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Background: Cardiovascular diseases are the leading cause of morbidity and 
mortality in the United States. Despite the complexity of cardiovascular disease 
etiology, we do not fully comprehend the interactions between non-modifiable 
factors (e.g., age, sex, and race) and modifiable risk factors (e.g., health behaviors 
and occupational exposures).

Objective: We examined proximal and distal drivers of cardiovascular disease 
and elucidated the interactions between modifiable and non-modifiable risk 
factors.

Methods: We used a machine learning approach on four cohorts (2005–2012) 
of the National Health and Nutrition Examination Survey data to examine the 
effects of risk factors on cardiovascular risk quantified by the Framingham Risk 
Score (FRS) and the Pooled Cohort Equations (PCE). We estimated a network 
of risk factors, computed their strength centrality, closeness, and betweenness 
centrality, and computed a Bayesian network embodied in a directed acyclic 
graph.

Results: In addition to traditional factors such as body mass index and physical 
activity, race and ethnicity and exposure to heavy metals are the most adjacent 
drivers of PCE. In addition to the factors directly affecting PCE, sleep complaints 
had an immediate adverse effect on FRS. Exposure to heavy metals is the link 
between race and ethnicity and FRS.

Conclusion: Heavy metal exposures and race/ethnicity have similar proximal 
effects on cardiovascular disease risk as traditional clinical and lifestyle risk 
factors, such as physical activity and body mass. Our findings support the 
inclusion of diverse racial and ethnic groups in all cardiovascular research and 
the consideration of the social environment in clinical decision-making.
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Introduction

Atherosclerotic cardiovascular disease (ASCVD) is the leading 
cause of death for Americans of most racial/ethnic groups in the US 
and has an estimated annual cost of $200 billion (1). The health 
burden of ASCVD is directly attributable to a lack of optimal control 
of risk factors (1), especially high blood pressure, high blood 
cholesterol level, or smoking in nearly 50% of US adults (2). 
Nevertheless, ASCVD mortality has declined in the 21st century, 
but these gains have not been uniform for all population 
subgroups (3, 4).

There are substantial disparities in ASCVD risk by race, ethnicity, 
and sex (5). These differences are often attributed to differential social 
and environmental exposures and health behaviors, as evident by 
large-scale epidemiological studies (e.g., The CARDIA study, MESA, 
Hispanic Community Health Study) (6). While these extensive studies 
have helped discover subclinical markers of ASCVD risk and helped 
guide ASCVD treatment at an individual level, they have stopped 
short of improving population-level outcomes (7). This is partly 
because the interactions between modifiable (e.g., health behaviors, 
psychosocial stressors, and occupational exposures) and 
non-modifiable (e.g., age, sex, and race) risk factors for ASCVD 
etiology are poorly understood. This gap in knowledge limits our 
ability to rapidly detect and predict the trajectory of ASCVD risk and 
develop sustainable public health policies and interventions targeting 
multiple exposures.

Targeting modifiable risk factors is the typical strategy for ASCVD 
prevention and treatment. For example, several interventions use 
exercise, stress reduction, or a combination of the two to reduce 
ASCVD risk. Such interventions assume a simple additive effect when 
multiple modifiable risk factors are targeted and are usually more 
successful at reducing ASCVD risk than interventions targeting 
individual risk factors (8, 9). However, the efficacy of multifactorial 
interventions can differ for different racial and ethnic 
communities (10).

Newer approaches that use machine learning can allow for 
ranking disease risk factors while accounting for complex 
characteristics of other parameters. Such techniques, including 
Bayesian network analysis (BNA), allow for identifying intricate 
patterns and relationships in large datasets, and can be beneficial to 
identify proximal and distal ASCVD risk markers. In this study, 
we used BNA and examined how multiple risk factors interact and 
relate to ASCVD risk using the Framingham Risk Score (FRS) and the 
pooled cohort equations (PCE, otherwise known as the Atherosclerotic 
Cardiovascular Disease Risk tool in separate models) (11, 12). We use 
both models here as FRS was initially recommended for estimating 
the 10-year risk of cardiovascular disease and has been the endpoint 
or focus of several clinical studies (13). The PCEs were developed in 
2013 using five cohort studies and, in doing so, increased the 
representation of Black Americans (11) and became the recommended 
risk calculator for Americans between ages 40–79 years (e.g., for the 
prescription of statins) (14).

We estimated networks via a mixed graphical model, investigated 
centrality measures, and computed directed acyclic graphs using BNA 
to determine the causal relationships between risk factors and 
calculated risk using: (1) FRS for adults ages 20–79 years; (2) FRS for 
adults ages 40–79 years, and (3) PCE for adults between 40 and 
79 years (not available in ages <40 years).

Methods

Study population

We utilized data from the 2005–2012 cycles of the National Health 
and Nutrition Examination Survey (NHANES) (15), a research program 
designed to assess the health and nutritional status of adults and children 
in the US. The ethics review board of the Centers for Disease Control and 
Prevention (Atlanta, Georgia) approved all protocols, and informed 
consent was obtained from all participants. Data were derived from a 
source in the public domain.1 Study participants were all non-pregnant 
adults ≥20 years old with data available for calculating their FRS and PCE 
(see below). To keep the data somewhat homogenous, we decided to 
focus on working adults; we excluded participants if they were retired, 
unable to work for health reasons, or were disabled. After all exclusions, 
we  included 16,174 participants in our final analysis (Table  1). The 
current study used Random forest models to predict and impute missing 
values (16). The Random Forest (RF) model is determined based on the 
unbiased out-of-bag error. It offers several advantages, including 
applicability with many variables relative to samples, resistance to 
multicollinearity, suitability for non-linear trends, immunity to 
overfitting, and the ability to handle outliers and missing values (17). 
Specifics on missing data are provided in Table 1. Occupational status 
provided the most amount of missing data (19%).

Framingham risk score

We used the FRS, a sex-specific multivariable risk factor algorithm 
that utilizes several established ASCVD risk factors to predict the 
10-year likelihood of developing a first cardiovascular event (12). Due 
to the known heterogeneity in calculated risk based on different 
equations, we first calculated FRS for individuals 20–79 years of age 
and separately for individuals 40–79 years of age to compare FRS 
against PCE, which can only be calculated for ages 40–79 (18).

Pooled cohort equations

We used the PCE, which is a sex- and race-specific score used in 
adults, to estimate the 10-year likelihood of developing a 
cardiovascular event, including fatal coronary artery disease. PCE 
included the covariates of age, treated or untreated systolic blood 
pressure, total cholesterol and high-density lipoprotein cholesterol 
levels, current smoking status (yes/no), and history of diabetes (yes/
no) (11).

Sociodemographic and health behavior/
status covariates

In addition to the variables that comprise the FRS and PCE, race/
ethnicity (White, African American, Hispanic American, and others), 

1 https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.

aspx?BeginYear=2017
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TABLE 1 Participant and variables table.

Variable 
name

Count Mean Standard 
deviation

Minimum Maximum Variable 
classification

Comments

N 16,174 (8,141 

females and 

8,033 males)

52448.51 11461.91 31,131 71,915 n/a n/a

Study wave 16,174 2.57 1.08 1 4 ordinal n/a

Age 16,174 43.16 14.04 20 79 continuous n/a

Body mass index 

(kg·m−2)

15,477 29 6.94 13.6 130.21 continuous n/a

Occupation 13,125 3.31 1.85 1 6 categorical occupation: 1 “managerial and professional specialty” 2 “sales” 3 

“technical and administrative” 4 “service” 5 “farming, forestry, and 

fishing” 6 “Production, Repair”

Household income 15,475 7.63 3.15 1 13 ordinal n/a

Education 16,158 2.47 1.11 1 4 categorical education: 1 “less than high school” 2 “high school” 3 “some 

college” 4 “college grad or high”

Moderate-Vigorous 

physical activity

16,113 0.52 0.5 0 1 dichotomous vigorous activity, 0 “No” 1 “Yes”

PHQ 13,870 3.19 4.32 0 27 continuous mental health/depression, total score is based on the sum of the 

points in each item ranging from 0 to 27

Serum Cotinine (ng/

ml)

14,717 63.55 131.24 0.01 1700 continuous For sensitivity analysis

Blood Cadmium 

(ug/L)

14,833 0.54 0.65 0.11 10.8 continuous n/a

Blood Lead (ug/dL) 14,833 1.63 1.77 0.18 61.29 continuous n/a

Blood Mercury (ug/

dL)

14,833 1.64 2.59 0.11 85.7 continuous n/a

Sleep duration (h) 16,151 6.75 1.39 1 12 continuous how much sleep do you get in hours

Sleep quality 16,167 1.78 0.41 1 2 dichotomous Told doctor trouble sleeping, yes/no

Race 16,174 2.92 1.17 1 5 categorical race: 1 “Mexican American” 2 “other Hispanic” 3 “non-Hispanic 

white” 4 “non-Hispanic black” 5 “other race/multi-racial”

PCE score 16,174 4.78 9.23 0 100 continuous pool CVD equation

FRS 16,174 6.23 7.38 -10 25 continuous Framingham risk score
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education (< 12th grade, high school diploma or GED, some college 
or an associate degree, and college graduate or higher), annual 
household income, marital status (married; living with a partner but 
not married; divorced, widowed, or separated; and single or never 
married), body mass index (BMI, kg/m2), physical activity level, 
mental health status, history of alcohol use, and average quality and 
quantity of sleep were also assessed (see details in the supplemental 
material). Participants’ longest-held occupation was grouped into 
seven broader categories based on previously published groups: (1) 
managerial and professional specialty; (2) sales; (3) technical and 
administrative; (4) services; (5) farming, fishing, and forestry; (6) 
production and repair; and (7) operators, fabricators, and laborers 
(19). Given the limited sample size (n = 4, <0.05% of the total sample), 
individuals who self-identified as members of the armed forces were 
excluded. Participants taking care of family members at home were 
considered service workers (20). Mental health, more specifically 
depressive symptoms, was assessed using the Patient Health 
Questionnaire (PHQ-9), (21). Alcohol use (never, lifetime, current) 
was considered using three questions from the alcohol use 
questionnaire that measured consumption in the last 12 months, 
consumption over a lifetime, frequency, and the number of drinks 
described elsewhere (22, 23). Finally, sleep was assessed using two 
questions to capture duration and quality. For sleep duration, a 
continuous variable, participants were asked, “How much sleep do 
you  get per night (in hours or minutes?)?” For sleep quality, 
participants were asked yes/no, if they “Ever told [a] doctor [they] had 
trouble sleeping?”

Environmental exposures

We included blood concentrations of cadmium, lead, and mercury 
as continuous variables as exposure measures (24).

Statistical analyses

Descriptive statistics and secondary linear regression models were 
conducted using Stata16. All other models were conducted in R using 
the specific packages noted below.

Mixed graphical model
We used an MGM to estimate a network where edges signify 

conditional independent relationships among variables. The edge 
thickness is directly proportional to the strength of the relationship 
between the variables (25). We eliminated false positive edges by 
regularizing the model (26). We also implemented an L1 penalty by 
estimating a sparse inverse covariance matrix to remove trivial 
associations. This penalty is weighted by a parameter λ, which is more 
conservative than cross-validation (27). A sparse network is 
economical and best accounts for the covariance among variables 
while striving to minimize the number of edges. We  used 
‘mgm-package’ to estimate our MGM.

Centrality, closeness, and betweenness
We computed strength centrality, closeness, and betweenness 

centrality to signify the importance of a variable to the network to 
estimate causality by summing the weights of all edges connected to a 

node. The closeness of a node indicates its average farness to all other 
nodes and the betweenness indicates the number of times that a node 
lies on the shortest path between two other nodes. This MGM depicts 
associations between variables, controlling for the role of all other 
variables in the network, but the edges do not indicate whether X 
predicts Y (or vice versa) or both. In contrast, directed networks (see 
below) have edges with arrowheads at their tips, signifying the inferred 
directionality of the relationship. While they suggest a directional 
association, it is important to note that establishing causality requires 
further empirical investigation and analysis.

Bayesian network
Bayesian network modeling can distinguish proximal from distal 

causal pathways by assessing the strength and directionality of 
relationships between variables. Proximal causal pathways involve 
direct and immediate cause-and-effect connections, while distal 
pathways encompass indirect (with one or more mediators) or longer-
term causal links. The modeling process identifies these pathways by 
examining how variables interact, allowing for the differentiation 
between immediate and more remote influences within a system.

We computed a Bayesian network, embodied in a directed acyclic 
graph (DAG), by running the hill-climbing algorithm provided by 
the R package, bnlearn (28), and as described previously by McNally 
and colleagues (29). We  implemented a systematic step-by-step 
approach in the development of a Bayesian Network model for 
causality. First, we initiated the process by computing the structural 
aspect of the network. This involved adding, removing, and reversing 
edges to optimize a goodness-of-fit target score, specifically the 
Bayesian Information Criterion (BIC). Subsequently, we iteratively 
refined the network structure by randomly considering different 
candidate edges connecting various symptom pairs. Third, to ensure 
the stability and reliability of the resultant network, we performed a 
bootstrapping operation. We  generate 1,000 resampled datasets 
during bootstrapping by randomly selecting data points from the 
original dataset with replacement. These resampled datasets are then 
used to construct a Bayesian Network independently. The process 
allows us to create 1,000 different Bayesian Networks, each capturing 
variations in the data. Afterward, we assessed the frequency of the 
appearance of edges in these 1,000 bootstrapped networks. An edge 
is retained in the final, averaged Directed Acyclic Graph (DAG) only 
if it appears in at least 85% of these networks.

Results

Regularized correlation network model for 
FRS between ages 20–79  years

The MGM appears in Figure 1A. As expected, demographic and 
socioeconomic factors were related and clustered together. These 
sociodemographic factors, in turn, have relationships with other factors, 
including heavy metals, health behaviors and status, and FRS. Similarly, 
health behaviors and factors directly affected by health behaviors (e.g., 
BMI) and mental health cluster together, followed by the clustering of 
heavy metals, mainly cadmium, and mercury. Among the most robust 
relationships (thicker edges) are the links between education and 
occupation, education and race/ethnicity, sleep complaints and mental 
health status, education and physical activity level, marital status and 
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FRS, and sleep complaints and mental health status. Interestingly, there 
appear to be strong relationships between race/ethnicity and exposure to 
heavy metals, especially mercury and cadmium.

Figure 2A is a centrality plot that illustrates three (standardized) 
centrality metrics: strength, betweenness, and closeness. The 
determination of centrality in MGM is based on three key centrality 
measures. Node strength centrality assesses the importance of a node 
(in this case, a factor) by considering the number of connections it has 
to other nodes within the network. In our analysis, we calculated node 
strength centrality by quantifying the extent to which each factor (e.g., 
education, occupation, race/ethnicity, marital status, and FRS) directly 
influences or is influenced by other factors within the network. 
Betweenness centrality is an assessment of centrality in the network 
based on shortest paths. Closeness centrality measures how quickly a 
node can interact with other nodes in the network. It reflects the 
average distance between a node and all other nodes in the network. 
In our context, we computed closeness centrality to understand how 
‘close’ or ‘central’ each factor is in terms of its influence on and 
accessibility to other factors within the network. These centrality 
measures help us identify which factors play pivotal roles in the 
network, indicating their relative importance and influence in the 
context of the analyzed relationships. The five factors having the 
greatest node strength centrality and closeness centrality were 
education, occupation, race/ethnicity, marital status, and 
FRS. Education was a highly central node in terms of the number and 
strength of the connections with other factors within the network. The 
five nodes having the highest betweenness centrality were education, 
occupation, race/ethnicity, sleep complaints, and FRS.

The DAG returned by the BNA (Figure 3A) allows us to estimate 
the predictive value for FRS of a factor or a group of factors. 
We demonstrate that the predictive (and potentially causal) priority 
of race/ethnicity and mental health status is the highest, as these 
factors appear at the top of the DAG. Race/ethnicity was found to have 
a meaningful association with various factors encompassing 
demographics, background variables, heavy metal exposure, and 
health-related behaviors, ultimately exerting an influence on FRS. The 
most direct connection between race/ethnicity and FRS was via blood 
cadmium and mercury levels, which directly, in turn, influence 
FRS. Race/ethnicity also influences education, which determines 
occupation, blood lead levels, and, subsequently, FRS. Mental health 
status also affected several sociodemographic variables, including 
marital status, income, and education. The most direct connection 
between mental health status and FRS was via alcohol consumption 
and BMI.

Regularized correlation network model for 
FRS between ages 40–79  years

The (regularized) MGM for FRS in adults aged 40–79 appears 
in Figure  1B. This model’s results are nearly identical to the 
previous FRS model. The major exception is the relationship 
between marital status and FRS, which is not uncovered in this 
model. Additionally, FRS is very weakly related to sleep complaints 
and BMI, suggesting that BMI, marital status, and sleep complaints 
may not directly drive ASCVD risk as people get older.

FIGURE 1

(A–C) MGM for FRS 20–79  years, FRS 40–79  years, and PCE (40–79  years), respectively. Demographics and background variables cluster and link with 
other factors, including heavy metals, health behaviors, and status. The strongest edges indicate the strongest relationships.
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The centrality plot for this model (Figure 2B) shows that the five 
factors having the greatest node strength centrality and closeness 
centrality were education, occupation, race/ethnicity, marital status, 
sleep complaints (strength), and blood cadmium (closeness). Race/
ethnicity, occupation, and education were highly central nodes in 
terms of the number and strength of the connections with other 
factors within the network. The five nodes having the highest 
betweenness centrality were education, occupation, race/ethnicity, 
sleep complaints, and blood cadmium levels. Race/ethnicity had the 
most betweenness among all factors.

The updated DAG for this model (Figure 3B) also revealed the 
highest predictive priority of race/ethnicity and sleep complaints as 
these variables rise to the top of the network. In addition to the 
DAG above, sleep complaints directly predicted FRS and had 
relationships to several important risk factors, including alcohol 
consumption, education, mental health status, and blood 
mercury levels.

Given the association between cadmium and FRS, we  further 
tested whether the source of the high blood cadmium levels was only 
smoking status by performing linear regression models to examine the 
independent association of blood cadmium and cotinine on FRS. In 
the initial model adjusted for race/ethnicity, increasing cadmium was 
associated with increased FRS (b = 2.92, p < 0.001, R2 = 0.07). After 
further adjusting for levels of cotinine, a metabolite of nicotine, levels 
of cadmium remained a significant independent contributor to FRS 
(b = 2.36, p < 0.001, R2 = 0.08), suggesting that the blood cadmium 
levels contributing to an increased FRS were due to multiple sources 
including, but not limited to, smoking.

Regularized correlation network model for 
PCE 40–79  years

The (regularized) MGM appears in Figure 1C. Similar to the FRS 
models, the demographic variables cluster together and are related to 
other factors, including heavy metals and health behaviors. There 
appear to be  strong relationships between race/ethnicity and 
exposure to heavy metals, especially mercury and cadmium.

Figure 2C is a centrality plot for PCE. The five factors having the 
greatest node strength centrality and closeness centrality were 
education, occupation, race/ethnicity, marital status, and blood 
cadmium. Race/ethnicity was a highly central node in terms of the 
number and strength of the connections with other factors within the 
network. The five nodes having the highest betweenness centrality 
were education, occupation, race/ethnicity, marital status, and 
sleep complaints.

The DAG for PCE (Figure 3C) shows the high predictive priority 
of race/ethnicity and sleep complaints. Race/ethnicity directly predicts 
PCE estimated risk, and also blood mercury and cadmium, among 
other variables. However, unlike FRS models, cadmium was not 
directly related to PCE estimated risk. Sleep complaints predict PCE 
scores via BMI and blood lead concentrations.

Discussion

We used three approaches to understand how modifiable and 
non-modifiable risk factors affect cardiovascular risk scores using both 
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the FRS and PCE calculators. Race/ethnicity was the most influential risk 
factor and was directly and distally related to ASCVD risk. The three 
main findings are: (1) Race/ethnicity had the most betweenness and 
closeness centrality for all three models, suggesting that these constructs 
have the most influence over the risk scores and other variables included 
in the analysis;  (2) Race/ethnicity consistently demonstrated the most 
strength centrality and, therefore, strong connections to all other 
analyzed variables; and (3) Education and occupation, intimately related 
to race/ethnicity in this dataset, also consistently demonstrated high 
centrality and connections to other analyzed variables. In all three 
models, race/ethnicity influenced risk scores most distinctly via heavy 
metals, levels of mercury and cadmium in the blood in FRS 20–79 years, 
levels of cadmium in FRS 40–79 years, and levels of mercury in 
ASCVD. Finally, mental health status in FRS for ages 20–79 years, sleep 
complaints in FRS for ages 40–79 years, and PCE scores 40–79 years were 
additionally influential factors driving ASCVD risk.

Race/ethnicity and ASCVD risk: It is well-recognized that race/
ethnicity is associated with ASCVD risk and that specific 
communities carry a disproportionate burden for cardiovascular 
diseases (30). Similarly, intervention effectiveness varies across 
different demographic groups independent of baseline risk. For 
instance, despite having a lower prevalence of coronary calcium 
than White Americans, Black Americans suffer from more adverse 
cardiovascular events (31). Yet, behavioral intervention effects (e.g., 
weight loss) are attenuated in non-White Americans compared to 
White Americans (10). Our BNA allowed us to account for 
non-linear relationships between multiple modifiable and 
non-modifiable factors, yet race/ethnicity continued to rise to the 
top as the factor driving ASCVD risk. Our findings are consistent 
with, and further demonstrate, similar reports that racial disparities 
in ASCVD risk are associated with, but not fully accounted for by 
socioeconomic status (e.g., education and occupation) (32). While 
mental health status was broadly assessed in our models by 
measuring depression symptoms, the proximity between mental 
health and race and in relation to ASCVD risk may reflect the 
physiological toll of chronic stress, including discrimination, job 
strain, and work–family conflict—hence the connections to income, 
occupation, and marital status (33). Similarly, mental health and 
connected factors are impacted by structural discrimination that 
results in increased exposure to neighborhood violence (34), 

reduced social support and access to social resources (35), as well 
as disparities in health care (36). Furthermore, mental health status 
also increases the risk of higher FRS via BMI and alcohol 
consumption mediators. This is in line with previous work that 
shows the nexus between mental health, BMI, alcohol consumption, 
and cardiovascular risk (37). In contrast to modifiable risk factors 
that focus on individual-level change, improvement of 
cardiovascular outcomes related to race and ethnicity will perhaps 
require structural changes, including health care with enhanced 
cultural competency training (38).

Our models demonstrate that blood levels of heavy metals also 
mediated the relationship between race/ethnicity and ASCVD risk. 
While this is a cross-sectional evaluation, heavy metal exposure could 
reflect environmental injustices that lead to contaminated soil, water, 
and food (39). It is known that heavy metals such as cadmium, lead, 
and mercury can increase the risk for cardiovascular morbidity and 
mortality (40, 41). Previous analysis of the NHANES dataset has shown 
that exposure to toxic metals, including cadmium, mercury, and lead, 
is also dependent on socioeconomic status and race (42–44). We found 
that even in the presence of other established risk factors, heavy metal 
levels are immediate predictors of ASCVD risk. Furthermore, similar 
to previous work (45), we found that blood cadmium levels affected 
ASCVD risk scores independent of smoking status.

In people between 40 and 79 years of age, sleep complaints also 
predicted cardiovascular risk even when not directly related. This 
finding is likely a function of age, as midlife (40–64 years) is an age 
group for rapid development of sleep disorders, including sleep apnea 
and insomnia, that significantly increase the risk for cardiovascular 
morbidity and mortality (46, 47).

The American Heart Association is promoting the concept of 
improving the cardiovascular health of all US citizens by 20% using 
eight items, including smoking cessation and regular physical activity 
(48). Similarly, presidents of leading cardiovascular societies across 
the world have called to reduce deaths from non-communicable 
diseases by 25% by the year 2025 (49). Based on our data, these simple 
approaches to controlling modifiable risk factors may be insufficient 
without addressing mental health, structural inequities, and practice 
biases. Moreover, considering these additional factors may lead to 
better cardiovascular disease risk calculators, as PCEs have been 
criticized for overestimating disease risk (50).

FIGURE 3

(A–C) The DAG’s returned by the BNA FRS 20–79  years, FRS 40–79  years, and PCE (40–79  years), respectively. The predictive priority of race/ethnicity 
and mental health status is the highest in FRS 20–79  years, whereas that of race/ethnicity and sleep complaints is the highest in FRS 40–79 and PCE, as 
these factors appear at the top of the DAG.
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Strengths and limitations

BNA offers a process-oriented approach to studying FRS and PCE 
estimated risk in which we begin to understand the proximal and 
distal drivers of ASCVD risk more clearly. BNA is remarkably suitable 
for modeling the complex interplay of multiple variables that influence 
FRS, offering a comprehensive view of how risk scores can 
be determined by a wide range of contributing factors beyond clinical 
endpoints, which can be hard to manage once they develop. In the 
BNA process of ascertaining the direction of each edge within 
bootstrapped networks, it is essential to note that the determination 
of edge direction is contingent on certain assumptions and conditions. 
Specifically, this direction is incorporated into the final network if an 
edge consistently ran from variable X to variable Y in at least 51% of 
the bootstrapped networks. However, it is essential to acknowledge 
that in the BNA the approach of ascertaining the direction of an edge 
assumes a certain level of stability in the relationships between 
variables under the conditions observed during the bootstrapping. 
Therefore, while the 51% threshold provides a measure of consistency, 
further sensitivity analyses and consideration of the underlying 
assumptions are warranted to better understand the robustness and 
potential limitations of the inferred edge directions in the context of 
the broader model.

There are other limitations worth noting. First, this study adopted 
a concurrent design, which cannot rule out reverse or reciprocal 
relations. In comparison, longitudinal, experimental, or quasi-
experimental methods may provide better evidence for causality. 
Second, all data were from the same source, which may induce the 
possibility of misreporting. Future research could collect information 
from multiple sources to verify our findings. Race/ethnicity appears 
to be  the key in all three analyses we  conducted. However, it is 
necessary to note that it is included in calculating risk for the ACSVD 
Risk Score but not FRS.

In conclusion, using a large nationally representative dataset, 
we discovered that race/ethnicity is one of the foremost drivers of 
ASCVD risk and directly connects to all modifiable and 
non-modifiable risk factors. Our data strongly support the inclusion 
of diverse groups of individuals in all studies related to cardiovascular 
health and serious consideration of race/ethnicity for guideline 
development, diagnosis, and treatment of cardiovascular disease.
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