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Background: Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic 
infectious disease commonly found in Asia and Europe, characterized by fever, 
hemorrhage, shock, and renal failure. China is the most severely affected region, 
necessitating an analysis of the temporal incidence patterns in the country.

Methods: We employed Autoregressive Integrated Moving Average (ARIMA), 
Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), 
Nonlinear AutoRegressive with eXogenous inputs (NARX), and a hybrid CNN-
LSTM model to model and forecast time series data spanning from January 
2009 to November 2023  in the mainland China. By comparing the simulated 
performance of these models on training and testing sets, we determined the 
most suitable model.

Results: Overall, the CNN-LSTM model demonstrated optimal fitting 
performance (with Root Mean Square Error (RMSE), Mean Absolute Percentage 
Error (MAPE), and Mean Absolute Error (MAE) of 93.77/270.66, 7.59%/38.96%, 
and 64.37/189.73 for the training and testing sets, respectively, lower than those 
of individual CNN or LSTM models).

Conclusion: The hybrid CNN-LSTM model seamlessly integrates CNN’s data 
feature extraction and LSTM’s recurrent prediction capabilities, rendering it 
theoretically applicable for simulating diverse distributed time series data. 
We recommend that the CNN-LSTM model be considered as a valuable time 
series analysis tool for disease prediction by policy-makers.
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1 Introduction

Hemorrhagic Fever with Renal Syndrome (HFRS) is a zoonotic 
infectious disease caused by Hantavirus infection (1). Human 
hantavirus infection can lead to two clinical syndromes: hemorrhagic 
fever with renal syndrome (HFRS) and hantavirus cardiopulmonary 
syndrome (HCPS) (2), the former mainly prevalent in Europe and 
Asia, and the latter mainly distributed in the Americas (3). The 
pathogenic hantavirus is carried by specific rodent hosts in the natural 
environment, and the virus spreads with the excrement of the animals. 
Infection caused by inhaling dust or aerosols containing these viruses 
is the main mode of transmission for this virus (4). HFRS is typically 
characterized by five phases: febrile, hypotensive, oliguric, diuretic, 
and convalescent, usually following a latent period of 2–3 weeks. Acute 
kidney injury is a hallmark of HFRS, manifesting as renal enlargement, 
proteinuria, and hematuria (5). The clinical symptoms of HFRS 
include fever, headache, back pain, visual disturbances, gastrointestinal 
symptoms (such as nausea, vomiting, diarrhea, and melena), and 
proteinuria (1). Disseminated intravascular coagulation (DIC) may 
also occur in severe cases of HFRS. Although complete renal recovery 
can occur after a prolonged convalescent period, chronic renal failure 
and hypertension may also develop. In addition to typical renal 
manifestations of HFRS, some patients may also experience extrarenal 
symptoms, such as acute respiratory distress syndrome (ARDS), 
cholecystitis, pericarditis, and encephalitis (5, 6).

Although hantavirus was first reported in the 1980s, the diseases 
it causes have been recorded for much longer (7, 8). Currently, over 
28 pathogenic species of hantavirus are known, and there are still 
many potential species yet to be discovered. Globally, about 150,000 
to 200,000 HFRS or HCPS/HPS cases are reported annually, with 
case fatality rates (CFR) ranging from 1 to 15% for HFRS and 
30–50% for HCPS/HPS (6). Between 1978 and 1995, 15 out of 29 
regions in Asian Russia reported a total of 3,145 HFRS cases (8). 
During 2000–2022, a total of 69 of Russia’s 85 administrative regions 
reported 164,580 HFRS cases, with an annual average rate of 4.9 
cases/100,000 population. European Russia reported 162,045 
(98.5%) cases in 53/60 regions with 9.7 cases/105 population. Asian 
Russia reported 2,535 (1.5%) cases in 16/25 regions with 0.6 
cases/105 population (9). During the Korean War (1950–1953), 
approximately 1,700 American soldiers were found to have 
symptoms consistent with HFRS, with less than 5% resulting in 
fatalities. Later, symptoms similar to the Far Eastern HFRS were 
identified in patients in the Scandinavian Peninsula (10). China has 
the most severe outbreak of HFRS, accounting for nearly 90% of all 
HFRS cases (6, 11, 12), and has been widely studied and monitored 
by public health scholars and officials. Reported cases in China 
increased from 10,378 between 1931 and 1949 (13) to 1,557,622 
between 1950 and 2007 (14). Despite this, China remains the most 
severely affected area by HFRS, with a total of 209,209 cases 
registered between 2004 and 2019, including 1,855 fatalities (15). 
Shandong Province, Heilongjiang Province, Hunan Province, Jiangxi 
Province, and Zhejiang Province have been identified as hotspots for 
HFRS incidence (16). Increased vascular permeability is a core 
manifestation of the pathogenesis of HFRS, but researchers have 
found that the mechanism of HFRS is complex, causing systemic 
damage, and there is currently no specific treatment (1). Therefore, 
public health intervention is the most prospective and effective 
measure to reduce its transmission risk and harm (9).

To appropriately prepare for potential peaks in disease incidence, 
policy-makers must preemptively devise public health interventions 
and emergency plans that align with the observed trends and 
epidemiological patterns of diseases. Time series data of disease 
incidence serve as a fundamental resource for reflecting trends in 
disease epidemiology (17). Such data not only provide a visual 
representation of long-term trends in disease prevalence but also 
encapsulate additional information pertinent to the unique 
characteristics of disease outbreaks. Consequently, the analysis and 
modeling of incidence rate time series have become prevalent 
research methodologies.

Current time series modeling techniques predominantly include 
Autoregressive Integrated Moving Average (ARIMA) models, 
Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 
models, and various machine learning models. Researchers frequently 
employ these time series models for constructing predictive 
frameworks, which often demonstrate significant efficacy in 
simulation and forecasting applications (18–21). The ARIMA model 
is suitable for modeling stationary time series data and is the most 
widely used traditional time series model. The model is a valuable tool 
for analyzing stationary time series data with seasonal fluctuations. 
However, its ability to capture nonlinear components within the data 
is limited. Furthermore, the application of the ARIMA model is 
contingent upon stringent conditions, often necessitating the use of 
differencing operations or logarithmic transformations. These 
procedures can result in a loss of information from the original 
dataset. Additionally, an excessive number of differencing operations 
can reduce the efficiency of utilizing the information contained in the 
original data, as evidenced by the probability distribution and the 
autoregressive effects of the model residuals. In recent years, with the 
rapid development of machine learning technology, an increasing 
number of algorithms have been applied in the field of time series 
analysis. Among these, Artificial Neural Networks (ANNs), as an 
important algorithm in machine learning, were initially inspired by 
the biological structure of human neurons (22). They have been widely 
applied by researchers to construct various types of time series models 
across different domains. Unlike feed-forward or feed-back neural 
networks, Recurrent Neural Networks (RNNs) rely not only on the 
current input but also on the previous output at a given moment (23). 
Therefore, RNNs are less prone to the vanishing or exploding gradient 
problem in the analysis of sequence data with longer time spans. 
Within RNNs, Long Short-Term Memory (LSTM) and Nonlinear 
Autoregressive Exogenous (NARX) neural networks with external 
inputs are the two most typical neural network models. LSTM, 
through its gating mechanism and memory unit, can capture long-
term dependencies in sequence data and perform contextual 
modeling, thus demonstrating outstanding performance in modeling 
and predicting sequence data (24). Although the LSTM model 
mitigates the issue of gradient vanishing or exploding during training 
through its unique gating units, it does not entirely eliminate the 
problem (25). Additionally, RNN models, including LSTM and 
NARX, are characterized by computational complexity, lengthy 
training times, and sensitivity to hyperparameters. Therefore, 
conducting experiments with multiple parameter combinations is 
necessary to determine the optimal set, which inevitably increases 
time costs. Convolutional Neural Networks (CNNs) are a widely used 
tool in the field of deep learning, with particular strength in processing 
image inputs (26, 27). However, their applicability extends to other 
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domains such as text, signals, and other forms of continuous responses 
(28). A CNN is composed of multiple layers, including convolutional 
layers, pooling layers, and fully connected layers, it employs an array 
of convolutional filters to perform feature extraction from raw input, 
capitalizing on its intrinsic property of spatial locality recognition. 
Through the mechanism of weight sharing across convolutional layers, 
the CNN efficiently compresses the computational demand while 
simultaneously ensuring the thorough assimilation of information 
inherent in the input data. Nonetheless, the essence of the CNN as a 
feed-forward neural network introduces a backpropagation paradigm 
for weight updates (29), which can result in a protracted rate of 
adjustment for weights proximal to the input layer. Additionally, the 
employment of gradient descent optimization algorithms predisposes 
the training outcomes to convergence upon local optima, rather than 
the global optimum, posing a significant challenge in the network’s 
learning process. Considering the CNN model’s proficient capability 
in extracting features from raw data and the LSTM’s remarkable long-
term memory ability, we have integrated the CNN and LSTM models 
to construct a hybrid CNN-LSTM model for the purpose of fitting and 
forecasting. In this study, ARIMA, LSTM, NARX, CNN, and 
CNN-LSTM models were selected to model the monthly incidence 
time series of HFRS in mainland China from January 2009 to October 
2023. The study compared the goodness of fit of these models to 
provide clues for exploring more suitable time series modeling tools, 
which will be beneficial for public health policy makers to formulate 
more scientifically informed public health measures against potential 
HFRS outbreaks.

2 Methods

2.1 Data collection

Data pertaining to the monthly incidence of HFRS spanning from 
January 2009 to October 2023 were retrieved from the official portal 
of the National Health Commission’s Bureau for Disease Control and 
Prevention of China.1 This dataset was meticulously collated from the 
comprehensive monthly bulletins of statutorily reportable infectious 
maladies (30). The instantiation of case data for these reportable 
infectious diseases was systematically transmitted from an extensive 
network of local hospitals and community health service facilities 
distributed nationwide. Subsequent to initial reporting, each case was 
subjected to rigorous verification and validation processes by the 
respective local Centers for Disease Control and Prevention (CDC), 
incorporating confirmatory diagnostic evaluations. The analytical 
scope of this investigation encompasses a corpus of 178 discrete 
temporal data points.

2.2 Time series decomposition

In time series trend analysis, the Mann-Kendall (M-K) test is a 
widely used non-parametric test method for analyzing trend changes 
in a time series. The M-K test does not require the sample to follow a 

1 http://www.nhc.gov.cn/jkj/new_index.shtml

certain distribution, is not affected by a few outliers (31). In a 
two-sided trend test with a specified test level of α = 0.05, the presence 
of a significant increasing or decreasing trend in the sequence can 
be inferred if the value of |z| > 1.96. A z-value greater than zero signifies 
an upward trend, while a z-value less than zero indicates a downward 
trend. Time series decomposition is a technique used to break down 
a time series into its underlying components. The decomposition of 
time series not only facilitates the capture of long-term trends and 
seasonal attributes inherent within the data but also constitutes a 
prerequisite for the selection of the most appropriate ARIMA model 
for subsequent analysis. It helps in understanding and analyzing the 
individual components of a series by separating it into a deterministic 
and nonseasonal secular trend component (Tt), a deterministic 
seasonal component (St), and a stochastic irregular component (It). 
The additive decomposition is appropriate to use when there is no 
exponential growth in the series, and the amplitude of the seasonal 
component remains constant over time, which is expressed as 
Yt = Tt + St + It. As the sample data is monthly, we confirmed the Tt by 
using a smooth weighted 13-term moving average filter given by:
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Where q = 6 for monthly data, q < t < N-q, kj = 1/4q for j = ±q, and 
kj = 1/2q otherwise. After the transformation of time series, the first 
and last six observations were lost, so we repeated the first and last 
smoothed values six times.
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For s = 12, t∈[1, s]. Using ts  to constrain the seasonality 
component to fluctuate around zero.

2.3 Modeling of ARIMA

2.3.1 Mathematical equations of the ARIMA 
model

After an initial analysis of the time series, it was observed that the 
reported HFRS incidence demonstrates a cyclical oscillation with a 
periodicity of 12 months (32). As a result, the ARIMA(p, d, q)(P, D, 
Q)12 model is considered more appropriate for the time series analysis. 
Here, p, d, and q represent the non-seasonal components of the model, 
specifically the autoregression order, the differencing lag, and the 
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moving average order, respectively. Similarly, P, D, and Q correspond 
to the seasonal components of the model, with P indicating the 
seasonal autoregression lag, D representing the seasonal differencing 
lag, and Q specifying the lag order of the seasonal moving average 
process. The polynomial expression of the ARIMA(p, d, q)(P, D, Q)12 
model can be formulated as

 ( ) ( ) ( ) ( )12
d D

t tL L y L Lϕ θ εΦ ∆ ∆ = Θ

 L y yi
t t i� �

 ( )1 dd L∆ = −

 
( )12

12 1 L∆ = −

 � � �L L Lp p� � � � ���1 1

 � �L L LP P� � � � ���1 12 12
12�

 � � �L L Lq q� � � � ���1 1

 � � �L L LQ Q� � � � ���1 12 12
12

Where εt  denotes a sequence of uncorrelated random variables 
from a defined probability distribution with a mean zero. � �, , ,� �and  
represent the parameters to be estimated.

2.3.2 ARIMA model selection and residuals 
diagnosis

The premise for establishing an ARIMA model is that the data 
must be a stationary non-white noise sequence (33). Therefore, prior 
to modeling, it is necessary to conduct a diagnostic test for 
stationarity. The Augmented Dickey-Fuller (ADF) test is a commonly 
used method for testing stationarity (The null hypothesis for this test 
is that the first m autocorrelations are jointly zero). Common 
methods for handling non-stationary data include differencing and 
logarithmic transformation. We perform first-lag differencing and 
seasonal differencing on the data, followed by an ADF test on the 
transformed series. If the series is stationary, we proceed with the 
Ljung-Box Q-test. If the test result rejects the hypothesis that the 
series is white noise, we can continue with modeling. At this point, 
the values of the parameters d and D in the ARIMA model indicate 
the number of differencing steps required to achieve stationarity. In 
determining the order of other model parameters, we rely on the 
Akaike Information Criterion (AIC) and the Bayesian Information 
Criterion (BIC). Information criteria are likelihood-based measures 
of model fit that include a penalty for complexity (specifically, the 

number of parameters). Different information criteria are 
distinguished by the form of the penalty, and can prefer different 
models. Let logL(θ



) denote the value of the maximized loglikelihood 
objective function for a model with k parameters fit to N data points. 
The AIC and BIC for a specific model are given by the formulas: −2 
logL(θ



) + 2 k, and − 2 logL(θ


) + klog(N), respectively, The AIC 
compares models from the perspective of information entropy, as 
measured by Kullback–Leibler divergence. The BIC compares 
models from the perspective of decision theory, as measured by 
expected loss (34). In comparing AIC and BIC values among 
multiple models, lower criterion values are preferred. We set the 
ranges for p, q, P, and Q as [0, 3], and for each parameter 
combination, and calculate the AIC and BIC values. The model with 
the lowest sum of AIC and BIC is considered the best-fitting model, 
the parameters of the model were estimated by the maximum 
likelihood approach. After modeling, a residuals diagnosis was 
needed, the residuals are smooth white noise sequences if modeling 
succeeds. We  conducted the Ljung-Box Q-test, along with the 
autocorrelation function (ACF) and partial autocorrelation 
functions (PACF) plots on the residual series to check the 
autocorrelation. Besides, we performed normality diagnostics by 
plotting the histogram of standard residuals and the Quantile-
Quantile (QQ) plot of residuals. We split the data into a training set 
(first 154 observations of series) and a test set (last 24 observations 
of series) and used the training set for modeling, a 24-step forward 
prediction was then performed using the determinated ARIMA 
model. Finally, the simulation performance of the training set and 
the test set were calculated separately.

2.4 Constructing the LSTM model

2.4.1 Cell structure of LSTM network
The LSTM neural network model we designed consists of an input 

layer, LSTM layer, RELU activation layer, fully connected layer, and 
regression layer. The sequence input layer serves as the initial data 
ingress point for the neural architecture, facilitating the introduction 
of sequential data into the computational graph. Subsequently, the 
LSTM layer is tasked with discerning and preserving long-range 
temporal dependencies within the time step continuum of the input 
sequence. Distinctive from conventional RNNs, the LSTM layer 
incorporates a dedicated cell state mechanism, which is adept at 
maintaining and propagating salient long-term informational cues 
gleaned from antecedent temporal intervals, thereby ameliorating the 
issue of vanishing gradients that commonly plagues standard RNNs. 
At each discrete temporal juncture, the LSTM layer modulates the cell 
state through a series of operations—information is selectively 
augmented or excised based on the cell’s current context. These crucial 
state transitions are meticulously orchestrated by a set of adaptive 
gating units, which include the input, forget, and output gates, each 
performing a specific regulatory function to ensure the fidelity of 
information flow across the temporal expanse of the sequence. There 
are three kinds of gates in the LSTM layer, input gate, forget gate, and 
output gate (35). Figure 1 illustrates the flow of data at time step t and 
shows how the gates forget, update, and output the cell and 
hidden states.

The following formulas describe the operation of the data in the 
LSTM layers at time step t.
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 [ ]( )1,t f t t ff W S X bσ −= ⋅ +

 [ ]( )1,t g t t gg W S X bσ −= ⋅ +

 [ ]( )1tanh ,t h t t hh W S X b−= ⋅ +

 [ ]( )1,t i t t ii W S X bσ −= ⋅ +

 C f C g ht t t t t� � � ��1

 S i Ct t t� � � �tanh

Where W, b denote the matrices of input weight and bias, 
respectively.

2.4.2 Selecting the optimal LSTM model
The LSTM model does not require the data distribution to 

be specified, so there is no need to difference the data as in building 
the ARIMA model. However, in order to improve training speed and 
accelerate model convergence, it is necessary to normalize the data 
using the formula x x� � �� � �� �min / max min  to map the data 
range to [0, 1]. We first rearrange the time series data according to 
the principle of using every 5 values as input and the next value as 

output. For example, the first 1–5 numbers are used as input and the 
6th number is used as output, the 2nd-6th numbers are used as input 
and the 7th number is used as output, and so on. After the 
transformation, we obtained a matrix with a height of 173 and a 
width of 6, which means that the initial 1–5 original data cannot 
be fitted. We use the first 1–149 rows of data as the training set and 
the 150–173 rows as the test set. The quantity of hidden layers within 
the LSTM network architecture, the maximal number of training 
epochs, and the initial learning rate parameter influence the 
outcomes of the computational simulations. Therefore, in order to 
select the optimal model, we fix the iteration times and learning rate 
as constants, and conduct multiple trainings by trying different 
numbers of hidden units, and then make 24-step predictions, 
choosing the best LSTM model based on the RMSE value of the test 
set. To prevent the gradients from exploding, we set the gradient 
threshold of the network to one. We used the Adaptive moment 
estimation(Adam) solver to update the network parameters by 
taking small steps in the direction of the negative gradient of the loss 
function. The solvers update the parameters using a subset of the 
data at each step.

We set the initial learning rate to 0.005, which is the median of the 
recommended range (36), and the number of maximum iterations to 
1,000. We initially attempted modeling with 4 hidden units, but the 
performance on the test set was unsatisfactory. Therefore, we increased 
the number of neurons to 8, yielding similar results. Subsequently, 
we systematically varied the number of neurons from 4 to 150  in 
increments of 4, and established LSTM models, calculating the 
simulation performance on both the training and test sets. We also 
mitigated the risk of overfitting by adding regularization and 
implementing a phased learning rate schedule. To automatically drop 
the learning rate during training, using a piecewise learn rate schedule, 

FIGURE 1

Cell structure of the LSTM network. The arrow indicates the data flow, where x, s, f, g, h, and i denote the input, output, forget gate, input gate, cell 
candidate, and output gate in time step t, respectively. σ and tanh denote the sigmoid activation function and the hyperbolic tangent function, which 
maps the data to (0, 1) and (−1, 1), respectively. ⊗ and ⊕ are vector operators which represent element-wise multiplication and element-wise addition, 
respectively.
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multiply the initial learning rate by a drop factor of 0.2 after half of the 
maximum epochs.

2.5 Constructing the CNN model

The main feature of the CNN model is that its structure includes 
one or more convolutional layers. The convolutional layer consists of 
neurons connected to subregions of the input data or to the output of 
the previous layer (37). The convolutional layer contains multiple 
convolutional kernels, which are essentially 2D matrices. The 
convolutional kernels can move with a certain stride until they 
completely cover the input data (27). The convolutional kernels 
perform convolution operations with subdatasets of the same size in 
the input data to extract information from the original data. To avoid 
high feature dimensions after convolutional operations, a pooling 
layer is often connected after the convolutional layer to reduce the 
feature dimension and computational load, thus reducing the risk of 
overfitting. Batch normalization layers normalize the activation values 
and gradient propagation in the neural network, making the network 
training a simpler optimization problem and accelerating the model 
training speed. A ReLU activation layer is added after each batch 
normalization layer to perform threshold operations on each element 
of the input. Then a dropout layer is added to prevent overfitting by 
setting a certain proportion of the input to zero. Next, a fully 
connected layer is added to integrate the learned features from the 
previous layers. Finally, a regression layer is added to calculate the 
mean squared error of the regression process. The structure of CNN 
models is shown in Figure 2A.

The data is divided into training and validation sets according to 
the principles of establishing an LSTM model, with every 5 numbers 
as one group of input, the first 149 groups as the training set, and the 
last 24 groups as the test set. The size of the convolutional kernel is set 
to a height of 3 and a width of 3, with a stride of 1 for information 
extraction from the input data, and is expanded according to the 
dimension of the input data to ensure that the convolutional kernel 
covers all the input data. In order to prevent information loss after the 
original data undergoes convolution and subsampling and to improve 
simulation accuracy, another convolutional layer is added after the 

ReLU activation layer, with the size of the convolutional kernel 
consistent with the first convolutional layer and twice the quantity of 
the first layer. Since the number of different convolutional kernels 
affects the model’s goodness-of-fit, different gradient numbers of 
convolutional kernels are set for training and prediction to determine 
the optimal model structure based on the RMSE value of the test set.

We used the Adam solver to update the network parameters by 
taking small steps in the direction of the negative gradient of the loss 
function. We set the initial learning rate to 0.005, and the number of 
maximum iterations to 1,000. We systematically varied the number of 
convolutional kernels in the first convolution layer from 4 to 150 in 
increments of 4 (Convolutional kernels in the second convolution 
layer were 8 to 300 in increments of 8), calculating the simulation 
performance on both the training and test sets of different models. 
We also mitigated the risk of overfitting by adding regularization and 
implementing a phased learning rate schedule, using a piecewise learn 
rate schedule, multiply the initial learning rate by a drop factor of 0.2 
after half of the maximum epochs.

2.6 Constructing the NARX model

The NARX network is a powerful neural network architecture 
specifically designed for modeling and predicting time series data by 
considering both the autoregressive relationship within the time series 
and the influence of exogenous inputs.

The NARX network consists of two main components: the 
autoregressive (AR) part and the exogenous (X) part. The AR part 
captures the relationship between past values of the time series itself, 
while the X part captures the influence of the exogenous inputs on the 
time series. The X part can be implemented as a separate input layer 
or concatenated with the AR inputs. We set the outputs of the ARIMA 
model as the external input components of the NARX model (38).

During training, the NARX network is fed with historical data, 
including both the time series values and the corresponding 
exogenous inputs. The network learns to predict the future values of 
the time series based on its past values and the exogenous inputs. The 
training process involves adjusting the network’s weights and biases to 
minimize prediction errors.

FIGURE 2

The neural architecture of the CNN model and CNN-LSTM model. (A) Represents the structure of the CNN model, while (B) represents the structure of 
the CNN-LSTM model.
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The defining equation for the NARX model is
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Where f represents a function that relies on the structure and 
connection weights of the NARX model, y refers to the sample data 
in a lagged period. u refers to the input series containing the time 
factor and the projections of the ARIMA model, y is the simulation 
values by the NARX model at time step t. Before modeling, we need 
to define the structure of the model. In this model, the simulated 
series of the ARIMA model was treated as the input, while the 
reported cases of HFRS were regarded as the output. Following this, 
the dataset was partitioned randomly into a training set (80%) for 
network training and a validation set (20%) for assessing the 
network’s generalization performance and terminating the training 
process to prevent overfitting (39). Since the delays of the input and 
the number of hidden neurons have an impact on the performance 
of the model, we set the delays to 5, and constructed multiple open-
loop (series–parallel) architectures containing different neurons 
(experimented from 4 to 150 in increments of 4) for training the 
networks separately, using the Bayesian regularization 
backpropagation algorithm for updating weights during training. The 
predicted values from the ARIMA model were then used as inputs to 
the NARX model for 24-step prediction. The goodness-of-fit was 
calculated separately for the training and test sets, and the structure 
with the smallest RMSE in the test set was considered as the best-
fitting NARX model structure.

2.7 Constructing the hybrid CNN-LSTM 
model

The hybrid CNN-LSTM model integrates an LSTM layer into the 
CNN neural network architecture. To make the input compatible with 
the LSTM’s dimensional requirements, a flattening layer is added 
before the LSTM layer. In summary, the structure of the CNN-LSTM 
model constructed in this study consists of the following sequence of 
layers: input layer, convolutional layer, pooling layer, batch 
normalization layer, ReLU activation layer, convolutional layer, 
pooling layer, batch normalization layer, ReLU activation layer, 
flattening layer, LSTM layer, ReLU activation layer, dropout layer, fully 
connected layer, and regression layer. The structure of CNN models is 
shown in Figure  2B. The division of the training and test sets is 
consistent with that of single CNN and LSTM models. We used the 
Adam solver to update the network parameters by taking small steps 
in the direction of the negative gradient of the loss function. We set 
the initial learning rate to 0.005, and the number of maximum 
iterations to 1,000. The number of convolutional kernels in the first 
convolution layer is the same as the single best-fitting CNN model, 
and the number of hidden units of the LSTM layer is the same as the 
best-fitting LSTM models. We also mitigated the risk of overfitting by 
adding regularization and implementing a phased learning rate 
schedule, using a piecewise learn rate schedule, multiply the initial 
learning rate by a drop factor of 0.2 after half of the maximum epochs. 
The model is trained using the training set data, followed by 
performing 24-step ahead predictions. The goodness-of-fit is 
calculated separately for both the training and test sets.

2.8 Goodness-of-fit of the ARIMA, LSTM, 
CNN, NARX, and CNN-LSTM models

The RMSE, MAE, and MAPE of train set and test set were 
calculated as indicators for evaluating the goodness-of-fit of the 
models mentioned above, which were given by
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Where xt  and yt denote the original and simulated series, 
respectively.

2.9 Software and significant level

MATLAB 2023a (MathWorks Corporation, United States) was 
used to perform the models involved in the study, and Microsoft 
Office 2021 (Microsoft Corporation, United States) for data collection 
and processing. The level of significance for hypothesis testing 
involved in this study is set at 0.05, a two-sided p < 0.05 was considered 
statistically significant.

3 Results

3.1 Trends and seasonality of the sample 
data

Between 2009 and 2022, the average annual incidence of HFRS 
reported in Mainland China was 10,563 cases, with a standard 
deviation of 2,121. The year 2012 recorded the maximum number of 
cases during this interval, amounting to 13,918 instances. Annually, 
the case counts surpassed the 10,000 mark during the periods of 2011 
to 2015 and 2017 to 2019. In the timeframe extending from January 
2009 to October 2023, the mean monthly case count was 848.66 
(Figure 3A). The results of the M-K test indicate that the z-value is 
−4.204, suggesting that the sample data exhibit a statistically 
significant decreasing trend. The results of the periodic decomposition 
analysis indicate that the months of November and December 
consistently exhibit peak incidence rates for HFRS (Figure 3B).

3.2 The best-fitting ARIMA model

Initially, we  subjected the training dataset to the Augmented 
Dickey-Fuller (ADF) test, which indicated non-stationarity of the data 
(t = −1.02, p = 0.272). After applying first-order differencing and 
seasonal differencing, the data achieved stationarity (the Ljung-Box 
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Q-test χ2 = 89.74, p < 0.001), thus meeting the prerequisites for model 
construction. Both seasonal and non-seasonal differencing orders 
were identified as one. We  constructed a total of 225 models by 
varying the combinations of model parameters and selected the 
optimal fitting ARIMA model based on the principle of the smallest 
sum of AIC and BIC values. The results indicated that the 
ARIMA(2,1,2)(3,1,3)12 model was the best-fitting ARIMA model. The 
model can be expressed as a polynomial of

 

( ) ( )( )( )
( )( )

2 12 24 36 12
1 2 12 24 36

2 12 24 36
1 1 12 24 36

1 1 ) 1 1

1 1 .t t

L L L L L L L

y L L L L Lθ θ ε

−Φ −Φ −Φ −Φ −Φ − −

= + + + Θ + Θ +Θ

The AIC and BIC of the ARIMA model were 1876.1, and 1908.6, 
respectively. We  performed the autoregression and normality 
diagnostics on the residuals, and the result of Ljung-Box Q-test showed 
that there was no autocorrelation in the residuals (χ2 = 15.34, p = 0.756), 
and the residual ACF and PACF plots showed that most of the residuals 
were within the ±2 times standard deviation interval (Figures 4C,D), 
which indicated that the fitting was successful. The histogram of the 
standardized residual distribution and the QQ plot (Figure 4B) of the 
residuals indicated that the standardized residuals showed an almost 
symmetrical distribution with zero as the boundary, and the frequency 
of the standardized residuals in the ±2 interval accounted for more 
than 80% of all (Figure 4A), which can therefore be regarded as a 
normal distribution. A 24-time-step prediction was performed using 
the ARIMA model, The fitting and predicting efficacy of the model was 
calculated separately, which are shown in Supplementary Table S1.

3.3 The best-fitting LSTM, CNN, NARX, and 
CNN-LSTM models

The LSTM neural network model we designed consists of the 
input layer, LSTM layer, RELU activation layer, fully connected layer, 

and regression layer. This is the most basic LSTM structure. Since 
we pre-set the initial learning rate and maximum number of iterations, 
the only factor determining the quality of the LSTM model is the 
number of hidden neurons. As there is currently no mature method 
for determining the number of neurons, we constructed models with 
different numbers of neurons using different gradients, and calculated 
the goodness-of fit-of the different models using the RMSE value of 
the test set as the selection criterion. After continuous experimentation, 
we determined that the number of neurons is 48, with the smallest 
RMSE value on the test set. Therefore, an LSTM model with 48 hidden 
neurons was used for further modeling and prediction (Figure 5A). 
Using this model, we  made 24-step backward predictions and 
calculated the goodness-of-fit indicators for both the training and 
test sets.

The complexity of the network structure, the number and size of 
the convolutional kernels, and the initial learning rate of the CNN 
model may all have an impact on the model’s fitting performance. 
Setting different gradients for each variable will increase the time cost 
of modeling. Therefore, we fix the values of most parameters and only 
set different gradients for the number of convolutional kernels. Since 
our dataset takes every 5 values as an input and the next value as an 
output, we set the size of the convolutional kernel to 3×3, moving with 
a stride of 1, and expanding outward to the same size as the input data. 
The model parameters will increase with the increase in the number 
of convolutional kernels, so the number of convolutional kernels 
should not be set too high. We set the gradient to 4, increasing from 4 
to 150. In the second convolutional layer of the model, the number is 
set to twice that of the first layer. We calculate the fitting performance 
of these 30 models separately and make predictions on the training set 
data. The model with the smallest training set RMSE is selected as the 
best-fitting CNN model. After calculation, the model performs best 
on the test set when the number of convolutional kernels in the first 

FIGURE 3

Monthly reported cases of HFRS from January 2009 to October 
2023 and the decomposition of the time series data. The blue curve 
in (A) represents the monthly reported cases of HFRS, the red curve 
in (A) represents the long-term trend, (B) represents the stable 
seasonal component with a periodicity of 12  months.

FIGURE 4

The normality and autocorrelation diagnostics of the residuals of the 
ARIMA model. (A) Displays the frequency distribution of standardized 
residuals using a histogram. (B) Exhibits the QQ plots of the residuals 
of the ARIMA model, with the red dashed line representing the 
standard normal distribution. (C,D) Depict the ACF and PACF of the 
residuals, respectively. The stem plots illustrate the values of ACF and 
PACF at different lags, with the blue lines indicating the ±2 times 
standard deviation interval.
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layer is 28 and in the second layer is 56 (Figure 5B). We retrained and 
predicted using the model, and separately calculated the fitting 
performance on the training and test sets.

The NARX neural network is a method specifically used to 
construct time series models and requires external input data. 
Therefore, we used the output of the ARIMA model as the input for 
the NARX. We first determined a lag order of 5 and then calculated 
the model’s performance under different numbers of hidden neurons. 
Similarly, we selected the model with the smallest test set RMSE value 
as the best NARX model. After calculation, the model’s predictive 
performance was best when the number of hidden neurons was 20 
(Figure 5C). We continued to retrain and predict using this model and 
separately calculated the fitting performance on the training and test 
sets. The training progress of the NARX model, target-output time 
series results, regression results of the training and test sets, and 
residual autocorrelation diagnostic results are shown in 
Supplementary Figures S1–S4.

We combined the trained CNN and LSTM models to obtain the 
optimally fitted CNN-LSTM model. This model was utilized to 
perform 24-step ahead forecasting, and the fitting performance for 
both the training and test sets was calculated.

3.4 Comparison of the simulation and 
prediction effects of the ARIMA, LSTM, 
CNN, NARX, and CNN-LSTM models

Employing the ARIMA, LATM, CNN, NARX, and CNN-LSTM 
architectures, a high degree of fidelity in the fitting of train datasets 

was achieved (Figure 6). Based on the comprehensive RMSE, MAPE, 
and MAE indicators from the train set, the superior model fitting 
hierarchy is as follows: CNN-LSTM, CNN, ARIMA, NARX, and 
LSTM. The CNN-LSTM model, which demonstrated the best fitting 
performance, had RMSE, MAPE, and MAE values of 93.77, 7.59%, 
and 64.37, respectively. Compared to the ARIMA model, these values 
represent a reduction of 28.63, 30.68, and 31.91%, respectively. 
Relative to the LSTM model, the reductions are 48.44, 49.64, and 
50.71%, respectively. When contrasted with the CNN model, the 
reductions are 20.43, 27.51, and 25.94%, respectively. Finally, in 
comparison to the NARX model, the reductions are 36.79, 47.40, and 
41.98%, respectively. Subsequent to a rigorous evaluation of the test 
set based on these performance indices, the CNN-LSTM and NARX 
models were found to have a commensurable predictive capability, 
marginally superior to that of the CNN and LSTM frameworks. In 
stark contrast, the ARIMA model’s predictive capacity was 
significantly inferior. Quantitatively, the ARIMA model’s RMSE on 
the testset exhibited increments of 27.85, 32.63, 33.12, and 36.59% 
relative to the LSTM, CNN, NARX, and CNN-LSTM models, 
respectively. Concurrently, the model’s MAE values were augmented 
by 17.13, 26.89, 36.32, and 26.34%, and the MAPE values were 
escalated by 21.94, 28.50, 33.30, 30.84%, correspondingly. When 
juxtaposed with the hybrid CNN-LSTM construct, the RMSE values 
for the single CNN and LSTM models on the test set were found to 
be  elevated by 5.88 and 12.11%, respectively. Delving into the 
comparative predictive efficacy of the NARX and CNN-LSTM 
models, the NARX model’s RMSE value was observed to be 5.19% 
higher, albeit with a decrement of 15.68% in MAPE and a 3.7% 
reduction in MAE (Table 1).

FIGURE 5

The fitting performance of LSTM, CNN, and NARX models with different neural network structures. (A) Represents the fitting effect of the LSTM model, 
(B) represents the fitting effect of the CNN model, and (C) illustrates the fitting effect of the NARX model. The blue and light green bars, respectively, 
represent the RMSE of the training and testing sets for each model under different structures.

https://doi.org/10.3389/fpubh.2024.1365942
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2024.1365942

Frontiers in Public Health 10 frontiersin.org

4 Discussion

In recent years, the incidence of HFRS in the mainland China has 
maintained a relatively stable level. Time series data are comparatively 
accessible, as well as amenable to computation and analysis. 
Consequently, time series analysis offers economic benefits and saves 
on time costs. Analyzing the epidemiological trends of diseases is 
advantageous for the government to formulate intervention measures 
in advance and to allocate disease prevention and control resources 
rationally. The temporal epidemiological analysis of HFRS in the 
mainland of China spanning from January 2009 to October 2023 

exhibits a decrement trend. The morbidity rates of HFRS are 
characterized by conspicuous seasonality, providing empirical 
substantiation for the deployment of an ARIMA modeling framework. 
Our analysis of the seasonal pattern of HFRS indicates that the peak 
incidence of HFRS occurs in November and December each year, 
which is consistent with the findings of Lv et al. (32). A pivotal aspect 
of ARIMA model construction involves the ascertainment of the 
differencing and autoregressive moving average parameters, denoted 
as p, d, q, along with their seasonal counterparts P, D, Q. Subsequent 
to order specification, parameter estimation is undertaken, 
necessitating the generation and scrutiny of the ACF and PACF plots 

FIGURE 6

The fitting and prediction performance of the best-fitted ARIMA, LSTM, CNN, NARX, and CNN-LSTM models. (A,C,E,G,I) Represent the fitting effect 
between the simulated values and the observations for the ARIMA, LSTM, CNN, NARX, and CNN-LSTM models. The blue curve represents the actual 
incidence of HFRS, the red curve represents the fitted values for the training set, and the yellow curve represents the predicted values for the testing 
set. (B,D,F,H,J) Represent the residuals of these five models. The blue stem plot indicates the residuals of the training set, and the yellow stem plot 
represents the residuals of the testing set.
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derived from the differenced time series data. The determination of 
model order is predicated upon the inspection of the decay patterns 
within these correlograms, which, albeit informative, introduces a 
modicum of subjectivity into the model selection process. To mitigate 
this, the optimal ARIMA model is adjudicated based on the 
minimization of the combined AIC and BIC. Residual diagnostics of 
the optimal ARIMA model reveal that the residuals approximate a 
Gaussian distribution, evidencing the absence of autocorrelation and 
thus, endorsing the adequacy of the model fit. Notwithstanding, the 
presence of residual autocorrelation exceeding the threshold of twice 
the standard deviation at lag 5 intimates the potential perturbation 
induced by anomalous observations. The congruence between the 
fitted ARIMA model and the empirical data is substantiated by the 
proximity of MAE and RMSE metrics to the value of 100, reflecting a 
robust predictive performance of the model. Despite a comparative 
diminution in predictive accuracy on the validation set vis-à-vis the 
training cohort, a convergence in the trend trajectories between 
forecasted and observed values is discernible, underpinning the 
model’s utility in prognosticating pivotal inflection points in HFRS 
incidence. However, the model’s predictive divergence is amplified for 
the Nov and Dec 2022 and Jan 2023 data points, which may 
be attributable to the inherent elevation of cases during these intervals 
historically. This discrepancy underscores the challenges in forecasting 
when seasonal peaks are pronounced, even when utilizing a model 
that accommodates seasonality by referencing temporally analogous 
historical incidence data.

Owing to the suboptimal performance of the ARIMA model in 
capturing the nonlinear dynamics within time series data (40), we aim 
to ameliorate this limitation via the implementation of neural network 
architectures. Conventional RNNs are plagued by the issue of gradient 
vanishing, wherein the backpropagation of error gradients becomes 
ineffectual over extended temporal sequences, disproportionately 
magnifying the influence of proximal inputs on the predictive model. 
LSTM networks, however, surmount this challenge through an 

intricate gating mechanism, equipped with a dedicated Cell state for 
the retention of protracted temporal dependencies, which is conducive 
to enhancing both the fidelity of model fit and prognostic precision. 
Empirical evidence indicates that the LSTM framework exhibits 
superior proficiency in fitting the empirical data and surpasses the 
ARIMA model in predictive performance on the validation set. The 
LSTM paradigm not only forecasts the directional momentum of 
future data points but also demonstrates a reduced goodness-of-fit 
metric on the test set relative to the ARIMA. Nonetheless, the LSTM’s 
fit on the training dataset is somewhat inferior compared to the 
ARIMA model, potentially attributable to the LSTM’s less robust 
encapsulation of the seasonal fluctuations inherent in the time 
series (41).

The CNN represents an intricate neural network topology that 
leverages convolutional filters to perform feature extraction from raw 
data. This is achieved through convolutional operations that integrate 
kernel functions with input data, subsequently followed by 
subsampling techniques aimed at dimensionality reduction of the 
convolved features. This process iterates through additional layers of 
convolution and subsampling before reaching a series of fully 
connected layers that perform an integration of learned weights. 
Distinct from the LSTM network, which prioritize temporal 
recursion and sequence modeling, CNNs are tailored towards the 
extraction and high-level abstraction of spatial and temporal features 
from input data. Neurons in the convolutional layers are connected 
to subregions of preceding layers rather than being fully connected, 
as is the case in other types of neural networks. Neurons exhibit no 
response to areas outside of these subregions within the sample, and 
these subregions may overlap, leading to spatially correlated 
outcomes produced by the neurons of a CNN. CNNs can reduce the 
number of parameters by reducing the number of connections, 
sharing weights, and employing subsampling techniques. This 
demonstrates excellent performance in low-level feature extraction 
and feature representation. Empirical evaluations indicate that CNNs 

TABLE 1 Comparison of the simulation and prediction effects of the ARIMA, LSTM, CNN, NARX, and CNN-LSTM models.

Models Simulating power Predicting power

RMSE MAPE MAE RMSE MAPE MAE

ARIMA 131.38 10.95% 94.54 426.83 52.89% 274.32

LSTM 181.87 15.07% 130.58 307.94 43.83% 214.13

CNN 117.85 10.47% 86.91 287.56 38.67% 196.14

NARX 148.35 14.43% 110.95 285.48 33.68% 182.97

CNN-LSTM 93.77 7.59% 64.37 270.66 38.96% 189.73

ARIMA vs. LSTM −38.43% −37.63% −38.12% 27.85% 17.13% 21.94%

ARIMA vs. CNN 10.30% 4.38% 8.07% 32.63% 26.89% 28.50%

ARIMA vs. NARX −12.92% −31.78% −17.35% 33.12% 36.32% 33.30%

ARIMA vs. CNN-LSTM 28.63% 30.68% 31.91% 36.59% 26.34% 30.84%

LSTM vs. CNN 35.20% 30.52% 33.44% 6.62% 11.77% 8.40%

LSTM vs. NARX 18.43% 4.25% 15.04% 7.29% 23.16% 14.55%

LSTM vs. CNN-LSTM 48.44% 49.64% 50.71% 12.11% 11.11% 11.40%

CNN vs. NARX −25.88% −37.82% −27.65% 0.72% 12.90% 6.72%

CNN vs. CNN-LSTM 20.43% 27.51% 25.94% 5.88% −0.75% 3.27%

NARX vs. CNN-LSTM 36.79% 47.40% 41.98% 5.19% −15.68% −3.70%
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possess superior emulation fidelity and predictive capabilities. 
Relative to ARIMA and LSTM approaches, CNNs have demonstrated 
a heightened ability to anticipate pivotal shifts in future data 
trajectories with a diminished incidence of outliers. This enhanced 
predictive capacity may stem from the CNN’s iterative convolutional 
engagement with the raw data during the training phase, ensuring a 
more exhaustive exploitation of the underlying informational 
content. We  also mitigated the risk of overfitting by adding 
regularization, adding the dropout layer, and implementing a phased 
learning rate schedule.

In this study, the fitting results of the ARIMA model are utilized 
as external input, and this modeling approach can be considered as a 
hybrid modeling method (42). Our proposed combined approach, 
which integrates the linear ARIMA method and the nonlinear ANNs 
technique, aims to uncover various types of relationships within 
disease series characterized by distinct periodicity and seasonal 
variation, thereby enhancing prediction capability. In the context of 
time series modeling, the inherent periodicity within the data is a 
crucial reference factor for predicting disease trends. The NARX 
model combines the strengths of the ARIMA model and the NARX 
model, addressing their respective proficiency domains, namely the 
linear and nonlinear components. By assessing the correlation 
between the ARIMA method’s forecasted outcomes and the observed 
values, it becomes possible to extract residual clues from the data. In 
the hybrid NARX approach, the time variables and values simulated 
and forecasted by the ARIMA method are considered as input 
variables, with the actual data serving as the target values to 
be  predicted, capturing both linear and nonlinear components 
simultaneously (38). This hybrid methodology demonstrates 
enhanced predictive capabilities and merits broader dissemination. 
The performance analysis reveals that the NARX model exhibits 
inferior performance on the training set compared to the ARIMA and 
CNN models, but outperforms the LSTM model. Moreover, the 
predictive efficiency of the NARX model surpasses that of the ARIMA, 
LSTM, and CNN models.

The results show that the CNN-LSTM model has better simulation 
performance for the training data than other models. For the test set 
predictions, the CNN-LSTM model has a fitting goodness similar to 
the NARX model, with RMSE values lower than NARX, and MAPE 
and MAE higher than those of the NARX model. The simulation 
results of the five models show that the hybrid models have better 
fitting and predictive efficiency than a single time series model.

The development of any time series model involves the 
identification and extraction of features from existing data, which are 
then utilized to simulate unknown scenarios. The model’s performance 
in fitting the training set reflects its ability to capture the original data, 
while its predictive performance on the test set demonstrates its 
generalization ability. Prior to establishing the ARIMA model, 
seasonal decomposition was conducted to specify the periodicity of 
the time series, enhancing the model’s fitting performance. However, 
in the establishment of other neural network models, no prior 
information was provided, necessitating the learning and presentation 
of long-term trends, seasonality, and random fluctuations in the fitting 
results. The ARIMA model outperformed the NARX and LSTM 
models in fitting the training set, but its predictive performance on 
real sample data, which contains both regular and random 
components, was inferior to that of the neural network models. The 
CNN model performs feature extraction from raw data through 

convolution with kernels, followed by dimension reduction through 
pooling, leading to a partial loss of original data information, but still 
exhibits outstanding fitting capabilities. Additionally, the wider 
applicability of the CNN model allows it to handle not only time series 
data but also higher-dimensional data. However, As the CNN model 
is essentially a feed-forward neural network, it may encounter issues 
of gradient vanishing or exploding during training, potentially leading 
to weaker long-term predictive performance compared to LSTM and 
NARX. At least, with a test set sample size of 12, the CNN is speculated 
to exhibit performance similar to RNNs in short-term prediction. The 
CNN-LSTM model effectively combines the information extraction 
capability of the CNN model with the recurrent prediction ability of 
LSTM, demonstrating excellent simulation performance in both the 
training and test sets. This suggests the feasibility of hybrid models, 
even in cases where the original data lacks periodicity, and indicates 
the potential for using this model for predicting time series data of 
other diseases. Furthermore, the CNN-LSTM model exhibits better 
robustness than NARX, as NARX did not exhibit the best fitting 
performance in the training set, yet performed well in the test set. 
Therefore, when researchers lack real data as a basis for selecting 
model parameters, the CNN-LSTM model is recommended as a more 
robust approach for predicting unknown data.

5 Limitations

Certainly, this study has some limitations. Firstly, although the 
sample data were rigorously reported by various levels of health 
institutions, there may still be  potential reporting bias, especially 
during January–February 2020 when China was experiencing the 
initial phase of the COVID-19 epidemic, and the country was under 
lockdown, which might have limited case diagnoses. Secondly, for the 
neural network models involved in this study, there is currently no 
mature method to determine the most appropriate number of hidden 
neurons. Identifying the best model requires continuous trial and 
parameter adjustment. Thirdly, the models involved in this study are 
all data-driven, requiring a large amount of historical data for learning 
and training, and can only make short-term predictions. If the values 
and quantity of the sample data change, the best time series models in 
this study may not necessarily be applicable.

6 Conclusion

During the period from January 2009 to October 2023, the 
incidence of HFRS across mainland China have been on a general 
decline, with seasonal peaks consistently recorded in the months of 
November and December. The hybrid CNN-LSTM model, which 
combines the data extraction capabilities of CNN with the recurrent 
recursive abilities of LSTM networks, exhibits commendable fitting 
adequacy and robustness on both train and test datasets. This 
CNN-LSTM model stands out due to its flexibility, as it imposes no 
prerequisites on the underlying distribution of the data, and its 
theoretical proficiency in adeptly fitting higher-dimensional data sets 
is noteworthy. Therefore, it is advised that entities involved in public 
health policy formulation consider the adoption of the CNN-LSTM 
methodology as a pivotal instrument for the analysis and projection 
of disease.
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