using conventional and unconventional statistical 
analysis, survival versus deceased groups were compared by constructing 
Receiver Operating-Characteristics (ROC) curves to assess the 
performance and accuracy of each parameter evaluated. Finally, we used 
cutting-edge strategies based on the Python programming language to 
develop a prediction solution based on machine learning, a pioneering 
approach never before applied to this data set. With this, we underline the 
importance of routine hospital laboratory tests and their integration with 
appropriate machine learning models, offering another avenue for the 
early identification of patients in need of immediate intervention.

In the present study, we presented ML-based methods to define 
and predict the clinical outcome of patients and the importance of 
using it to classify the severity of COVID-19 patients. Optimal and 
medically interpretable machine learning algorithms for outcome 
prediction are presented for each time point. It was found that urea is 
the most paramount variable for outcome prediction over all three 
time points. However, the order of importance of other variables 
changes for each time point, demonstrating the importance of a 
dynamic approach for an effective patient’s outcome prediction.

The article is organized as follows: in section 2, we present the 
laboratory parameters we evaluated in the three different times and 
their correlation shown as heatmaps. We also define which methods 
we used to analyze the data. In section 3 we present the results obtained 
from the different methods for analyzing the parameters. In section 4 
we discuss the best method for predicting the clinical outcome of 
patients and the importance of using it to classify the severity of 
COVID-19 patients. Section 5 shows the limitations of our work.

2 Methods

2.1 Patient data

This study was carried out using data from patients admitted to 
the ICU of the Risoleta Neves hospital in Belo Horizonte, Minas 
Gerais state, Brazil, which is a referral unit for clinical and surgical 
emergencies managed by the Federal University of Minas Gerais. The 
study was approved by the Institutional’s Ethics Committee (CAAE: 
45086721.1.0000.5149 - opinion number 4.751.423).
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The patients were admitted by the hospital between May 2020 and 
March 2021 and their inclusion in the study was dependent on the 
confirmation of SARS-CoV-2 infection by RT-PCR. Patients were over 
18 years old (median age range = 64) and had hematological and 
biochemical data accessed at three time points: time 1 (T1–0 to 6 days 
of hospitalization), time 2 (T2–7 to 14 days of hospitalization) and 
time 3 (T3 – >14 days of hospitalization).

The COVID patients (total n = 81) were further classified 
according to the outcome of the disease and referred to as: “Discharge” 
(n = 28) or “Death” (n = 53). Serum samples were collected in tubes 
containing gel and in the absence of anticoagulant by venipuncture 
during the morning routine of the ICU visit, aliquoted and stored at 
-80°C until processing.

2.2 Statistical analysis

GraphPadPrism 8.0 software (GraphPad Software Inc.) was used for 
the conventional statistical analysis of the data to compare the groups. The 
Analysis of Variance (ANOVA) test, followed by Tukey’s post-test for 
parametric data and the Kruskal-Wallis test, followed by Dunn’s post-test 
for non-parametric data were used to compare the groups. For the 
comparative analysis between two groups, the Student’s t-test was used for 
parametric data and the Mann–Whitney test for non-parametric data.

The groups of COVID-19 patients were compared and contrasted 
in the three time periods evaluated in this study. For that, the Receiver 
Operating-Characteristics curves or ROC curves were constructed to 
assess the performance and accuracy of each parameter evaluated, 
with values of the Area Under the Receiver Operating-Characteristics 
Curve (AUROC) less than 0.70 showing poor performance, values 
between 0.70 and 0.80 showing moderate performance, values 
between 0.80 and 0.90 showing good performance, and values greater 
than or equal to 0.90 showing excellent performance. For the analyses, 
the patient’s results were evaluated according to clinical and laboratory 
factors. In all cases, statistically significant differences were considered 
when the p-value was less than 0.05.

We also used GraphPadPrism 8.0 (GraphPad Software Inc.) to 
build the correlation amongst all parameters, which were visualized 
by heatmaps that were built to underscore putative and prospective 
clusters of parameters with predictive potential. Spearman r 
correlation indices were the basis to create the heatmaps. The data 
under scrutiny in the heatmaps were age, outcome (discharge or 
death), hospital stay, red blood cells, hemoglobin, hematocrit, mean 
corpuscular volume, global leukocyte count, neutrophils, neutrophil/
lymphocyte ratio, eosinophils, basophils, monocytes, lymphocytes, 
platelets, pH, pCO2, pO2, HCO3, SatO2, BE, potassium, sodium, 
calcium, chlorine, glycemia, lactate, creatinine, urea, and gender.

2.3 Machine learning analysis

In this work, we use the Python language to build a machine 
learning-based prediction solution. Five different ML models were 
trained to be able to predict patient’s outcome (discharge or death) 
with the same data used for statistical analyses for the three time 
points. These models were Decision Tree Classifier (DT) (13), eXtreme 
Gradient Boosting (XGBoost) (14), K-Nearest Neighbors (KNN) (15), 
Logistic Regression (LR) (16), and Support Vector Machine (SVM) 

(17). With the training of machine learning models, we seek to obtain 
better results than those obtained by ANOVA test.

The five machine learning models were trained using one to five 
features. The selection of features was made based on the results of the 
χ2 test, implemented in the Scikit-learn library (18), which evaluates 
the relationship between random variables, allowing us to identify and 
exclude the features that are most likely to be unrelated to the class, 
making them unimportant for the classification. To carry out the 
categorical data analysis based on χ2 test, the missing data was imputed 
with the median of each feature and scaled in such a way that each 
feature is in the range from 0 to 1.

The probabilities of patients progressing to death were obtained in 
a leave-one-out cross-validation (LOOCV) process in which all 
available samples in the data set are used, one by one, as test data, while 
the rest of the samples are used as training data. Therefore, in each 
LOOCV cycle, we have n-1 samples in the training base and 1 test 
sample, where n is the total number of samples. There are plenty of 
available cross-validation (CV) techniques. To choose the optimal CV 
technique, the bias-variance trade-off should be considered, as well as 
the signal-to-noise ratio of the data, the computational complexity, and 
the final user’s preferences (19). However, LOOCV is particularly suited 
for small data sets with high signal-to-noise ratio over CV set or other 
CV techniques because it provides a model performance estimate that 
is less susceptible to bias, it tends not to overestimate the test error rate, 
and there is no randomness in the training/validation database splits 
(19, 20). LOOCV is computationally expensive but a very powerful and 
versatile technique, suitable for any kind of predictive model (20). In 
each LOOCV cycle, we  calculate the probabilities of the “death” 
outcome for the training base and the test sample. Then, with the 
training base probabilities, we determine the training AUROC in each 
cross-validation cycle as well as the probability of the “death” outcome 
of the test sample. At the end of the LOOCV process, we have n training 
AUROCs and n test sample probabilities. The average training AUROC 
is the average of the “n” training AUROCs and the test is obtained with 
the probabilities of each of the test samples. In each cycle of the LOOCV 
process, the missing data for each feature present in the training base is 
imputed with its median, and in addition, we  balance it using the 
Synthetic Minority Oversampling Technique (SMOTE) (21). After 
balancing the training database, we scale it using the Robust Scaler 
technique implemented in the Scikit-learn library (18).

For the optimization process of the hyperparameters of the 
models the Optuna library (22) was used in such a way as to maximize 
the average training AUROC and the AUROC test. This optimization 
is known as multi-objective since it considers two objective functions. 
This was done so that the optimized hyperparameters of the models 
are such that the training AUROC is always greater than the test 
AUROC to avoid and monitor underfitting and overfitting models.

3 Results

3.1 Divergent snapshot of clinical, 
biochemical and hematological parameters 
according to disease outcome during 
severe COVID-19

In order to provide an overview of the parameters and possibly 
pinpoint differences between discharge and death outcomes, a 
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comprehensive analysis using heatmap strategy was performed 
displaying the whole dataset generated by the study. Results are shown 
in Figure  1 which displays correlations amongst parameters for 
COVID patients (Heatmap A  - Figure  1) as well as the same 
correlations of patients whose outcomes were either discharge 
(Heatmap B  - Figure  1) and death (Heatmap C  - Figure  1). Data 
analysis at the time of admission (T1) demonstrated that stronger 
inverse and direct correlations were observed when patients were 
subdivided by outcome as compared to the COVID-19 group, which 
displayed less significant correlations in the heatmaps as compared to 
the subgroups.

Furthermore, the data analysis carried out at the three time points 
were able to distinguish discharge and death mostly at late time points, 
starting at T2 for the following parameters: neutrophils, overall 
leukocytes, sodium and urea. Conversely, urea was the sole parameter 
able to distinguish patients at an early time point (T1), as shown in 
Table 1 and Figure 2. The significant p-values in Table 1 were obtained 
by ANOVA followed by Tukey’s post-test when comparing the three 
times and Student’s t-test when comparing two groups (discharge 
and death).

Figure 2 shows the longitudinal analysis of laboratory parameters 
considered more important in COVID-19 patients with a discharge 
(n = 28; blue circle) and death (n = 53; red circle) outcome. In 
Figure 2A, the parameters of the two (discharge vs. death) groups are 
compared at the three time points. In Figure 2B, we observed the 
same parameters only at T1. Urea (p-value = 0.0102) was the only 
parameter that showed a statistical difference in distinguishing 
individuals who survived and did not survive COVID-19.

Sodium ion appears below the cut-off point (level considered as 
normal for healthy individuals) at time points T1, T2 and T3 of 
discharged patients but only at T1 of patients who progressed to death, 
with the maximum value for sodium being 146 mmol/L.

Regarding the hemogram analysis, we noticed that the neutrophils 
of the patients who were discharged are significantly lower than those 
from patients who progressed to death. The same is observed from T2 
time point onwards in the overall leukocyte counts; patients who were 
discharged had lower overall leukocyte counts than the patients who 
progressed to death.

3.2 Performance of urea to distinguish 
disease outcome during severe COVID-19

Considering the interesting results of urea observed, the 
performance of this parameter in segregating discharge versus death 
was evaluated using ROC curve analysis. Figure  3 shows the 
longitudinal analysis for urea using the absolute urea dosage (mg/dL). 
Individual data analysis demonstrates that urea levels increased over 
time in patients with COVID-19 regardless of clinical outcome 
(Figures 3A,B). However, the results confirmed the different pattern 
between discharge versus death at T1, which is also observed for the 
late time points (T2 and T3) (Figure 3C). Furthermore, the ROC 
curves and AUROC values in Figure 3D demonstrate the moderate 
but always increasing performance of urea as a biomarker of clinical 
outcome. Therefore, these results indicate that urea should be taken 
into consideration while building algorithms for prognostics and 
prediction purposes.

3.3 Performance of laboratory parameters 
to distinguish disease outcome during 
severe COVID-19 using machine learning 
approaches

To improve the potency and accuracy of performance analysis of 
laboratory and clinical parameters of critically ill COVID-19 patients 
with different clinical outcomes, we performed a feature importance 
analysis using the same dataset to pinpoint additional biomarkers to 
discriminate discharge and death. In Figure 4, we show the five more 
important features for each time point, as selected using the χ2 analysis.

In agreement with the above presented results, urea dosage 
resulted in the most important feature of all parameters considered 
here, with increasing values as time progressed. However, the 
remaining four more important features completely changed as 
time progressed.

Changes in different parameters are directly related to the 
physiological changes that accompany the development and evolution 
of the disease and the body’s attempt to recover from the resulting 
changes. Thus, the increase in creatine in T2 follows the increase in 
urea concentration already observed in T1 and both are related to the 
evolution of the patients’ renal failure. The increase in lactate 
concentration in T2 occurs due to the reduction in oxygen supply in 
the tissues, showing the advance of cellular dysfunction, which in turn 
may result from failure of renal functions revealed already in T1 with 
the increase in urea concentration. The increase in sodium 
(hypernatremia) is a common effect in the intensive care environment, 
which justifies the increase in its concentration at T3. Hypernatremia 
may also be directly associated with the increase in urea concentration 
(observed in T1 and T2) due to changes in osmotic diuresis that 
worsen over the period of hospitalization, as well as the increase in 
lactate concentration (observed in T2).

As described above, we trained and optimized the five different ML 
models using an increasing number of the most important features, 
starting from urea, for T1, T2, and T3. Table 2 contains the AUROCs 
obtained by this procedure. In this table, the highlighted values in gray 
are the highest results using only the first most important feature (Urea). 
These results obtained from models trained only with Urea are 
fundamental because they make a direct comparison with the results 
obtained by the longitudinal statistical analysis presented previously. The 
performance of the best ML model considering just urea was moderate 
for T1 and T2 but reaching a good performance in T3. However, the 
obtained AUROC values by the best ML model were always higher than 
by the longitudinal statistical analysis. It is also important to note that the 
best ML model varies from T1 to T3. While DT resulted in the model 
with higher performance for T1 [AUROC = 0.78 (0.65–0.91)], it was 
replaced by SVC in T2 [AUROC = 0.77 (0.64–0.89)], and T3 
[AUROC = 0.871 (0.77–0.97)]. The performance of the best ML increased 
from moderate in T1 and T2 to good in T3.

Increasing the number of features considered in each ML model 
brings a modest performance gain for 3 features at T1, 
AUROC = 0.78 (0.68–0.90). However, the gain increases for T2, 
AUROC = 0.87 (0.76–0.98) and T3, AUROC = 0.91 (0.81–1.00). 
Once again, the best model for the multi-features scenario changed 
from the moderate performance of XGBoost at T1, to the good 
performance of DT at T2, and to the excellent performance of 
SVC at T3.
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An important aspect to be  considered is the impact of the 
number of features. At all time points, we observed that the increase 
in the number of features tends to improve the performance of the 
models, especially for XGBoost, which benefited most from this 
expansion. However, this increase in feature complexity may also 

have led to an increase in variance, as evidenced by the greater 
variation in results. On the other hand, the use of the 3 most 
important features stood out in all time points, suggesting that a 
careful selection of features may be more beneficial in some cases 
than including all available features.

FIGURE 1

Heatmap of the correlation between the parameters of T1 (0 to 7  days) of the patients’ hospitalization. Red indicates low correlation and blue indicates 
high correlation. Figure (A) shows the correlation between 31 parameters: age, clinical outcome, length of stay, CBR, HB, HT, VCM, GLC, neutrophils, 
neutrophil/lymphocyte ratio, eosinophils, basophils, monocytes, lymphocytes, platelets, pH, pCO2, pO2, HCO3, SatO2, BE, K+, Na+, Ca++, Cl-, 
glycemia, lactate, creatinine, urea, gender (female, male) while figure (B) refers to the group of patients who were discharged (n  =  28) and (C) refers to 
the patients who died (n  =  53), both figures highlight the correlation of 30 parameters: age, length of stay, RBC, HB, HT, VCM, GLC, neutrophils, 
neutrophil/lymphocyte ratio, eosinophils, basophils, monocytes, lymphocytes, platelets, pH, pCO2, pO2, HCO3, SatO2, BE, K+, Na+, Ca++, Cl-, 
glycemia, lactate, creatinine, urea, sex (female, male).
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From the ROC curve of each of the best models at each moment, 
we  determine the optimal threshold values that separates both 
classes. The optimal threshold is obtained from the point on the ROC 
curve closest to the coordinate [0,1] (23). Figure  5 displays a 
histogram of the probability of death for each patient. The histogram 
bars from the true discharge class are represented in blue, while the 
histogram bars for the true death class are represented in red. The 
solid lines are obtained from the Kernel Density Estimation (KDE) 
technique (24).

Based on the probability (of being in the death outcome) returned 
by the best ML model and the optimal thresholds calculated at each time 
point, it is possible to classify all patients into both classes and calculate 
different performance metrics such as accuracy, specificity and sensitivity. 

The resulting values of these performance metrics are summarized in 
Table 3. In addition to these metrics, Table 3 shows the mean AUROC of 
the training data set, obtained as the average of the AUROC of the 
trained data set in each LOOCV cycle. The mean AUROC of the training 
data set spans over all samples in the database and, in that sense, can 
be directly compared with the AUROC of the test data set.

At T1, the XGBoost model demonstrated an accuracy of 73%, 
with a specificity of 85% and a sensitivity of 66%. It is observed that, 
although the specificity is relatively high, indicating the model’s ability 
to identify true negatives, the sensitivity is relatively low, suggesting a 
limitation in the ability to identify true positives. This could be an 
indication that the model is inclined to classify more samples as 
negative, sacrificing the ability to detect positive cases.

At T2, the DT model exhibited a notable increase in accuracy, 
reaching 85%. Specificity also increased considerably to 95%, 
indicating an improvement in identifying true negatives. Additionally, 
sensitivity rose to 79%, demonstrating an improved ability to identify 
true positives. This suggests that the DT model achieved a better 
balance between the classification accuracy of the two classes, making 
it more robust at T2.

At T3, SVC achieved a remarkable accuracy of 89%. Specificity 
remained high, at 94%, while sensitivity increased further, reaching 
86%. These results indicate that the SVC model can maintain a good 
ability to identify both true negative and true positive results, which 
is crucial for applications where the balance between these metrics 
is fundamental.

By analyzing AUROC results for training and testing at each time, 
it is possible to observe a positive and promising progression in the 

TABLE 1 Selected laboratory parameters with potential to discriminate 
disease outcome during severe COVID-19.

Parameters Time point Value p

Seg. Neutrophils 2 0.0373

Seg. Neutrophils 3 0.0004

Global leukocyte count 2 0.0407

Global leukocyte count 3 0.0029

Na+ 3 0.0438

Urea 1 0.0102

Urea 2 0.0135

Urea 3 <0.0001

FIGURE 2

Longitudinal analysis of the selected laboratory parameters in COVID-19 patients with a discharge (n  =  28; blue circle) and death (n  =  53; red circle) 
outcome. (A) Lolipop graphs at time point T1 (0 to 6  days of hospitalization), T2 (7 to 13  days of hospitalization) and T3 (greater than 14  days of 
hospitalization). (B) Lolipop graphs at T1. Values of p  <  0.05 were considered significant and are expressed by * or connector bars. The horizontal traced 
line represent the Cut-off points: Neutrophils: 7 ×103/ μL; Global leukocytes: 11 ×103 μL; Na+: 146  mmol/L and Urea: 40  mg/dL.
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ability of machine learning models to effectively generalize their 
learnings to unseen data. This analysis reflects the continued evolution 
and advancement in the effectiveness of machine learning models, 
especially in medical diagnostic applications in which accuracy and 
the ability to distinguish between classes are critical.

The classification process carried out by ML models is usually 
difficult to interpret due to the mathematical complexity of the 
models. However, interpretable models are desirable to help physicians 
in the diagnosis process. To present a more intuitive and 
comprehensive view of the classification process, Figure 6 illustrates 
the DT model for 3 different scenarios. The DT model exhibits good 

performance in all time points, as well as a relatively straightforward 
interpretation. The first scenario (a) refers to time point T1 using only 
one feature (Urea). The second scenario (b) refers to the T2 time point 
using 3 features (Urea, Creatine, and Lactate). The third scenario (c) 
refers to the T3 time point, and 3 features were also used (Global, 
Urea, and neutrophil/lymphocyte sodium ratio).

For scenario (a), the decision tree begins its analysis, checking 
whether the value of Urea is less than or equal to 25.93. If this 
condition is true, the example is classified as Discharge. Then, if Urea 
is greater than 25.93, the tree continues the analysis. Within the range 
of 25.93 to 42.50 for Urea, the tree checks the value of Urea again. If 

FIGURE 3

Longitudinal analysis of urea in COVID-19 patients with a discharge (n  =  26; blue circle) and death (n  =  43; red circle) outcome. (A) Line scatter plots of 
all COVID-19 patients being followed up (n  =  69) at time points T1, T2 and T3 (greater than 14  days). (B) Scatter plots with individual urea values of 
COVID-19 patients in collections at time points T1, T2 and T3 with outcome of discharge (n  =  26; blue circle) and death (n  =  43; red circle). 
(C) Comparison of discharge versus death for each of the time points evaluated. (D) ROC curve analyses showing the performance of urea dosage at 
each time point of the study. The horizontal traced line represents the Cut-off point of 40  mg/dL for urea. The AUROC in the graph represents the 
performance of the biochemical parameter in distinguishing discharge and death. Values in brackets in the AUROC correspond to the 95% confidence 
interval (95%CI).
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Urea is within the range of 25.93 to 39.50, the example is classified as 
Death. On the other hand, if Urea is between 39.50 and 42.50, the 
classification will be Discharge. For Urea values greater than 42.50, 
the decision tree continues its analysis. It checks whether Urea is 
within the range of 42.50 to 87.50 and makes additional decisions. 
Within this range, if Urea is less than or equal to 73.06, the example 
is classified as Death. On the other hand, if Urea is between 73.06 and 
87.50, the rating will be Discharge. Finally, for Urea values greater 
than 87.50, the decision tree classifies the example as Death. Note that 
the DT model finds intervals of Urea values 39,50–49,50 with a 
Discharge outcome. This island of Discharge outcome in the middle 
of a Death outcome region could be interpreted as a necessity for the 
model to consider more features, i.e., more processes represented by 
other features are influencing the outcome path of the patients at this 
time point. A similar description can be made for the other scenarios 
(b) and (c) following a similar reasoning to that made for scenario 
(a). Therefore, decision trees offer a clear and direct method to 
classify data based on feature values, thus contributing to the 
decision-making in a specific context, where classes (in our case 
Discharge and Death) represent different clinical results.

4 Discussion

Laboratory parameters are essential for monitoring diseases. 
COVID-19 is a disease that also alters several laboratory parameters 
and early investigation of these alterations can allow for the correct 
and effective treatment of the patient and maybe even prevent post-
acute sequelae from the disease. Previous studies demonstrate the 
importance of laboratory parameters in the diagnosis of COVID-19 
and that these parameters can be used to stratify patients in order to 
plan the appropriate treatment (25). Dwivedi et al. (26) showed in 
their study that crucial biomarkers such as urea, creatinine, uric acid, 
ferritin, C-reactive protein, LDL, fibrinogen, bilirubin, albumin and 
procalcitonin, as well as IL-6 were able to indicate the severity of 
patients with severe COVID-19. Also in this study, the authors were 
able to compare the biomarkers in 2 waves of COVID-19, so the 
parameters analyzed were higher in the second wave, while our study 
shows how the length of hospitalization can quickly change the 
hematological and biochemical parameters, which confirms the 
importance of using laboratory parameters to anticipate a probable 
outcome. The work of Chávez-Ocaña et  al. (27), in addition to 
analyzing laboratory parameters, also analyzed interleukins. This 
study shows albumin, lymphocytes, platelets and ferritin as factors 
that may correlate with the severity of COVID-19, and with regard 
to pro-inflammatory cytokines, the authors found IL-6, IL-10, IL-2 
and IL-17 to be  elevated in severe patients. The evaluation of 
interleukins is interesting, however, it is a costly test, so we focused 
on evaluating parameters that are common in the emergency hospital 
routine, in addition to being more accessible and with agile results.

Many studies have addressed the importance of using artificial 
intelligence to diagnose or monitor patients infected with SARS-
CoV-2, (28–33) using laboratory data to predict the mortality risk of 
patients with COVID-19. Likewise, recent reports revealed that 
laboratory parameters such as neutrophils, urea and respiratory 
indices have great unique importance in predicting patient mortality. 

FIGURE 4

Feature importance results based on χ2 test at different time points 
T1, T2, and T3.

TABLE 2 AUROC results for the five optimized machine learning models.

Times N° 
features

DT XGBoost KNN LR SVC

T1 1 0.78 0.74 0.69 0.69 0.72

2 0.75 0.76 0.66 0.69 0.76

3 0.76 0.79 0.64 0.68 0.66

4 0.70 0.78 0.58 0.71 0.54

5 0.71 0.73 0.55 0.68 0.59

T2 1 0.74 0.75 0.71 0.74 0.77

2 0.84 0.78 0.71 0.71 0.68

3 0.87 0.79 0.76 0.73 0.80

4 0.76 0.82 0.68 0.75 0.77

5 0.85 0.78 0.71 0.76 0.76

T3 1 0.80 0.85 0.76 0.83 0.87

2 0.83 0.86 0.86 0.90 0.90

3 0.87 0.87 0.86 0.89 0.91

4 0.87 0.90 0.87 0.89 0.85

5 0.86 0.90 0.85 0.89 0.91
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De Souza et al. (32) shows that machine learning methods using 
demographic and clinical data along with comorbidities of the 
patients can assist in the prognostic prediction and physician 

decision-making. The outcome prediction in that work focuses more 
on individual variables such as age, symptoms, and comorbidities. 
Chung et al. (33) focusses the outcome prediction on the analysis of 
different scores. Each score involves a set of variables, with the best 
performance related to age, coronary heart disease, and the level of 
lymphocyte, procalcitonin and D-dimer. Aljame et  al. (34), 
implemented a complex machine learning ensemble method for 
COVID-19 diagnosis that shows the importance of monocytes in 
determining positive cases of COVID-19, in addition to patients 
having other parameters that can diagnose the disease. Bahceci et al. 
(35) shows that hematological and biochemical parameters can 
be used to determine the patient’s treatment, as they are of low cost 
and accessible. Routine laboratory tests available in hospitals can 
be an important ally in stratifying patient severity using Machine 
Learning (ML) tools. ML techniques can help doctors diagnose 
COVID-19, complementing the results of tests such as RT-PCR and 
increasing the possibility of a favorable clinical outcome for the 
patient. The use of AI in the field of medical diagnostics fills the gap 
in hospitals that have limited diagnostic methods, and also speeds up 
medical decision-making. In addition, the use of ML allows for the 
analysis of various parameters, including the diversity of data, which 
is important in terms of the representativeness of the population 
studied (36–38).

Our study shows that some laboratory parameters present early 
changes, such as urea, for example, demonstrating that a routine 
hospital laboratory test can help characterize the patient who may 
have an unfavorable clinical evolution. Using AI tools to identify, 
diagnose, analyze medical images, and collect hundreds of data points 
quickly in hospitals could have a positive impact on the medical field. 
AI is also important when the diagnostic possibilities depend on many 
other diagnostic tools, such as sepsis, for example, which needs to 
combine clinical and laboratory criteria. Nevertheless, the use of IA 
requires care, especially in the interpretation of the results, requiring 
a multidisciplinary team to obtain a reliable result (38, 39). Therefore, 
our study highlights the importance of using tests that are already part 
of the laboratory routine combined with machine learning.

Predicting the clinical progression of patients with severe 
COVID-19 is very important because patients can present post-
acute sequelae such as kidney and heart infections, liver failure and 
compromised lung function (40). Long COVID is tightly associated 
with the severe cases of COVID-19 as well as the clinical 
management of patients during the acute phase of disease. 
Considering this, improving the clinical management of acute phase 
patients in future waves of the disease may help in halting the Long 
COVID epidemics the world is experiencing in these remaining 
years of the pandemic. The results of our work show the parameters 
that are important to evaluate in patients admitted to hospitals with 
COVID-19, being urea and lymphocytes at early time points of acute 
phase taken as categorical parameters in the classification of patients 
who have died.

FIGURE 5

Histogram of the probability of patients being classified in the “death” 
class by the best model in T1 (A), T2 (B) and T3 (C). The histogram bars 
from the true discharge class are represented in blue while the 
histogram bars for the true death class are represented in red. The solid 
lines represent the estimated probability distribution for each class.

TABLE 3 AUROC training, AUROC training, accuracy, specificity, and sensitivity of the best models at each time point.

Time point - model AUROC training AUROC test Accuracy (%) Specificity (%) Sensitivity (%)

T1 - XGBoost 0.98 0.79 73 85 66

T2 - DT 0.99 0.87 85 95 79

T3 - SVC 0.92 0.91 89 94 86
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Urea, the parameter classified as the most important in the 
outcome of COVID-19 patients, is closely linked to the amount of 

protein the individual eats, i.e., the richer the protein diet, the greater 
the excretion of urea. The protein ingested in the diet is metabolized 

FIGURE 6

Visualization of DT model for 3 different scenarios. (A) refers to T1 using only one feature (Urea). (B) refers to T2 using 3 features (Urea, Creatine, and 
Lactate). (C) refers to T3 using 3 (Global, Urea, and neutrophil/lymphocyte sodium ratio).
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into essential and non-essential amino acids or into waste products 
and ions. In addition, amino acids are metabolized by the liver into 
urea, which is then excreted in the urine. The body’s protein stores can 
be converted into essential and non-essential amino acids or they can 
be  metabolized to form waste products and ions, which will also 
be excreted in the urine. Urea is synthesized in the liver by protein 
catabolism and blood urea is filtered by the glomerulus and undergoes 
tubular reabsorption, so urea is directly related to nutritional status, 
protein metabolism and kidney condition. SARS-CoV-2 can activate 
the renin-angiotensin-aldosterone system causing renal 
vasoconstriction, decreased glomerular filtration and decreased urea 
excretion, increased absorption of water as well as sodium and passive 
reabsorption of urea (41, 42).

Since urea is the end product of protein metabolism, it can be used 
as a marker of kidney function. A study by Cheng et al. (43) tested 
blood urea levels combined with D-dimer as predictors of hospital 
mortality in COVID-19 patients. High urea levels are associated with 
a worse outcome in patients with heart failure. One of the reasons 
involved in this process is moderate to severe dehydration due to fever 
that ICU stay may cause, so the blood flow reaches the kidneys with 
less pressure, triggering damage to the renal structures. Patients 
undergoing mechanical ventilation have high internal pressures, 
which reduces venous return. This increase in pressure in the lungs 
reduces cardiac pressure, so if the heart cannot pump blood effectively 
to the kidneys and other organs, it compromises their functioning. 
This explains why patients with heart failure have high levels of urea, 
due to the inefficient functioning of the kidneys, the organs responsible 
for excreting urea. The study by Shaikh et al. (44) shows significant 
associations of biomarkers such as urea, ferritin, glucose and 
creatinine with mortality and ICU admission, just as our data show 
how urea can be a good biomarker of severity in COVID-19.

Our data shows that more severe patients with death outcome had 
higher concentrations of lactate and urea than patients who were 
discharged. We observed that these concentrations tended to increase 
even more in later stages. Henry et al. (45) showed in their study that 
high lactate values are related to a worse prognosis. Lactate 
dehydrogenase is an intracellular enzyme that catalyzes the 
interconversion of pyruvate and lactate. Severe infections can cause 
tissue damage mediated by cytokines and the release of lactate 
dehydrogenase. As this enzyme is present in lung tissues, patients with 
severe COVID-19 tend to release a greater amount of lactate. Thus, 
lactate is a predictor of worse outcomes in hospitalized patients and 
reflects the putative multiple organ damage and failure, that play an 
important role in COVID-19 patients who progress to death.

Glucose is another decisive parameter in the clinical outcome of 
patients with COVID-19. It is known that patients with type 2 diabetes 
have an increased risk of developing severe COVID-19 and according 
to a previous study (46), these patients have increased levels of 
angiotensin-converting enzyme-2 (ACE2) the receptor for SARS-
CoV-2, which favors the entry of the virus and decreases its clearance. 
Thus, an increase in glucose is related to an increase in viral replication, 
a probable serious complication due to deregulation of the immune 
system and an increase in the inflammatory response.

The innate immune system is of great importance in viral 
infections, especially in respiratory infections, in which the lung is the 
target organ. A differential and divergent cytokine storm both 
systemic and in the airways will also be crucial to define immune 
responses and outcome of critically ill COVID-19 patients (47). This 

inflamed milieu also allows for improved binding to surface antigens 
and can influence the secretion of other cytokines as interferons and 
interleukins, as well as regulatory factors. In COVID-19, lymphocytes 
are decreased, which may suggest an inefficient IgG response and a 
hampered leukocyte activation (48). In this study, we  found that 
patients who died had higher overall leukocyte counts as well as 
higher neutrophil percentages than patients who were discharged in 
the onset of acute phase. Conversely, lymphopenia was observed in 
COVID patients regardless of outcome. As expected, neutrophils have 
been abundantly studied in COVID-19 and are, therefore, expected to 
be a hallmark of severity. However, AI models reveal that the order of 
importance of these parameters diverge amongst time points, which 
was unexpected. At T1, only lymphocyte counts ranked second and 
basophils ranked in the fourth position of importance, demonstrating 
that leukocytes other than neutrophils need further scrutiny and may 
contribute for the establishment of biomarkers at early time points of 
disease progression. In this regard, basophils are also cells of the 
innate immune system that migrate to inflammatory sites during 
allergic inflammation and infection that triggers the production of 
IL-4, which stimulates the proliferation of B and T cells. The 
promptness of these cells to respond to an allergen may explain their 
order of importance in the refined AI models used here. On the other 
hand, at T3, neutrophil/lymphocyte ratio contributes as the second 
most important biomarker for assessing COVID-19 outcome, 
demonstrating the importance of neutrophils at late stages of disease. 
The study by Kaur et al. (49) reinforces our findings, by showing that 
lymphopenia is common in patients with COVID-19 and that severe 
cases of the disease at late stages in the ICU had neutrophilia. In 
addition, Kılıc (50) et al. shows that patients with a lower lymphocyte 
count associated with depletion of CD4 and CD8 T cells had an 
increased risk of developing a severe COVID-19 outcome. The 
potential mechanism for explaining this phenomena is virus-induced 
lysis of the lymphocytes, since these cells express ACE2 and are 
therefore permissive to SARS-CoV-2 (50). Cytokine-induced atrophy 
of lymphatic organs can also occur, which impacts on lymphocyte 
renewal, and another mechanism would be  inflammatory 
pro-mediators that can induce direct lymphocyte apoptosis (49).

COVID-19 is a disease that can affect several organs and the way the 
host’s body reacts to the disease is fundamental in determining the 
patient’s outcome. Some factors are considered risk factors, such as age. 
Studies such as that by Chen et  al. (51) show that age is the most 
significant risk factor for developing severe COVID-19. The results 
we  found using ML reinforce the importance of age both in the 
development of the disease and in the clinical outcome of this patient. 
The study by Hu et al. (52) reinforces that older adult patients with 
comorbidities progressed to more serious illnesses, thus highlighting that 
the older adult were prone to developing severe acute respiratory 
syndrome and septic shock. Therefore, the correct diagnosis and 
treatment in older adult patients is crucial in order to improve survival 
rate and prevention of post-acute sequelae in those populational stratum.

Our study shows that the use of measurable biochemical and 
hematological variables (urea, lymphocytes, glucose, neutrophil/
lymphocyte ratio and basophils) constitutes excellent 
biomarkers for the severity of COVID-19 patients and outcome 
prediction of hospitalized patients, with strong highlight to 
urea. This study shows that urea is the parameter that best 
classifies patient severity and rises over time, making it an 
important analyte to be used in machine learning algorithms to 
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predict patient outcomes. However, in contrast to the previous 
studies that show the importance of age during severe COVID 
(51), we observed that once a patient is under treatment at the 
ICU, other parameters such as urea, lymphocytes, glucose and 
basophils at T1 were more important than age. As the patients’ 
hospitalization time progressed (T2 and T3), age did not appear 
as an important feature, as other laboratory parameters such as 
urea, creatinine, lactate, eosinophils, neutrophil/lymphocyte 
ratio and global leukocytes. Therefore, our study demonstrates 
the importance of machine learning algorithms in the clinical 
evolution of patients.

The use of ML in the clinical monitoring of patients can 
generate fast and efficient results, ML can also be used to predict 
new outbreaks, using epidemiological data (53, 54). Routine tests 
in the hospital environment are essential for predicting a patient’s 
clinical outcome, and when coupled with artificial intelligence, 
predictions can contribute even further to the survival rates and 
clinical management of patients. This work shows that laboratory 
parameters can change early and late during COVID-19 at its 
severe form, and conventional statistical analyses are insufficient 
to promote predictive power and contribute to decision making 
and clinical management of patients. Therefore, we present ML 
algorithms as a tool for predicting the clinical outcome of 
COVID-19 patients, to improve our preparedness for the more 
assertive and early treatment in future pandemics of newly 
mutated immune-resistant SARS-CoV-2 variants.

4.1 Limitations

Our study evaluates laboratory parameters at different times 
in a longitudinal design performed with patients from admission 
until the outcome (discharge or death), which limits the sample 
size of the study. The machine learning method here developed 
focus not only in performance, but also interpretability and 
generalizability of the models. However, the relatively low 
number of patients remains an important limitation, as well as 
the difficulties in obtaining a full set of data for all patients at 
all time points. Due to the rapid evolution of this disease, a more 
frequent collection of laboratory analysis (more time points) is 
also desirable and should be considered for future investigations.
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