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With the acceleration of urbanization, the risk of urban population exposure 
to environmental pollutants is increasing. Protecting public health is the top 
priority in the construction of smart cities. The purpose of this study is to 
propose a method for identifying toxicological biological indicators of human 
exposure in smart cities based on public health data and deep learning to 
achieve accurate assessment and management of exposure risks. Initially, the 
study used a network of sensors within the smart city infrastructure to collect 
environmental monitoring data, including indicators such as air quality, water 
quality, and soil pollution. Using public health data, a database containing 
information on types and concentrations of environmental pollutants has 
been established. Convolutional neural network was used to recognize the 
pattern of environmental monitoring data, identify the relationship between 
different indicators, and build the correlation model between health indicators 
and environmental indicators. Identify biological indicators associated with 
environmental pollution exposure through training optimization. Experimental 
analysis showed that the prediction accuracy of the model reached 93.45%, 
which could provide decision support for the government and the health sector. 
In the recognition of the association pattern between respiratory diseases, 
cardiovascular diseases and environmental exposure factors such as PM2.5 and 
SO2, the fitting degree between the model and the simulation value reached 
more than 0.90. The research design model can play a positive role in public 
health and provide new decision-making ideas for protecting public health.
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1 Introduction

With the acceleration of urbanization, the risk of urban populations being exposed to 
environmental pollutants is increasing. Safeguarding public health becomes paramount in 
the construction of smart cities (1, 2). Factors such as light intensity in living environments, 
air quality, and water pollution are intricately linked to human health and livelihood. 
Environmental pollution remains a significant global challenge. Biological indicators are 
among the measures reflecting the impact of environmental pollution on organisms, 
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providing crucial evidence for assessing environmental pollution 
risks (3–5). However, the selection and assessment of biological 
indicators currently rely primarily on empirical methods, lacking 
systematic and scientific approaches. Some scholars have proposed 
statistical methods to analyze and predict biological indicators, yet 
these often necessitate extensive data and complex models, limiting 
widespread practical application (6, 7). Moreover, other scholars have 
suggested deep learning-based approaches to predict and classify 
biological indicators, but these methods typically apply to singular 
biological indicators or simple data classifications, struggling to 
address complex multi factor analysis and prediction issues (8, 9). 
Hence, this study aims to develop a method for identifying biological 
indicators for urban human exposure toxicology in smart cities based 
on public health data and convolutional neural networks (CNN), 
striving for precise assessment and management of exposure 
indicators and risks. The innovation of the research lies in establishing 
a database encompassing various environmental pollutants, their 
types, concentrations, and related information based on public health 
data. It employs deep learning algorithms to process and analyze 
environmental and health data. The study comprises four parts: a 
literature review section outlining the current domestic and 
international research status, a technical introduction detailing the 
specific processes of the constructed models and relevant 
technologies, an experimental section analyzing model performance 
through designed experiments, and a conclusion section further 
discussing the results of the experimental analysis and providing 
prospects for future research.

2 Related works

In recent years, with economic development, environmental 
pollution has significantly affected human daily life and overall well-
being. Monitoring and analyzing environmental exposure data play 
a crucial role in maintaining human health. S. G. Al-Kindi and 
colleagues explored the impact of air pollution on human health. 
Through a retrospective statistical analysis of existing literature, they 
found a close association between cardiovascular practice risk and 
overall mortality rates with PM2.5 across a range of exposure levels. 
Measures to reduce cardiovascular risk in response to this 
association were discussed (10). Wolf et al. found evidence of the 
health effects of low-level air pollution. They conducted a pooled 
analysis of individual data from six population-based cohorts in 
ELAPSE, originating from Sweden, Denmark, the Netherlands, and 
Germany. The results indicated an association between long-term 
exposure to air pollutants, even below current limits, and the 
incidence of stroke and coronary heart disease (11). Lesser et al. 
evaluated the relationship between pesticide exposure and attention 
deficit hyperactivity disorder or autism spectrum disorders. A 
systematic review of existing literature revealed that out of 29 
retained studies, 10 reported a significant association between 
pesticide exposure and these diseases. However, the strength of this 
association and potential confounding factors varied considerably 
across different studies (12). Yuchi et  al. explored the combined 
impact of noise and greenery on cognitive impairment symptoms. 
They investigated the relationship between road distance, air 
pollution exposure, and the joint effects of noise and greenery on 
mental disorders. The analysis showed an association between air 

pollution and the incidence of neurological disorders, while noise 
exposure did not affect this association (13). Lerchl et al. investigated 
the impact of intermediate-frequency noise on organ development 
using exposure analysis on 160 female mice. The results indicated 
that exposure at 20 kHz, 360 μT did not have adverse effects on 
tumor development and incidence. However, significant differences 
in behavioral tests suggested a potentially higher level of alertness in 
mice (14).

CNN, with its excellent performance, is commonly employed 
in fields such as image recognition and natural language processing. 
Zhuge et  al. proposed two new methods to automatically and 
non-invasively differentiate between low-grade gliomas and high-
grade gliomas on conventional MRI images using deep CNNs to 
improve the accuracy of glioma grading. The approach involves 
initial image correction preprocessing followed by image 
segmentation using R-CNN and U-Net models. The results 
indicated that the model achieved a recognition accuracy of 97.2% 
(15). Wang et al. discovered the crucial role of circular RNAs in 
human diseases, emphasizing the significance of using them as 
biomarkers for human disease diagnosis and understanding disease 
mechanisms. They introduced an efficient computational method 
based on a combination of multiple sources of information and 
CNN to predict the association between this biological indicator 
and diseases. The method demonstrated a prediction accuracy of 
over 85% and a sensitivity of 88.50% (16). Zhao et al. addressed the 
time-consuming and expensive challenges of identifying drug-
target interactions in new drugs. They proposed a drug-protein pair 
network based on various drugs and proteins. The network’s edges 
were associated, and they introduced a framework based on graph 
CNN for feature extraction of drug-protein pairs’ correlations. 
Subsequently, a deep neural network was utilized for label 
prediction (17). Sungheetha, in response to challenges in early 
identification of diabetic patients using retinal lesion images, 
proposed the use of CNN for feature extraction. A classification 
framework using the confusion matrix was applied to identify hard 
exudates in retinal images. The results indicated that the detection 
accuracy of this method surpassed traditional detection methods 
(18). Chen et al. tackled the lack of consideration of prior knowledge 
of the interested system in fault diagnosis methods using deep 
learning. They introduced a fault diagnosis method based on graph 
convolutional networks (GCN). This method combines existing 
measurement values with prior knowledge, initially diagnosing 
faults using structural analysis methods and then further diagnosing 
them using GCN. The results demonstrated a fault diagnosis 
accuracy exceeding 90% (19).

Based on the literature discussed above, it is evident that CNN 
is widely used in image recognition, natural language processing, 
and extensively applied in the medical field. However, existing 
research has limited exploration of the connection between 
environmental data and pathological indicators of human exposure, 
with minimal utilization of computer methods for exploration. In 
order to achieve more accurate and efficient identification of 
pathological indicators and provide a healthier and safer urban 
environment for residents, research has been conducted to build a 
correlation model between public health indicators and 
environmental indicators using deep learning and public health 
data. The aim is to achieve precise assessment and management of 
exposure risks.
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3 Construction of a human exposure 
toxicology biomarker identification 
model based on public health data 
and deep learning

The study initially utilized sensor networks in smart city 
infrastructure to collect environmental monitoring data, laying the 
foundation for subsequent analysis. Building on a database that 
includes information on the types and concentrations of 
environmental pollutants, the research employed deep learning 
algorithms to process and analyze environmental and health data. 
Through training optimization, the model identified biological 
indicators associated with exposure to environmental pollution.

3.1 A database based on public health data 
and environmental monitoring data

In the model construction phase, the first step involves collecting 
environmental monitoring data gathered by sensor networks in smart 
city infrastructure, including indicators such as air quality, water 
quality, and soil pollution. These data will be  used to train and 
optimize deep learning models to identify biological indicators related 
to environmental pollution (20–22). The Internet of Things (IoT) 
primarily contributes to data collection through sensing and 
identification and is a key data source for IoT. The study utilized 
wireless communication and set up sensors to monitor environmental 
data. IoT fulfills the requirements for information transmission, 
storage, processing, recording, display, and control. The basic 
components of sensors and the structure of ZigBee networking are 
illustrated in Figure 1.

Data from the monitoring process include temperature, humidity, 
light intensity, wind speed, air quality, water pollution, and other 
factors. Epidemiology, which focuses on disease descriptions in 
populations, examines physiological indicators of diseases. 
Epidemiology describes diseases from three perspectives: the temporal 
distribution, spatial distribution, and distribution among populations. 
The impact of the environment and climate on diseases is particularly 
prominent (7, 23, 24). The study collected 200,000 health examination 
records from a tertiary hospital’s examination center. Initially, 
deallergization techniques were used to remove personal privacy-
related data. Secondly, some health examination data had a high 

degree of missing feature items, and these data were directly excluded. 
Finally, 110,000 health examination records were retained as the study 
dataset. Each record contains over 100 features related to health 
examinations. The study selected chronic diseases such as fatty liver, 
hypertension, and diabetes for training the pathological indicator 
identification model. Eighty percent of the health examination data 
were used as the training set, and the remaining 20 percent were used 
as the test set. Various features in public health examination data are 
numerical, but the values of each feature differ, and each feature’s 
values are not on the same scale. Due to the lack of precision of sensor 
equipment, inaccurate calibration and environmental interference, 
there are errors in the collected environmental data. When these error 
data are used to train deep learning models, noise and bias will 
be introduced, which will affect the accuracy and reliability of the 
model. In the stage of data pre-processing and feature extraction, if 
the method used is inappropriate or the parameter setting is 
unreasonable, it will lead to the loss or deformation of data 
information. In the process of medical data collection and processing 
in smart cities, a large amount of personal privacy information is 
involved. If the system has security loopholes or mismanagement, it 
may lead to the disclosure of patient information, which will bring 
unnecessary troubles and risks to patients.

For this study, high-precision sensor equipment is selected, and 
regular calibration and maintenance are carried out to ensure that the 
collected data is accurate and reliable. At the same time, according to 
the characteristics and requirements of the data, the appropriate data 
preprocessing and feature extraction methods are selected to ensure 
the integrity and effectiveness of the data information. In addition, 
advanced security technology and management means are adopted to 
ensure the security and stability of the system and prevent data leakage 
and illegal access. To eliminate differences in orders of magnitude and 
dimensional scales among features, the study opted for the Min-max 
method to normalize environmental monitoring data and physical 
examination data. The specific calculation method is shown in 
Equation 1.

 
′ =

− ( )
( ) − ( )

x
x x

x x
min

max min  
(1)

In Equation 1, ′x  represents the normalized data, and x  denotes 
the numerical values of the features in the physical examination data. 

A B

FIGURE 1

Basic composition of the sensor and the structure of the ZigBee network.
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In addition to normalizing the data features, the study conducted a 
simple analysis of various chronic disease markers. In the process of 
correlation analysis, the distribution of markers is a crucial factor 
affecting model accuracy. Therefore, the study employed two methods, 
Binary Relevance (BR) and Label-Powerset (LP), to classify disease 
data based on labels. The BR method initially divided the original 
physical examination dataset into mutually independent datasets, each 
containing corresponding disease types. Subsequently, the LP method 
combined all labels of samples with multiple labels to create a new 
label. Since the BR method did not consider the interdependence of 
labels, the study introduced the Pearson correlation coefficient 
concept and proposed an association loss function to enhance the 
interdependence among mutually independent samples in the BR 
method during model training. The calculation method of the 
association loss function is shown in Equation 2.

 
CL loss loss

i

l
i i= +

=
∑

1
α

 
(2)

In Equation 2, loss represents the loss learned by the classifier for 
a single label, and α  is the correlation coefficient for different labels. 
The study used the cross-entropy loss function as the loss function. 
The mechanism of action of the association loss function is illustrated 
in Figure 2.

In recent years, Dynamic Factor Analysis (DFA), as a multivariate 
statistical method for dimensionality reduction, has been designed for 
time series analysis to reveal the extent to which explanatory variables 
and common trends influence response variables in multivariate data. 
This method is particularly relevant to factors related to public health, 
such as pollution in the environment, especially PM2.5 and 
photochemical pollution. Leveraging the characteristics of DFA, the 
study can explore the relationships between different air pollutants 
and key factors affecting air quality. To associate environmental 
monitoring data with public health data, the study initially used DFA 
to preprocess environmental monitoring data, connecting multiple 
data sources to establish a database. However, seasonal issues in the 
DFA process can lead to high correlations between indicators, 
impacting the analysis results. Therefore, the study optimized the time 
series model as shown in Equation 3.

 y trend sea al remaindert t t t= + +sin  (3)

In Equation 3, yt represents the original variables, trendt denotes 
the trend of change, Seasonalt  stands for seasonal factors, and 
remaindert  represents the remaining information. By removing the 
seasonal component, the sum of the trend and the residual information 
is considered as new observed data. Selecting an appropriate number 
of common trends and suitable explanatory variables can determine 
the fitting effect of the observed sequence. Hence, this study employs 
the Nash-Sutcliffe efficiency coefficient and the Akaike Information 
Criterion (AIC) for model selection. The efficiency coefficient is used 
to assess the degree of model fitting, as specifically illustrated in 
Equation 4.
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(4)

In Equation 4, Qt0 denotes the observation value at time t , Qmt  
represents the simulated value at time t , Q0 is the average value of the 
observed data, and Ceff  is an efficiency coefficient ranging between 
negative infinity and 1. An efficiency coefficient of 1 indicates 
consistency between the predicted and observed values. The AIC, as 
a method to measure and compare the goodness of fit of models, 
where smaller values indicate better model performance. The 
computation method for AIC is illustrated in Equation 5.

 AIC m L= − ( )′2 2ln  (5)

In Equation 5, ′m  represents the number of independent 
parameters in the model, and L is the value of the likelihood function. 
The structure of the DFA model and the process for handling 
environmental monitoring data are depicted in Figure 3.

Considering the above content, the research stores processed and 
correlated data in a database for subsequent analysis and applications. 
Additionally, it’s crucial to back up and manage the data to ensure its 
security and reliability. Through these steps, a database containing 

A B

FIGURE 2

Mechanism of action of the association loss function. (A) Ordinary loss function; (B) Correlation loss function.
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information about types of environmental pollutants, their 
concentrations, etc., can be established and linked with public health 
data. These datasets will serve as foundational support for subsequent 
training and optimization of deep learning models.

3.2 Smart city toxicology biomarker 
identification model based on deep 
learning

The study utilizes CNN for pattern recognition and correlation 
analysis of environmental monitoring data. Initially, the collected 
environmental monitoring data, characterized by spatial and temporal 
features, undergo preliminary preprocessing. Subsequently, a CNN 
model is constructed to automatically extract features and recognize 
patterns within the environmental monitoring data. Training the CNN 
model helps extract correlated features among different indicators and 
analyze the degree of correlation and influencing factors. The use of 
group convolution strategies enhances the sparsity of the network 
framework, reduces convolutional parameters, accelerates the training 
speed of the network framework, and effectively increases sparsity to 
alleviate convolutional redundancy (25–27). The computational 
approach for group convolution is depicted in Figure 4.

The research was inspired by group convolution strategies and 
designed a novel convolutional module integrating the group 
convolution approach. This module comprises two parts: regular 
convolution and clustered convolution. Within the group module, 
each convolutional layer executes uniform partitioning strategy until 
the final convolutional layer. Following the group convolution section 
is the clustered convolution part, employing a 1×1 kernel size. The 
purpose of the clustered convolutional layers is to compute 
associations and cluster the features obtained from the group 

convolution section. The core component of the CNN framework 
designed in this study is the group module. The entire network 
architecture consists of six parts: an input layer, the group module, a 
max-pooling layer, a dropout layer, a fully connected layer, and an 
output layer. The framework involves a schematic representation of 
the group convolution and the group module, as depicted in Figure 5.

As shown in Figure  5, each convolutional unit in the group 
convolution part was configured with 8 convolutional kernels. The 
clustered convolution part comprises only one 1×1 clustered 
convolutional layer with 12 convolutional kernels. Following the group 
module is the max-pooling layer, utilized to reduce computation and 
extract features. Subsequently, a dropout layer was introduced with a 
dropout rate set at 0.5, aimed at mitigating overfitting during the model 
training process (28, 29). The study uses a cross-validation method to 
determine the optimal dropout rate, and the optimal value can 
be determined when the performance on the verification set reaches 
the optimal value. After constant adjustments through training, the 
study set the dropout rate to 0.5 based on the test results. For learning 
rate, number of convolution kernel and other parameters, Bayesian 
optimization is selected to optimize the global parameters and adjust 
the hyperparameters. In the training process, the posterior distribution 
of the objective function is constructed to guide the search process, and 
then the optimal parameter combination is found. The fully connected 
layer is employed to globally integrate the features extracted from the 
convolutional layers, with 372 neurons configured. The output layer 
utilizes the Softmax function as a classifier, computed as per Equation 6.
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FIGURE 3

DFA model structure and processing of environmental monitoring data process.

https://doi.org/10.3389/fpubh.2024.1361901
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Gao et al. 10.3389/fpubh.2024.1361901

Frontiers in Public Health 06 frontiersin.org

In Equation 6, hk  represents the neuron nodes activated in the 
penultimate layer, wki signifies the weight matrix linking the 
penultimate layer and the Softmax layer, Zi  denotes the input to the 
Softmax layer, and pi  stands for the probability of each category. The 
research opted for the association loss function to evaluate the 
training process and optimize the model. Post feature extraction and 
association analysis of environmental monitoring data, the study 
employed a recurrent neural network (RNN) to temporally correlate 
public health data with environmental monitoring data, constructing 
a model linking health indicators with environmental indices. RNNs 
are a category of deep network architectures adept at handling 
sequential data and capturing long-term dependencies between data 
points. During RNN training, the issue of vanishing or exploding 
gradients often arises. To address this, the research proposed 
incorporating Long Short-Term Memory (LSTM) units into the 

CNN. Based on practical results, the study found that LSTM 
required extensive parameter tuning, thus opting to utilize Gated 
Recurrent Units (GRUs) within the LSTM. GRUs consist of two 
gates: a reset gate and an update gate. The former is calculated as 
shown in Equation (7).

 
r W x U ht

r
t t= +( )′ −σ 1  

(7)

In Equation 7, ht−1 represents the previous moment’s state 
information, xt  is the current time input, U r is the weight matrix 
in the reset gate, W r is the output value of the hidden layer in the 
reset gate from the previous time step, and σ  is the sigmoid 
function. The calculation of the update gate is given by 
Equation 8.

A B

FIGURE 4

Groups of convolution are calculated. (A) Ordinary convoltion calculation; (B) Group convolution calculation.

A B

FIGURE 5

Schematic diagram of the group of convolution frames and modules. (A) Group module; (B) GroupNet Framework.
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z W x U ht

z
t

z
t= +( )−σ 1  

(8)

In Equation 8, U z  and W z  are the weight matrix and the output 
value of the hidden layer in the update gate, respectively. The 
information from the previous time step and the current input are 
passed through an activation function to be within the range of [−1, 
1], and then the reset gate resets useful information. The update gate 
simultaneously performs information forgetting and selection for 
storage. The candidate hidden layer memorizes new information at 
the current time step, and the reset gate controls how much of the 
previous information to retain. The output information of the hidden 
layer is shown in Equation 9.

 ( ) ˜
1 1 tt t t th z h z h−= + −

 (9)

In Equation 9, z ht t −1represents forgetting unimportant 
information from ht−1, ztT is the discarded information, 1− zt  
compensates for the discarded part using the weights corresponding 
to the current input features, and ht

Ü
 is the information at the 

current time step. The definition of the GRU is given by 
Equation 10.

 net Ux Ws bh
t

t t h= + +−1  (10)

In Equation 10, xt  is the input at time t , neth
t  represents the 

weighted sum of the hidden layer activation before activation at time 
t , U  is the input weight matrix at time t , and W  is the recurrent matrix 
for the hidden layer at time t . During the training of deep RNNs, the 
adaptive moment estimation (Adam) training algorithm is used for 
optimizing neural networks. The advantages of this algorithm include 
efficient computation, minimal tuning, low memory requirements, 
fast convergence, and invariance to gradient diagonal scaling. To 
achieve dimensionality reduction and optimization in the process of 
nonlinear feature extraction in multivariate data, the study combines 
genetic algorithms (GA) with GRU. The genetic algorithm’s process is 
illustrated in Figure 6.

The research employs the mean squared error (MSE) between 
predicted values and actual values as the fitness function, as shown in 
Equation 11.

 
E y

n
y yi

i

n
i i( ) = −( )

=

′∑1
1

2

 
(11)

In Equation 11, yi′ and yi are the actual measured values and 
predicted output values for the ith individual, and n is the number of 
samples in the training set. The calculation method for the total 
population fitness is given by Equation 12.

 
f E y

i

n
i= ( )

=
∑

1  
(12)

In accordance with the selection strategy, the study uses the 
roulette wheel selection method based on the fitness ratio to design 

the genetic operators used in the genetic algorithm. The definition of 
the selection operator is given by Equation 13.
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(13)

In Equation 13, E yi( ) represents the individual fitness function, 
and num is the population size. For individuals encoded as real 
numbers, real crossover is employed during the crossover operation 
to exchange individual positions. For elements at corresponding 
positions in an individual, mutation operations are performed 
according to the mutation probability to generate new individuals. The 
position mutation operator is defined as shown in Equation 14.

 H H H H rand rand Pz k v′ = + −( ) ∗ [ ] [ ] ≥min max min 0 1 01, ,  (14)

In Equation 14, Hmin  and Hmax  represent the minimum and 
maximum values of the elements, respectively, and Pv  represents the 
mutation probability. When rand Pv01,[ ] < , random numbers 
continue to be generated until they are not less than the mutation 
probability. The optimized pathological index model is shown in 
Equation 15.

 y F y y y x x xt t t
′

− −= … …( )1 2 1 1 2 1, , , , , , ,  (15)

in Equation 15, x x xt1 2 1, , ,…( )−  represents the time series of 
environmental monitoring data and physical examination data, 
y y yt1 2 1, , ,… −  is the historical series of disease changes in public 
health data every day, and yt′ is the predictive result of the epidemic in 
the urban population. The training and prediction process of the 
model is illustrated in Figure 7.

By obtaining the correlation results between environmental 
exposure pollution and citizen health through the model, pathological 
indicators can be identified. This enables timely understanding and 
prediction of the occurrence of urban public health events through 
monitoring environmental data. The predicted results can be used for 
timely management and assessment of public health, preventing the 
widespread occurrence of diseases. For example, when environmental 
monitoring data shows a high concentration of harmful substances, 
the public health management system can issue timely warnings and 
provide corresponding health protection measures.

To more fully assess the risks associated with the proposed 
environmental toxin monitoring system via wireless signals, the study 
first assessed the direct effects of electromagnetic radiation that may 
be generated during wireless signal transmission on the human body. 
Although studies have shown that low-power wireless signals have 
relatively small effects on the human body, there may still be some 
health risks under long-term, sustained exposure. Therefore, the study 
strictly limits the transmitting power of the monitoring system, and 
increases the shielding device in practical applications to reduce the 
potential harm of electromagnetic radiation to the human body.

In addition, in order to mitigate the main effects of Radio 
Frequency Radiation (RFR) and the synergies that may occur on the 
human exposure pathway, research is conducted to reduce energy 
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consumption and electromagnetic radiation during data transmission 
by optimizing the wireless communication protocol of the system. In 
addition, when deploying monitoring equipment, avoid deploying 
too much equipment in crowded areas or sensitive areas. Finally, 
establish a long-term and continuous monitoring mechanism to 
detect and deal with possible environmental problems in a timely 
manner to protect the health of the public. In this way, the risks 
associated with environmental toxin monitoring system through 
wireless signal can be minimized, and strong support can be provided 
for urban public health management.

4 Performance analysis of the smart 
city toxicology index identification 
model based on deep learning

To evaluate the performance of the smart city toxicology index 
identification model, various evaluation metrics, including accuracy, 
recall, F1 score, etc., were employed for experimental analysis. PM2.5 
has a significant public health impact, and long-term exposure to 
high concentrations of PM2.5 can increase a variety of health risks, 

such as heart disease, lung cancer, and respiratory diseases. Therefore, 
monitoring PM2.5 is essential for assessing environmental quality 
and its impact on citizens’ health (30). Secondly, PM2.5 comes from 
a wide range of sources, including natural factors such as volcanic 
eruptions and forest fires, as well as human factors such as industrial 
emissions and traffic exhaust. Therefore, the change of PM2.5 
concentration is closely related to a variety of environmental factors, 
such as meteorological conditions, landforms, and urban planning 
(31). Therefore, through monitoring and analysis of PM2.5, we can 
gain an in-depth understanding of environmental conditions and the 
impact of environmental factors on the occurrence and development 
of diseases. And because the impact of PM2.5 on human health has 
been widely studied and recognized, its monitoring data is relatively 
rich and reliable. Using this data in the process of model training and 
optimization has advantages (32). In summary, as one of the 
important indicators in environmental monitoring data, PM2.5’s 
unique nature and influence enable it to effectively represent 
environmental monitoring data to explore the relationship between 
environmental indicators and disease indicators. Therefore, the 
performance of the model designed by the study was analyzed with 
the typical environmental data of PM2.5.

FIGURE 7

Model training and prediction process.

FIGURE 6

Flow diagram of the genetic algorithm.
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4.1 Parameter adjustment analysis

Training cycles, learning rates, and batch sizes are key factors 
influencing the performance of neural network frameworks. The 
study used the following hyperparameters: learning rate of 0.02, 
batch size of 128, and training cycles of 20. Accuracy was 
introduced as an evaluation metric to test the rationality of the 
hyperparameter settings. The experimental results are shown in 
Figure 8.

From Figure  8A, it can be  observed that, overall, accuracy 
increases with the number of training cycles. However, when the 
training cycles exceed 20, the model’s accuracy begins to decline, 
likely due to over-fitting. As shown in Figure  8B, 12 groups of 
different learning rates were set in the study. From the experimental 
results, when the learning rate was small, the accuracy of the model 
was basically the same, and the difference was not large. When the 
learning rate exceeds 0.02, the accuracy of the model shows a sudden 
decline. Therefore, the study chooses the value with the highest 
accuracy, i.e., 0.02, to set the learning rate of the model. Figure 8C 
indicates a similar relationship between batch size and accuracy as 
training cycles, with a decline in accuracy when the batch size 
exceeds 128. Overall, the selected combination of hyper parameters 
allows the model to achieve optimal performance. For deep neural 
networks with a large number of parameters, overfitting is a serious 
issue. Therefore, the study employed dropout regularization during 
training, randomly dropping some neuron units from the neural 
network. To further determine the optimal regularization values, the 
model was tested at two different sites. Additionally, to verify the 
convergence performance of the constructed model, it was compared 
with individual GRU and LSTM models, as shown in Figure 9.

According to Figure 9A, it can be observed that after 20 iterations, 
the RMSE value of Model 1 gradually stabilizes and reaches its 
minimum. In contrast, both GRU and CNN require more training 
iterations than Model 1. Figure 9B reveals that with a regularization 
parameter of 0.2, Model 1 achieves the lowest RMSE value, specifically 
0.20, whereas the RMSE values for the standalone GRU and the 
improved Model 1 are 0.23. The enhanced Model 1 demonstrates 
superior predictive performance.

4.2 Results and analysis of input feature 
correlation

After conducting a correlation analysis of the model, statistical 
results of the internal correlations within environmental monitoring 
data were obtained. Additionally, pathology indicators were employed 
to identify relationships between diseases and environmental 
exposure pollution, yielding corresponding correlation results. The 
study initially selected five clinical indicators related to cardiovascular 
and respiratory diseases for training and calculation, in relation to air 
PM2.5. The specific results are presented in Table 1, where respiratory 
indicators include Cytokeratin 19 fragment (CYFAR21-1) and 
Neuron-Specific Enolase (NSE), and cardiovascular indicators consist 
of Creatine Kinase MB (CKMB), Lactate Dehydrogenase (LDH), and 
C-reactive Protein (CRP).

The pathological identification and correlation analysis results are 
summarized in Table 1. Notably, CYFAR21-1 in the respiratory system 
exhibits a negative correlation, while NSE shows no significant 
correlation with PM2.5. Conversely, the three cardiovascular 
indicators are significantly correlated with PM2.5 exposure. To further 
validate the model’s performance, the study compared the predicted 
pathology results with simulation results, as depicted in Figure 10.

From Figure 10, it is evident that the trend of the model’s predicted 
values aligns closely with the simulation values, with an average fitting 
degree of 0.90. Specifically, Figure 10A shows a fitting degree of 0.92 
for respiratory pathology indicators, and Figure 10B indicates a fitting 
degree of 0.88 for cardiovascular diseases. The comprehensive data 
confirms the model’s excellent performance. To conduct a more 
comprehensive evaluation, the study compared the constructed model 
with advanced models from existing research. ROC curves were 
introduced, and the area under the curve (AUC) was used as one of 
the evaluation metrics, along with accuracy, precision, recall, and F1 
score. The compared models include an environmental pollution and 
pathology indicator correlation prediction model based on deep 
matrix decomposition (Model 2), a heterogeneous network-based 
correlation prediction model (Model 3), and a prediction model based 
on time series theory and gray system (Model 4). The specific results 
are presented in Table 2.

A B C

FIGURE 8

Training period, learning rate and batch size setting rationality experiment of the model. (A) Training cycle; (B) Learning rate; (C) Batch Size.
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According to Table 2, the accuracy, precision, recall, and F1 score 
of Model 1 were 93.45%, 0.93, 0.91, and 0.92, respectively. In 
comparison to the other three models, Model 1 exhibited significantly 
superior performance across all metrics. The comprehensive data  
in Table  2 indicates that Model 1 possesses excellent 
predictive capabilities.

4.3 Analysis of model application based on 
deep learning and public health data

To assess the practical application of the constructed models, the 
study examined the identification of respiratory disease pathologic 
indicators and the prediction of disease correlations using public 
health data and environmental monitoring data from four different 

cities. The temporal variation of respiratory diseases in City A in 
relation to PM2.5 and SO2 is illustrated in Figure 11.

As evident from Figure  11, PM2.5 exhibits considerable 
dispersion, with fluctuating concentration values. Meanwhile, the 
number of respiratory disease cases remains relatively stable. 
Structurally, respiratory diseases, PM2.5, and SO2 data show a pattern 
of intense fluctuations in the front followed by a stable distribution. 
The changing accuracy of respiratory disease correlation predictions 
over time in the four cities is depicted in Figure 12.

Figure 12A reveals that City A experiences the highest incidence 
of diseases during the summer and relatively fewer cases in the 
autumn. Figure 12B shows an increase in residents’ cases in City B 
during the spring and autumn seasons. City C, an industrial city with 
consistently poor air quality, has the highest number of cases among 
the four cities, as shown in Figure 12C. Lastly, Figure 12D indicates 

A

B

FIGURE 9

Performance comparison between the model and the single GRU, LSTM. (A) Training iteration results; (B) Dropout regularization.
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that City D, a subtropical coastal tourist city, has relatively fewer 
respiratory disease cases. Overall, Figure  12 suggests that the 
predictions of Model 1 closely align with the actual trends, achieving 
an accuracy of 0.93. While the other three models also exhibit similar 

trends, they deviate significantly, with fitting accuracies all below 
0.90. To comprehensively compare the performance of each model, 
the study introduced RMSE, MAE, and the Index of Agreement (IA) 
as evaluation metrics. The specific results are presented in Table 3.

TABLE 1 Results of association between air index data and respiratory and cardiovascular disease indicators.

Project First 
quarter

The second 
quarter

The third 
quarter

The fourth 
quarter

Correlation 
coefficient

CKMB Total number of cases 3,055 2,460 3,484 3,585 0.435

Number of positive cases 283 270 210 241

The number of cases associated with PM2.5 23 17 12 18

Related cases with PM2.5 (%) 8.12 6.30 5.71 7.47

LDH Total number of cases 2,845 3,081 4,215 3,284 0.254

Number of positive cases 674 589 592 584

The number of cases associated with PM2.5 55 35 31 46

Related cases with PM2.5 (%) 8.17 5.94 5.24 7.88

CRP Total number of cases 9,675 6,842 9,485 8,641 0.481

Number of positive cases 3,845 2,575 4,082 3,028

The number of cases associated with PM2.5 280 88 135 226

Related cases with PM2.5 (%) 7.28 3.42 3.30 7.46

CYFAR21-1 Total number of cases 4,851 5,254 5,580 4,251 −0.597

Number of positive cases 668 1,548 1,589 621

The number of cases associated with PM2.5 59 95 100 52

Related cases with PM2.5 (%) 8.83 6.14 6.92 8.37

NSE Total number of cases 3,055 3,515 2,544 2,612 0.062

Number of positive cases 311 432 189 205

The number of cases associated with PM2.5 – – – –

Related cases with PM2.5 (%) – – – –

A B

FIGURE 10

The pathology results obtained from the model prediction are compared with the simulation results. (A) Respiratory system pathological indicators; 
(B) Cardiovascular disease indicators.
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TABLE 3 comparative results of prediction performance of the four 
models in four different cities.

Project Training 
time (h)

RMSE MAE IA

A Model 1 1.00 10.51 8.45 0.94

Model 2 2.94 19.05 19.45 0.80

Model 3 1.51 13.54 11.88 0.88

Model 4 2.05 16.78 15.97 0.85

B Model 1 1.01 10.55 8.05 0.96

Model 2 3.00 20.82 19.02 0.79

Model 3 1.38 13.74 12.04 0.91

Model 4 2.06 16.45 16.34 0.82

C Model 1 1.11 10.61 8.16 0.95

Model 2 3.13 20.45 20.84 0.81

Model 3 1.69 13.94 12.04 0.90

Model 4 2.38 15.98 16.98 0.83

D Model 1 1.05 10.54 7.95 0.93

Model 2 3.48 20.36 20.84 0.78

Model 3 1.94 14.56 13.78 0.89

Model 4 2.49 16.02 17.02 0.84

Table 3 reveals that Model 1 holds a substantial advantage in the 
numerical values of the three performance evaluation metrics. The IA 
value of Model 1 exceeds 0.95, indicating superior temporal prediction 
capabilities. Moreover, the RMSE and MAE values of Model 1 are 
significantly lower than those of the other three models, at 10.55 and 
8.15, respectively. In conclusion, the constructed exposure toxicology 
biomarker identification model, through recognizing the correlation 
patterns between environmental exposure data and pathological 
biomarkers, achieves accurate and efficient disease prediction for 
smart cities. This provides robust scientific evidence for disease 
control management departments, aiding them in timely assessments 
and decision-making.

5 Conclusion

The environmental issues are gradually worsening, posing serious 
risks to the physical and mental health of individuals. In response to 
this, a new model has been developed based on deep learning and 
public health data. The aim is to identify the correlation between 

environmental monitoring data and toxicological indicators, and 
simultaneously predict public diseases through detection data. The 
results indicate that the model’s training performance is optimal with 
a learning rate of 0.02, a batch size of 128, and a training period of 
20 cycles. The model, when applied to recognize patterns of 
correlation between respiratory diseases, cardiovascular diseases, and 
environmental exposure factors such as PM2.5 and SO2, achieved a 
fitting degree of above 0.90 with simulated values. Model 1 
demonstrated an accuracy, precision, recall, and F1 score of 93.45%, 
0.93, 0.91, and 0.92, respectively. In comparison to other models, it 
exhibited higher fitting accuracy and performance indicators. Model 
1’s IA value exceeded 0.95, indicating superior temporal prediction 
capability. Additionally, both the RMSE and MAE values of Model 1 
were significantly lower than the other three models, measuring 10.55 
and 8.15, respectively. This suggests that the model can provide a 
more robust scientific basis for health control management 
departments, aiding them in timely assessments and decision-
making. The current study only explores public health and 
environmental monitoring data, potentially facing issues of 
incomplete or low-quality data. Future research could consider 
integrating knowledge from other relevant fields, such as Geographic 
Information Systems, to offer more specific and refined 
recommendations for public health management.
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TABLE 2 Performance comparison results of each model.

Project AUC Accuracy (%) Precision Recall F1

Model 1 0.91 93.45 0.93 0.91 0.92

Model 2 0.83 84.32 0.84 0.81 0.80
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respiratory diseases, PM2.5 and SO2 over time.
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