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The COVID-19 pandemic provided an additional spotlight on the longstanding

socioeconomic/health impacts of redlining and has added to the myriad of

environmental justice issues, which has caused significant loss of life, health,

and productive work. The Centers for Disease Control and Prevention (CDC)

reports that a person with any selected underlying health conditions is more

likely to experience severe COVID-19 symptoms, with more than 81% of

COVID-19-related deaths among people aged 65 years and older. The e�ects of

COVID-19 are not homogeneous across populations, varying by socioeconomic

status, PM2.5 exposure, and geographic location. This variability is supported by

analysis of existing data as a function of the number of cases and deaths per

capita/1,00,000 persons. We investigate the degree of correlation between these

parameters, excluding health conditions and age. We found that socioeconomic

variables alone contribute to∼40%of COVID-19 variability, while socioeconomic

parameters, combined with political a�liation, geographic location, and PM2.5

exposure levels, can explain ∼60% of COVID-19 variability per capita when

using an OLS regression model; socioeconomic factors contribute ∼28% to

COVID-19-related deaths. Using spatial coordinates in a Random Forest (RF)

regressor model significantly improves prediction accuracy by ∼120%. Data

visualization products reinforce the fact that the number of COVID-19 deaths

represents 1% of COVID-19 cases in the US and globally. A larger number of

democratic voters, larger per-capita income, and age >65 years is negatively

correlated (associated with a decrease) with the number of COVID cases

per capita. Several distinct regions of negative and positive correlations are

apparent, which are dominated by two major regions of anticorrelation: (1)

the West Coast, which exhibits high PM2.5 concentrations and fewer COVID-

19 cases; and (2) the middle portion of the US, showing mostly high number

of COVID-19 cases and low PM2.5 concentrations. This paper underscores

the importance of exercising caution and prudence when making definitive

causal statements about the contribution of air quality constituents (such as

PM2.5) and socioeconomic factors to COVID-19mortality rates. It also highlights

the importance of implementing better health/lifestyle practices and examines

the impact of COVID-19 on vulnerable populations, particularly regarding

preexisting health conditions and age. Although PM2.5 contributes comparable

deaths (∼7M) per year, globally as smoking cigarettes (∼8.5M), quantifying any

causal contribution toward COVID-19 is non-trivial, given the primary causes of
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COVID-19 death and confounding factors. This becomes more complicated as

air pollution was reduced significantly during the lockdowns, especially during

2020. This statistical analysis provides a modular framework, that can be further

expanded with the context of multilevel analysis (MLA). This study highlights the

need to address socioeconomic and environmental disparities to better prepare

for future pandemics. By understanding how factors such as socioeconomic

status, political a�liation, geographic location, and PM2.5 exposure contribute

to the variability in COVID-19 outcomes, policymakers and public health o�cials

can develop targeted strategies to protect vulnerable populations. Implementing

improved health and lifestyle practices and mitigating environmental hazards

will be essential in reducing the impact of future public health crises on

marginalized communities. These insights can guide the development of more

resilient and equitable health systems capable of responding e�ectively to similar

future scenarios.

KEYWORDS

COVID-19, PM2.5, socioeconomic variables, ordinary least squares (OLS), random forest

(RF), statistical correlation

1 Introduction

Environmental justice is the fair treatment and meaningful
engagement of all people, regardless of ethnic group, color,
national origin, or income, to the development and enforcement
of environmental laws, regulations, and policies, ensuring that no
community disproportionately bears the burden of environmental
hazards while also promoting access to environmental benefits
(1–6). The legacy of redlining has exacerbated socioeconomic
and demographic inequalities and public health disparities,
which are further intensified by climate change and escalate
air pollution; this has negative consequences on human health
globally, contributing to a significant portion of annual deaths,
disproportionately affecting impoverished nations, and resulting
in widespread environmental and economic challenges. Particulate
matter (PM), a significant component of air pollution resulting
from various natural and anthropogenic activities, is a major
contributor to adverse human health impacts. Suspended in the
atmosphere over extended periods and capable of traversing
long distances, PM becomes a pervasive concern with far-
reaching consequences for public health (7). Pollution, overall
(when including water, occupational, and lead contamination),
contributes to ∼9M deaths/year, which is comparable to
smoking/secondhand smoking-related deaths (8).

Health disparities are key indicators of how overall health and
economics are so intertwined. The ability to live a long and healthy
life is not equally available to all. A baby born to a family that lives
in the Upper East Side will live 7.5–11 years longer than a baby born
to a family in East New York/Starrett City, Bedford-Stuyvesant, and
Brownsville, Brooklyn (9, 10). As of 2016, the median household
income of East New York residents was $36,780, exhibited a 10%
and 30% unemployment and poverty rate, respectively, and have
a 52% rent burden. Cancer, heart, and respiratory disease are the
leading causes of premature death, like the rest of NYC (11, 12).
LI neighborhoods and BIPOC New Yorkers are dying before 65 at
higher rates. East New York & Starrett City, Brooklyn exhibited
one of the highest COVID-19 mortality rates in the world during

the Spring 2020 phase of the pandemic. Figure 1 exemplifies EJ-
designated areas throughout NYC via EPA’s ArcGIS - My Map
+ EJScreen.

Considering the persistent COVID-19 pandemic, which has
resulted in over 104 million confirmed cases and 1.125 million
fatalities in the United States, understanding the intricate
connections between socioeconomic factors, air pollution, and
the variability in COVID-19 outcomes is crucial (13, 14).
Understanding the link between air pollution and COVID-
19 outcomes is crucial because prior research suggests that
exposure to pollutants like PM2.5 and PM10 can suppress
immune responses, amplify inflammation, and damage cells,
potentially intensifying COVID-19 severity (15), especially in
already vulnerable populations (16–23). These findings are further
underscored by studies that indicate a significant association
between increased PM2.5 levels and elevated COVID-19 death
rates. Wu et al. (16) found that an increase of only 1 µg/m3 in
PM2.5 is associated with an 8% increase in the COVID-19 death
rate (95% confidence interval [CI]: 2%, 15%). A study conducted in
England explored potential links between major fossil fuel-related
air pollutants and COVID-19 mortality. The study revealed a
positive correlation between pollutant concentrations, particularly
nitrogen oxides, and COVID-19 mortality and infectivity (24).
In addition, Pozzer et al. (17) estimated that particulate air
pollution contributed ∼15% (95% confidence interval 7–33%)
to COVID-19 mortality worldwide, 27% (13–46%) in East Asia,
19% (8–41%) in Europe, and 17% (6–39%) in North America.
Globally, ∼50–60% of the attributable anthropogenic fraction is
related to fossil fuel use, up to 70–80% in Europe, West Asia,
and North America. Additionally, socioeconomic disparities, such
as poverty and lack of healthcare access, which are intertwined
with higher pollution exposure, play a pivotal role in the
spread and impact of the virus. Thus, examining the interplay
between socioeconomic factors, air pollution, and COVID-19
can shed light on targeted interventions to mitigate disease
impact in high-risk communities. Within this context, accurate
modeling, forecasting, and mitigation strategies are hard and
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FIGURE 1

Environmental justice areas in New York City.

non-trivial to implement when aiming to quantitatively understand
COVID-19 mortality and morbidity correlations to socioeconomic
and sociodemographic confounding factors. Using transmission
and exposure models, recent studies provide high degrees of
accuracy in forecasting COVID-19 transmission and exposure
risks (25–29); in addition, these studies show that international
trade serves as a surrogate indicator reflecting human-to-
human interactions, encompassing various drivers influencing
the transmission dynamics of COVID-19 across geoeconomic
regions. It is further regarded as a proxy for social parameters
applicable to local communities, albeit challenging to model
accurately. Contrary to merely representing economic exchanges,
international trade reflects intricate social dynamics. Research
suggests that regions with heightened trade activities exhibit
higher confirmed cases of COVID-19 infection, attributable to
increased social interactions accompanying economic expansion.
The correlation between infection rates and international trade is
closely tied to GDP, indicating elevated interpersonal interactions
as economic activities surge. This parameter demonstrates a linear
relationship with the virus spread across all regions of the USA.
Furthermore, it correlates with COVID-19 outcomes. Additional
studies, using IoT-enabled platforms have created automated
techniques to further support the reduction in transmission of
COVID-19 by way of novel hand sanitizers (30, 31). More
targeted approaches have also been developed to better mitigate

air quality emissions through data analytics and scientometric
analysis (32).

This study examines the impact of socioeconomic variables,
voting outcomes, and air pollution (i.e., PM2.5) on the temporal
variability/number of COVID-19 cases and deaths in the US. The
study uses data from the CDC and the US Census Bureau, and
∼ 5000 ambient PurpleAir PM2.5 sensors. Data on socioeconomic
and sociodemographic variables, voting outcomes, air pollution,
and the number of COVID-19 cases and deaths for the lower 48
states was obtained from the CDC and the US Census Bureau, and
∼5,000 ambient PurpleAir PM2.5 sensors, which were all merged to
construct the data analytics products are described here.

Specific questions addressed in this study are as follows:

• How significantly do factors like socioeconomic variables,
political affiliation, and air pollution (specifically, PM2.5)
contribute to the number of COVID-19 cases and deaths?

• Are there any identifiable geographic patterns on the spread
and impact of COVID-19?

• Is there a significant relationship between PM2.5 air pollution
and COVID-19 outcomes?

• How can increased cross-/interdisciplinary research in
core STEM disciplines with the Education research
realm, contribute to the increased representation of
Black, Brown, and low-income populations in the
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workforce—especially within the context that educational
attainment is the primary governing factor that positively
correlates with increased economic mobility and
potential? (33, 34).

2 Experimental design and methods

The study used sociodemographic variables, voting outcomes,
COVID-19 cases, death numbers, and air pollution data—all
obtained from the CDC and the US Census Bureau, and ∼5000
ambient PurpleAir PM2.5 sensors. Table 1 provides a summary of
the variables used in this study. The Minority Social Vulnerability
(SVI) (35) index provided a vetted set of sociodemographic
variables from the US Census American Community Survey
(ACS) that the CDC determined most influential in COVID-19
spread. We used data from both the standard ACS and a curated
list from the CDC’s Minority SVI. Notably, the Minority SVI
differs by including four extra variables about specific minority
groups (Spanish, Chinese, Vietnamese, and Russian speakers and
their fluency).

We obtained our COVID-19 case and death statistics from the
Johns Hopkins University database. The data we selected, as of
12/31/2020, was standardized per 1,00,000 people. This date was
chosen to align with a future CDC death certificate dataset from
2020, as CDC datasets are released a year later (36). For political
data, we used MIT’s database on county presidential election
outcomes. However, the data for regions likeHawaii, Alaska, Guam,
and Puerto Rico differed, as they were grouped by voting districts,
not counties, preventing a straightforward integration with county-
level data.

Regarding the air quality data, there are two main data
sources for the US—a federal website AirNow.gov [governed by
the Environmental Protection Agency (EPA)] and PurpleAir.com
(a private company). EPA’s AirNow.gov uses calibrated sensors
and provides high-quality data for a limited number of locations,
across the US, whereas, the PurpleAir provides more sensor
coverage/locations, at the cost of lower accuracy and precision (37).
We downloaded daily air pollution data (daily averages) for all
available sensors within the 48 lower states between 2/1/20 and
12/31/20. To ensure acceptable data quality, sensors with less than
100 days of observations and average PM2.5 values equal to zero
or >500. There were 3,344 sensors selected in 574 counties (out of
3,071 counties and county equivalents). The average values of PM2.5

for each sensor for the said period were calculated.
The first three data sources provided tabular data summarized

by US counties or county equivalents with associated Federal
Information Processing Standard (FIPS) codes. FIPS codes are
an unambiguous numeric identifier of administrative units in the
US (38). Having this identifier in the source data streamlined the
process of joining these data tables with each other. To further look
at the spatial relationships in the data, we synthesized the resulting
non-spatial table with sociodemographic variables with the spatial
layer containing US county boundaries.

As a result of the data preparation process, the master Comma-
Separated Value (CSV) file was created, containing all counties
within the lower 48 states with associated sociodemographic
variables, voting outcomes and number of COVID-19 cases/deaths

(per capita of 100K persons), and associated interpolated PM2.5

pollution counts, extracted from the IDW raster created in ArcGIS
Spatial Analyst (more in the Methods section). The list of the data
sources is provided in Table 1, and the full list of variables in the
resulting dataset is provided in Table 2.

To understand to which degree there is a relationship between
PurpleAir PM2.5 data, selected sociodemographic parameters,
voting outcomes, and COVID-19 cases and deaths, an ordinary
least squares regression was employed (39), using cases/deaths per
1,00,000 persons as dependent variables and all other variables as
independent variables.

To assess the possible influence of certain independent variables
on the dependent variable, scatter plots of the variable in question
vs. the independent variable are plotted as well as Pearson
correlation coefficients and p-values are calculated to assess the
correlation strength. To assess the possible multicollinearity issues,
a correlation plot (heatmap) was employed.

Next, the Variance Inflation Factor (VIF) coefficients were
calculated, showing the degree of multicollinearity. VIFs range
between 1 and 0 multicollinearity to infinity. The common rule
of thumb is that if the VIF for a specific variable is >five, these
variables exhibit strong multicollinearity. If one is interested in
interpretable regression coefficients, then remove or incorporate
the variable of focus with other variables (40).

To facilitate the interpretation of the regression results, the
data was preprocessed using sklearn Standard Scaler (standardized
and scaled data by subtracting the mean and scaling to the
unit variance). Outliers were removed using a Local Outlier
Factor. These steps are useful to further compare the regression
coefficients that allowed us to see the more influential variables.
The Statsmodels.api.ols Python module as well as ArcGIS
Ordinary Least Squares (OLS) tool were used to run the
regression analysis. These tools output the same regression
coefficients and R2 metrics, although the ArcGIS OLS tool
provides an easy way to output the residuals into the source
dataset. It is useful if one desires to explore how residuals are
geographically distributed.

Regression results were checked for multicollinearity in
Regression Analysis and regression assumptions using the
Residuals vs. Fit graph and Q–Q residual plotting. The assumption
is that the regression residuals should be independent and
normally distributed, so the model can be used for inference
(41). Otherwise, it could be useful for prediction but useless
for interpretation. The overall predictive accuracy of the model
was assessed using its R2 scores on a randomly selected
unseen test dataset (25% of the data) and using five-fold cross-
validation.

2.1 Influence of location/distinctive spatial
patterns of COVID-19 development

Moran I test on residuals was employed to check if the
residuals exhibit spatial autocorrelation (42). This test is significant
when the data exhibits clustering or anticlustering patterns
and is insignificant if the spatial distribution is random (43).
Having confirmed the non-random clustered distribution of
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TABLE 1 List of the data sources and their descriptions.

Data source name Variables Description URL

Purpleair PM2.5 outdoor air pollution
data

PurpleAir makes sensors that a community of
citizen scientists uses to collect hyper-local,
real-time air quality data and share it on a map
that is accessible to everyone.

purpleair.com web
map

Minority SVI Sociodemographic variables,
selected by CDC as influential
for pandemic spread

Minority Health SVI uses data from the
United States Census Bureau and other public
sources to help identify communities that may
need support before, during, and after disasters,
with a focus on minority racial, ethnic, and
language groups as well as medical vulnerability.

CDC Onemap

County Presidential Election Returns 2000-2020 % voted for Democrat,
Republican, Green,
Libertarian

This dataset contains county-level returns for
presidential elections from 2000 to 2020
(2021-06-08).

Harvard Dataverse

Time series summary (csse_covid_19_time_series) COVID-19 cases and deaths
on 12/31/2020

Data from JHU. This data contains daily time
series summary tables: confirmed, deaths, and
recovered. All data is read from the daily case
report.

GITHUB

residuals, one can conclude that either some of the important
explanatory variables were missed from the model or there is
an influence of some spatial process so the model systematically
over/underpredicts the dependent variable at specific places. A
random distribution (a non-significant Moran’s I) signals a well-
fitting model, but, it raises the alarm when the test flags a significant
pattern. Two possibilities emerge: either vital explanatory variables
are missing, leaving spatial factors to unfairly influence the
dependent variable at specific locations, or hidden spatial
processes, interactions between existing variables are distorting the
model’s predictions.

To test if the added spatial coordinate features help to
predict the dependent variable more accurately, the random
forest regressor from the SKLearn was used. The spatial
coordinates of centroids of each US county were extracted
into separate X and Y variables and further used as the
independent variables in a random forest regressor. The Random
Forest Regressor is a machine learning algorithm that constructs
multiple decision trees using various sub-samples of a dataset
and aggregates the individual decision tree results through
averaging to improve the prediction accuracy (44). The algorithm
was run with recommended parameters of max-features set
to None and max-depth set to None. The first parameter
controls how many features to consider making a split in the
decision tree, and all features are included when set to None.
Max-depth controls the size of the individual tree; the N-
estimator parameter, which controls the number of trees in the
forest, was set to 500 (the default value is 100). It helps to
achieve a bit better accuracy by the price of consuming more
computing resources.

To assess the predictive accuracy of the Random Forest
regression model, similar to OLS regression, a test dataset R2
score and k-fold cross-validation techniques were employed. To
assess the relative importance of different predictors in the model,
Permutation Importance accesses a decrease in a model predictive
score if one of the predictive variables is randomly shuffled. The
bigger the drop in the score the more the predictor is important
(45).

2.2 Influence of PM2.5 pollutant
concentrations on the numbers of
COVID-19 cases/deaths

Given the limited coverage of PurpleAir sensors, encompassing
only one-sixth of US counties, spatial interpolation was employed
to estimate average PM2.5 values in non-monitored areas.
Recognizing the decreasing influence of distant readings, we
utilized the Inverse Distance Weighting (IDW) method using
ArcGIS (46). This technique generates a spatially continuous raster
dataset of PM2.5 concentrations across the entire US landmass. To
facilitate county-level analysis, the raster data was then converted
back into point data, allowing us to extract average PM2.5 values for
each county. By employing this approach, we were able to overcome
the data sparsity issue and create a comprehensive picture of PM2.5

distribution across the entire United States.

3 Results and discussion

Qualitatively, Figures 2A–F do not exhibit any positive or
negative correlations among all of them. Between specific subset
figures of Figure 2, general statements can be made to describe
their relationships. For example, Figures 2A, B exhibit positive
correlations, generally, amongst of the eastern portion of the
United States, with high positive correlations at the nexus of
Nevada, New Mexico, Colorado, and Utah, and the Northern
middle states. No specific correlations, especially of high spatial
resolution, can be made between these two figures. Yet, Figures 2A,
B reinforce the fact that the global and US ratios of deaths/number
of COVID-19 cases are 0.01 and 0.011, respectively. In other words,
COVID-19-caused deaths represent ∼1% of the total number of
cases both in the US and globally (https://coronavirus.jhu.edu/).
Figure 2C, the percentage of democratic voters, only exhibited
general positive correlations with the location of PurpleAir sensors
(Figure 2E) and did not show any correlations with any of the
other subset figures. Figures 2A, D, F show several distinct regions:
(1) the western portion of the US, which exhibits high PM2.5
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TABLE 2 List of variables.

Name of the variable Description Units Source

R_CASES COVID cases per 1,00,000 on 12/31/2020 Ratio per 1,00,000 JHU

R_DEATHS COVID deaths per 1,00,000 on 12/31/2020 Ratio per 1,00,000 JHU

EP_POV Population below the poverty level Percentage CDCMSVI

EP_UNEMP Unemployed Percentage CDCMSVI

EP_PCI Per capita income Percentage CDCMSVI

EP_AGE65 Population on or above 65 years old Percentage CDCMSVI

EP_AGE17 Population on or below 17 years old Percentage CDCMSVI

EP_DISABL Disabled population Percentage CDCMSVI

EP_SNGPNT Single parent Percentage CDCMSVI

EP_AIAN Native American/Alaskan Native Percentage CDCMSVI

EP_AFAM African American Percentage CDCMSVI

EP_NHPI Native Hawaian/Pacific islander Percentage CDCMSVI

EP_HISP Hispanic population Percentage CDCMSVI

EP_SPAN Speakers who speak English less than “Very well” and is a Spanish speaker Percentage CDCMSVI

EP_CHIN -“- Chinese speaker Percentage CDCMSVI

EP_VIET -“- Vietnamese speaker Percentage CDCMSVI

EP_KOR -“- Korean speaker Percentage CDCMSVI

EP_RUS -“- Russian speaker Percentage CDCMSVI

EP_MUNIT Multiple unit housing Percentage CDCMSVI

EP_MOBILE Mobile homes Percentage CDCMSVI

EP_CROWD Crowdedness (percentage of households where a number of people > number of rooms) Percentage CDCMSVI

EP_NOVEH Number vehicle access Percentage CDCMSVI

EP_GROUPQ Population in group quarters (oilfield camps, army camps, prisons, nursing homes) Percentage CDCMSVI

R_HOSP Hospitals per 1,00,000 Ratio per 1,00,000 CDCMSVI

R_URG Urgent care units per 1,00,000 Ratio per 1,00,000 CDCMSVI

R_PHARM Pharmacies per 1,00,000 Ratio per 1,00,000 CDCMSVI

R_PCP Primary care providers per 1,00,000 Ratio per 1,00,000 CDCMSVI

EP_UNINSUR Uninsured Percentage CDCMSVI

EP_NOINT No internet access Percentage CDCMSVI

EP_NOHSDP No high-speed internet access Percentage CDCMSVI

EP_DEMOCRAT Voted for Democratic presidential candidate Percentage MIT

EP_REPUBLICAN -“- Republican Percentage MIT

EP_LIBERTARIAN -“- Libertarian Percentage MIT

EP_GREEN -“- Green Percentage MIT

EP_OTHER -“- Other Percentage MIT

Variables names start with R (Ratio per 100 000) and EP (Estimated %).

concentrations and low COVID-19 cases; (2) the west-to-middle
portion of the US, exhibiting high COVID-19 cases and low PM2.5

concentrations; (3) a regional part of the southwestern part of
the US, exhibiting low PM2.5 concentrations and low COVID-19
cases; (4) an approximately evenly distributed blend of high PM2.5

concentrations and high COVID-19 cases, mid-to-high number of

COVID-19 cases and low PM2.5 concentrations, and high PM2.5

concentrations and low number of COVID-19 cases in the middle-
to-eastern part of the US; and (5) low PM2.5 concentrations and low
number of COVID-19 cases in the Northeastern area of the US.

Having inspected the correlation coefficients on the correlation
plot, one can conclude that many pairs of variables are strongly
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FIGURE 2

Examples of participating datasets in map format. Schemes follow another format. If there are multiple panels, they should be listed as (A) COVID-19

cases per 1,00,000 persons; (B) COVID-19 deaths per 1,00,000 persons; (C) Voting outcomes (% Democrats); (D) Average PM2.5 air pollution (IDW

interpolation); (E) Purpleair sensor locations; and (F) PM2.5 exposure levels vs. COVID-19 cases per 1,00,000 persons.

correlated. Indeed, Tables 3, 4 show the top five strongly positively
and negatively, correspondingly, correlated pairs of variables:

On the other hand, the correlations between the dependent
variables and any independent variables are very mild,
whereas many independent variables are strongly correlated,
which could indicate possible multicollinearity issues. These

multicollinearity issues are even more prominent when
inspecting Figure 3.

The scatter plots depict the relationships between the
dependent variable of cases per 1,00,000 persons and independent
variables. As one can see in the correlation plots (Figure 4), the
strongest negatively correlated independent variables are various
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TABLE 3 Top five positive correlations.

First variable Second variable Correlation
coe�cient

EP_SPAN EP_HISP 0.89

EP_CHIN EP_ASIAN 0.68

EP_NOINT EP_POV 0.66

EP_NOINT EP_NOHSDP 0.65

EP_UNEMP EP_POV 0.64

TABLE 4 Top five negative correlations.

First variable Second variable Correlation
coe�cient

EP_PCI EP_POV −0.72

EP_NOINT EP_PCI −0.71

EP_NOHSDP EP_PCI −0.64

EP_DISABL EP_PCI −0.58

EP_AGE17 EP_AGE65 −0.57

FIGURE 3

Correlation strength between di�erent variables.

types of political outcomes—percent votes for democrats and
greens, as well as per capita income. A larger number of democratic
voters, larger per-capita income, and age greater than 65—all these
factors are negatively correlated (associated with a decrease) of the
number of COVID cases per 1,00,000 persons.

On the other hand, the number of Republican voters has a
non-significant and almost zero correlation with the number of
cases. Being of young age (younger than 17), staying in group
quarters (prisons, nursing homes, oilfield worker/construction
camps), having no internet access, and being American Indian or

Alaska Native are the factors associated with an increase in COVID-
19 cases per capita. There are also some casual correlations between
a high number of hospitals per capita associated with a high number
of COVID-19 cases.

Regarding the correlations between the number of deaths
per 1,00,000 persons and various socioeconomic variables—the
correlations are even milder than with the number of cases,
meaning the deaths are even more difficult to predict reliably
(Figure 5). The sets of variables with positive and negative
coefficients are mostly the same but just ordered differently due to
different correlation coefficients. The biggest negative correlation
coefficient is with the per capita income; the lower the income is,
the bigger the associated number of deaths. There are some mild
negative associations with non-republican voters, and being of an
Asian minority is associated with a lower number of deaths.

The biggest positive correlation is with lack of internet access,
which could be associated with living in extreme poverty or remote
places with no access to medical care. There is also a positive
correlation with the number of hospitals, which could imply that
a lot of those sick with COVID-19 died in hospital.

As one can see, there is a mild negative correlation between
the dependent variable and the PM2.5 variable, and we will see
similar behavior when examining regression coefficients. This
could mean that the counties exhibiting the relatively high PM2.5

air pollution had relatively low case rates. If we look over the
map, the air pollution is concentrated over the forested counties of
Washington, Oregon, and California, likely due to the violent forest
fires caused by dry weather that year. Because that air pollution
was interpolated for the 10 months of 2020, such a model does
not represent multiyear pollution concentrations. These long-term
concentrations are perhaps more useful for the understanding of
the developing underlying health conditions that could adversely
affect cases and death rates. So the point here is that air pollution
may or may not affect COVID-19 rates, but it is hard to draw
any conclusions from the available data due to the short period of
observations and the dynamic nature of the pandemic.

The next step of the analysis of the relationships between
socioeconomic variables and COVID outcomes was to use an
Ordinary Least Squares regression to look at regression coefficients
to assess the predictive importance of these features. As a first step,
variance inflation factors were printed to address multicollinearity
issues in the dataset. The variance inflation factors are provided in
Table 5.

The ’EP_SPAN’, ’EP_REPUBLICAN’, ’EP_ASIAN’, and
‘EP_NOHSDP’ variables were removed to make sure that there
are no variables with VIFs equal to or >5. Having removed all
these variables, the ordinary least squares regression was fit. There
were two regression models fitted, one for the Number of cases
per 1,00,000 persons as a dependent variable and the rest of the
variables as independent, and another regression model for the
number of deaths per 1,00,000 as a dependent variable, while other
variables were treated as independent.

3.1 Cases

Fitting the OLS regression for case rates, the R2 for regression
with all independent variables included was 0.41 and 0.405 with
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FIGURE 4

Scatterplots for Cases vs. independent variables. R, Pearson correlation; p, significance. Titles in red indicate non-significant correlations.

these variables removed. R2 metric for fivefold cross-validation was
0.39 with all variables and 0.38 without multicollinear variables.
Also, the R2 metric was calculated for the unseen test data portion

(25% of the data), and that metric was 0.37 with all variables and
0.35 without multicollinear variables. That means OLS regression
can explain about 40% of the variability in the dataset.
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FIGURE 5

Scatterplots for Deaths vs. independent variables. r – Pearson correlation; p – significance.
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TABLE 5 Variance inflation factors (VIFs) for di�erent variables.

Variable VIF Variable VIF

EP_OTHER 1.203574 EP_CHIN 2.629058

R_PHARM 1.421413 EP_CROWD 2.720431

EP_RUS 1.428143 EP_MUNIT 3.015496

R_HOSP 1.527417 EP_DISABL 3.284592

EP_GREEN 1.532433 EP_AFAM 3.587627

R_PCP 1.56123 EP_NOINT 4.294979

EP_KOR 1.643587 EP_AGE65 4.322232

EP_VIET 1.659622 EP_AGE17 4.329624

EP_NHPI 1.731772 EP_POV 4.702413

EP_LIBERTARIAN 1.85339 EP_PCI 4.850892

EP_GROUPQ 2.075243 EP_DEMOCRAT 4.861653

EP_AIAN 2.110417 EP_ASIAN 5.102229

EP_UNINSUR 2.282732 EP_REPUBLICAN 5.183313

EP_UNEMP 2.367726 EP_NOHSDP 5.460101

EP_SNGPNT 2.404438 EP_HISP 5.786559

EP_MOBILE 2.510499 EP_SPAN 6.617553

EP_NOVEH 2.544724

Variance inflation factors (VIFs) > 5 are highlighted in bold.

From the inspection of the OLS regression coefficients
(Figure 6), one can see that the model puts the biggest
positive weight on the percentage of the population in
group quarters (EP_GROUPQ variable), multiunit housing
(EP_MUNIT), no access to the internet (EP_MUNIT), and being
American Indian or Pacific Islander (EP_AIAN). The first two
variables could indicate that living in crowded conditions
and being financially disadvantaged could be associated
with the increased spread of respiratory infection. All these
considerations were true when we examined the correlation
coefficients. What stands out is that being of age 65+ was
previously associated with a negative correlation with cases
ratio, but OLS regression puts a positive coefficient for this
predictor (EP_AGE65). Variables depicting racial minority
status (EP_AFAM, EP_VIET, EP_RUS, EP_OTHER) were
deemed non-significant.

The largest negative coefficients were assigned to an
unemployment rate (EP_UNEMP, EP_UNINSUR), lack of
medical insurance, and political affiliation. The high weight
assigned to the first two variables could be a coincidence of
low testing rate and inaccessibility of health care for those
without health insurance, so the cases are being significantly
underreported due to reluctance/inaccessibility for these
populations to be tested. There are also negative coefficients
for the Chinese and Korean (EP_CHIN, EP_KOR) populations.
One can speculate that there might be some association with
specific healthy habits/improved sociodemographic status of
these people.

3.2 Deaths

The ordinary least squares regression was similarly fitted for
the death rates as a dependent variable. The R2 coefficient of
determination was much smaller, which could indicate that the
available set of predictors is less suited for the prediction of death
rates than case rates.

R2 for regression with multicollinear variables included was
0.268, and 0.261 with these variables excluded. R2 for fivefold cross-
validation was 0.229 for the dataset with all variables included, and
0.221 with multicollinear variables excluded. R2 for unseen test
data (25%) dropped from 0.30 to 0.27 whenmulticollinear variables
were excluded.

The model put the heaviest weight on the older
adult variable (EP_AGE65). Other variables have
lower weights, but their composition is like those of
predictive value for case ratios. Surprisingly, the model
assigns negative regression coefficients to the uninsured
(EP_UNINSUR) and mobile homes population (EP_MOBILE)
(Figure 7).

One can find the OLS diagnostic plots for the two regression
models in Figure 8. There is an indication of the non-constant
variance for the residuals (higher predicted value associated with
a larger prediction error). Also, the normal Q–Q plot shows
evidence of a non-normal distribution of residuals—the points do
not follow a straight line. This is more severe for the deaths per
1,00,000 persons model and less severe for the model cases per
1,00,000 persons.

As an additional step in regression analysis, a LASSO regression
was employed. The search for the best alpha hyperparameter was
performed using the LassoCV SKLearn module. The best alpha
value was found as 12.984, which leads to the elimination of
variables EP_AFAM (percentage of African American), EP_PCI
(Per-capita income), EP_UNEMP (percentage of unemployed),
EP_VIET (percentage of Vietnamese minorities), R_PCP (ratio
of primary care providers per 100 000), and R_URG (ratio
of urgent care providers). LASSO regression is important as it
performs both variable selection and regularization, improving
the prediction accuracy and interpretability of the resulting
model. It is particularly useful for models that have high
dimensionality or multicollinearity. In this case, the LASSO
regression effectively reduced the complexity of the model
by eliminating less-significant variables. A cross-validation R2
score experiences a very small drop compared to the OLS
regression model.

3.3 Relationships between the spatial
location and predicted values

To check if there are some systematic over/underpredictions
that are geographically clustered, the regression residuals were
mapped, and the Moran I test was performed for the residuals.
The test was significant, with a p-value of 0 and a z-
score of 61.05, which indicates a significant clustering of the
residuals. This could mean that either there are some important
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FIGURE 6

OLS regression coe�cients for cases per 1,00,000.

predictors explaining such variability, for instance, information
about the anti-COVID governmental policies, missing from
the model, or there is a spatial process affecting the spatial
distribution of cases/deaths ratios. Perhaps there are both;
some variables are missing and travel patterns, closeness to the
airports, and other spatial factors are affecting the spread of
the disease.

To see, if the prediction accuracy improves, the
RandomForestRegressor was used to predict cases/death ratios
using the spatial coordinates of county centroids together
with all other socioeconomic variables. There is a somewhat
significant improvement in the prediction accuracy. Where
one uses all the prediction variables [including multicollinear,
as we only care about prediction here, not about how to
interpret the model (inference)] with OLS, the R2 score was
about 0.41 on the training data and about 0.37 using cross-
validation. Contrary to that, if using an RF regressor with 100
trees, the cross-validation accuracy increased to 0.61 (about a
30% improvement).

To assess feature importance, permutation importance scores
were calculated and plotted. Regarding predicting the case ratios,
as one can see, the model puts the biggest weight on the
X and Y coordinates. The smaller weight was put on the
affiliation with a Green party as well as with the population in

group quarters. The importance of other variables is negligible
(Figure 9).

As for the death ratios, the lack of internet access (EP_NOINT)
was reported as the most important feature, then the spatial X
and Y coordinates, followed by a percentage of the population,
living in mobile homes (EP_MOBILE). The error bars in
the second model (for deaths) are longer, which indicates
reduced agreement between the different trees in the forest
(Figure 10).

As an experiment, X and Y coordinates alone were used
in a random forest regressor. It gave an R2 score of 0.45 for
the unseen test data/0.49, using cross-validation for the cases
per 1,00,000 persons. Regarding the prediction of deaths per
1,00,000, R2 is 0.23 on test data, and 0.28 is the mean R2 cross-
validation score. The resulting accuracy scores were summarized in
Table 6.

As one can see from the comparison of the R2 scores,
the Random Forest regression shows the best results in
predicting cases and death ratios. The second best-performing
regression model is OLS with variables with high VIF
removed. The LASSO model for cases performed very well;
it removed six variables, creating a more parsimonious
model, and the R2 scores still were almost the same as for
the OLS model.
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FIGURE 7

OLS regression coe�cients for deaths per 1,00,000.

3.4 Relationship between COVID-19 and
PM2.5 air pollution

The observed negative correlation in the scatterplots and
regression models between cases/deaths per 1,00,000 persons and
the PM2.5 ratio variable raises intriguing questions regarding
the relationship between air pollution and respiratory health
outcomes. While existing literature typically associates high
PM2.5 concentrations with an elevated risk of respiratory issues,
our findings suggest a counterintuitive scenario. It is crucial
to consider the temporal aspects of exposure, as our study
focused on a relatively short nine-month period for averaging
and interpolating air pollution concentrations. This limited
timeframe may not capture the nuanced and potentially delayed
effects of prolonged exposure, leading to the development
of underlying health conditions that could impact case and
fatality ratios.

Moreover, the unique case of Western states like Washington,
Oregon, and California introduces additional complexity to
our interpretation. Despite facing significant forest fires, these
states managed the pandemic relatively well and exhibited low
case and death ratios per 1,00,000 persons. The occurrence
of forest fires contributed to a temporary spike in PM2.5 air

pollution, challenging conventional expectations. This transient
elevation in air pollution may have created a confounding
factor, resulting in the observed negative correlation. Thus,
it is imperative to delve deeper into the dynamics of short-
term vs. long-term exposure effects and consider regional
variations in pollution sources and management strategies when
elucidating the intricate interplay between air quality and public
health outcomes.

The primary limitations of the study are the timeframe
of the analysis, errors accompanied by considering
select confounding factors, and limited resolution of air
quality data.

4 Conclusions

In this research article, we studied the impact of
sociodemographic characteristics, political affiliation, and air
pollution on the variability in COVID-19 cases and fatalities
per 1,00,000 people. According to the Ordinary Least Squares
(OLS) regression model, ignoring spatial coordinates, these
factors can account for ∼40% of the variability in cases and 28%
in deaths. Notably, greater regression coefficients indicate
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FIGURE 8

Regression diagnostic plots for cases and deaths per 100 000 (A) Residuals vs. Fit for cases; (B) Residuals vs. Fit for deaths; (C) normal Q–Q plot for

cases; and (D) normal Q–Q plot for deaths.

that age, population density, and wealth have significant
effects. Minority status factors, on the other hand, do not
achieve statistical significance at the 0.05 level. Adding spatial
coordinates to a Random Forest (RF) regressor model improved
prediction accuracy for cases by approximately 20%, but the
increase in predicting deaths remained modest even with spatial
coordinates. Surprisingly, utilizing the RF regressor with only
location information explains around 45% of the variability
in instances. However, including location and other variables
only boosts explanatory power to 60%, indicating potential
model inadequacies. Through this article, we also raised the
concern of missing critical factors and emphasized the necessity
for additional refining. Furthermore, the study’s investigation
into the association between PM2.5 air pollution and health
outcomes yielded inconclusive results, prompting the call for

more solid, long-term estimates from sources such as the
government (AirNow.gov) network to improve accuracy in
future research. This article reinforces the fact that one should
be mindful and prudent about making any affirmative causal
statements regarding air quality constituents (e.g., PM2.5)
and socioeconomic factors contributing toward COVID-19
morbidity and/or mortality rates as age and health status
are primary factors, governing the extent of adverse impacts
people experience due to COVID-19. Within this context, this
study further reinforces the need for the implementation of
better health practices (e.g., consistent exercise routine, healthy
eating/appropriate nutrient intake, sleeping enough, no smoking,
etc.), that mitigate underlying preconditions (e.g., cardiovascular
disease, hypertension, diabetes, chronic obstructive pulmonary
disease, and severe asthma, kidney failure, severe liver disease,
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FIGURE 9

Feature importance scores for the cases per 1,00,000.

FIGURE 10

Feature importance scores for the deaths per 1,00,000.
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TABLE 6 Prediction accuracy comparison for di�erent regression methods.

OLS without high VIF Lasso Random forest RF for co-ords

Cases Deaths Cases Deaths Cases Deaths Cases Deaths

R2 training 0.405 0.286 0.402 0.285 0.949 0.909 0.933 0.905

R2 testing 0.349 0.242 0.348 0.220 0.599 0.313 0.455 0.239

5-fold CV sc 0.374 0.219 0.375 0.245 0.615 0.318 0.495 0.283

immunodeficiency, and malignancy) that amplify the adverse
impacts of COVID-19.
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