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Background: In recent years, the prevalence of obesity has continued to 
increase as a global health concern. Numerous epidemiological studies have 
confirmed the long-term effects of exposure to ambient air pollutant particulate 
matter 2.5 (PM2.5) on obesity, but their relationship remains ambiguous.

Methods: Utilizing large-scale publicly available genome-wide association 
studies (GWAS), we  conducted univariate and multivariate Mendelian 
randomization (MR) analyses to assess the causal effect of PM2.5 exposure on 
obesity and its related indicators. The primary outcome given for both univariate 
MR (UVMR) and multivariate MR (MVMR) is the estimation utilizing the inverse 
variance weighted (IVW) method. The weighted median, MR-Egger, and 
maximum likelihood techniques were employed for UVMR, while the MVMR-
Lasso method was applied for MVMR in the supplementary analyses. In addition, 
we conducted a series of thorough sensitivity studies to determine the accuracy 
of our MR findings.

Results: The UVMR analysis demonstrated a significant association between 
PM2.5 exposure and an increased risk of obesity, as indicated by the IVW model 
(odds ratio [OR]: 6.427; 95% confidence interval [CI]: 1.881–21.968; PFDR  =  0.005). 
Additionally, PM2.5 concentrations were positively associated with fat distribution 
metrics, including visceral adipose tissue (VAT) (OR: 1.861; 95% CI: 1.244–2.776; 
PFDR  =  0.004), particularly pancreatic fat (OR: 3.499; 95% CI: 2.092–5.855; PFDR 
=1.28E-05), and abdominal subcutaneous adipose tissue (ASAT) volume (OR: 
1.773; 95% CI: 1.106–2.841; PFDR  =  0.019). Furthermore, PM2.5 exposure correlated 
positively with markers of glucose and lipid metabolism, specifically triglycerides 
(TG) (OR: 19.959; 95% CI: 1.269–3.022; PFDR  =  0.004) and glycated hemoglobin 
(HbA1c) (OR: 2.462; 95% CI: 1.34–4.649; PFDR  =  0.007). Finally, a significant 
negative association was observed between PM2.5 concentrations and levels 
of the novel obesity-related biomarker fibroblast growth factor 21 (FGF-21) 
(OR: 0.148; 95% CI: 0.025–0.89; PFDR  =  0.037). After adjusting for confounding 
factors, including external smoke exposure, physical activity, educational 
attainment (EA), participation in sports clubs or gym leisure activities, and 
Townsend deprivation index at recruitment (TDI), the MVMR analysis revealed 
that PM2.5 levels maintained significant associations with pancreatic fat, HbA1c, 
and FGF-21.
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Conclusion: Our MR study demonstrates conclusively that higher PM2.5 
concentrations are associated with an increased risk of obesity-related indicators 
such as pancreatic fat content, HbA1c, and FGF-21. The potential mechanisms 
require additional investigation.

KEYWORDS
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1 Introduction

Obesity is a common chronic metabolic disease that is primarily 
characterized by excessive total fat content or local increase and 
abnormal distribution. It can be  complicated by type 2 diabetes, 
hyperlipidemia, nonalcoholic fatty liver, depression, osteoarthritis, 
asthma, and other multisystem diseases, which have severe effects on 
quality of life and life expectancy (1). Since 1975, the number of obese 
patients in the globe has nearly doubled, according to a report 
published by the Globe Health Organization in 2021. In 2016, more 
than 39 percent of adults aged 18 and older were overweight, 13 
percent of them were obese, and the number of obese children and 
adolescents reached an alarming 124 million 1(2), rendering obesity a 
severe global public health problem. For the diagnosis of obesity, body 
mass index (BMI) is the critical marker, and fat distribution such as 
visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue 
(ASAT), pancreas fat, glycolipid metabolism indicators like glycated 
hemoglobin (HbA1c), triglycerides (TG), and biomarker fibroblast 
growth factor 21 (FGF-21) is vital in the early screening and evaluation 
of obesity and obesity-related diseases. VAT is the visceral adipose 
tissue surrounding the abdominal organs, which is the body’s primary 
site for energy storage. Its excessive accumulation is linked to a 
number of metabolic disorders, including insulin resistance and 
inflammatory response (3).

ASAT is the main subcutaneous adipose reservoir. Although it has 
fewer adverse effects on metabolic health than VAT, it has a stronger 
connection with the physical characteristics of obesity (4). Pancreas fat 
refers to the fat content of pancreatic tissue, and its abnormal aggregation 
can disrupt the function of the islets of Langerhans β Cells, resulting in 
a disorder of blood glucose regulation (5). HbA1c is a product of the 
combination of hemoglobin and glucose, which can reflect the average 
blood sugar level over the past 2–3 months. In obese patients, an increase 
in HbA1c may indicate a decrease in insulin sensitivity and impaired 
glucose metabolism (6). TG is the predominant form of lipid in plasma, 
which is generally synthesized in the liver and stored in adipocytes. TG 
abnormalities are frequently associated with obesity and metabolic 
syndrome (7). FGF defines a family of proteins essential for cell 
proliferation, differentiation, migration, and survival. It is strongly 
connected to the proliferation and differentiation of adipocytes, and its 
abnormal expression can contribute to the development of obesity and 
its related complications (8). The etiology and pathogenesis of obesity 

1 https://www.who.int/news-room/fact-sheets/detail/obesity-and-

overweight, accessed on 2 January 2024.

are still unclear, and current research has attributed it to dietary habits, 
behavior, genetics, and socioeconomic and environmental factors (9–11).

With the acceleration of urbanization on a global scale, 
emissions of pollutants from industrial production and 
transportation continue to rise, and the impact of air pollution on 
obesity is becoming increasingly significant. Particulate matter, the 
primary component of air pollution, alludes to the suspended and 
dispersed solid or liquid particles. According to the aerodynamic 
diameter, it can be divided into PM2.5, PM10, and PM0.1 (12). PM2.5 is 
defined as particles in the atmosphere with a diameter of 2.5 microns 
or less, which have a small particle size, a large surface area, and a 
high level of activity. They are prone to transporting toxic substances 
and can linger in the atmosphere for a long time. After inhalation, 
they can further deposit in the alveoli, as well as penetrate the 
capillaries and systemic circulation (13). Thus, PM2.5 has a more 
significant negative impact on environmental quality and 
human health.

In recent years, mounting evidence has demonstrated that PM2.5 is a 
significant contributor to overweight, obesity, and endocrine and 
metabolic disorders tied to obesity. A large longitudinal cohort study 
involving over 3.9 million US veterans over an 8-year follow-up period 
revealed a 10-g/m3 higher average annual PM2.5 concentration was 
positively correlated with clinical risk of obesity (hazard ratio (HR) = 1.08, 
95% confidence interval (CI): 1.06–1.11) and the risk of a 10-pounds 
(4.54 kg) weight gain (HR = 1.07, 95% CI: 1.06–1.08) (14). Another large-
scale cross-sectional study involving 47,204 adults in 13 provinces of 
China (15) indicated that every 10 μg/m3 increase in PM2.5 is related to a 
higher incidence of obesity (OR = 1.12, 95% CI: 1.09–1.14) as well as 
abdominal adiposity (OR = 1.10, 95% CI =1.07–1.13). In addition, 
longitudinal cohort research from Taiwan (16) demonstrated that an 
increase of 10 μg/m3 in the annual average concentration of PM2.5 is 
linked to an increase in TG (adjusted hazard ratio (aHR) =1.17, 95% CI: 
1.11–1.23) and a rise in fasting blood glucose (aHR = 1.15, 95% CI: 1.10–
1.20) suggesting a relationship between PM2.5 and impaired glucose and 
lipid metabolism. A few cross-sectional studies, however, have shown 
that exposure to environmental pollutants such as PM2.5 does not 
substantially contribute to obesity and related lipid metabolism indicators 
(17, 18). The inconsistency in the results of observational research can 
be due to sample size bias and residual confounding factors. At present, 
the causality between PM2.5 and obesity and its related indicators is still 
ambiguous, and further proof is required for confirmation.

MR is an epidemiological technique designed to overcome the 
limitations of observational investigations, and it has been extensively 
utilized in a variety of studies. The central concept of MR is to infer the 
causal relationship between exposure and outcome employing genetic 
variation as Instrumental variables (IVs). Given the fact that genetic 
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variation is assigned randomly by parents to offspring at conception 
and is relatively independent of factors such as social environment and 
personal lifestyle, it is possible to avoid the influence of remaining 
confounding factors or reverse causal relationships in observational 
studies and obtain more reliable findings (19, 20). MVMR is an 
emerging technology that can integrate the genetic variation of 
multiple risk factors into a single model and simultaneously evaluate 
the corresponding exposure in order to minimize the impact of mixed 
variables (21). This study implemented univariate and multivariate MR 
analyses to investigate the causal association between PM2.5 and 
obesity and the accompanying indicators.

2 Materials and methods

2.1 Study design

Utilizing publicly available data, we conducted a two-sample 
MR analysis to assess the causal relationship between PM2.5 and 
obesity and its related indicators. The methodology of this MR 
investigation is illustrated in Figure 1. The IVs chosen for causal 
estimation must satisfy three fundamental assumptions (22): 
Assumption 1, The IVs should be  strongly related to PM2.5 
(p < 5 × 10−8); Assumption 2: The correlation between IVs of PM2.5 
and obesity or related indicators is unaffected by the presence of 
confounding factors; Assumption 3: The IVs only influences the risk 
of obesity and related indicators via PM2.5, rather than other 
channels. Prior observational clinical trials and MR studies have 
demonstrated that exposure to tobacco smoke, physical activity, EA, 
participation in sports clubs or gym leisure activities, and TDI are 
risk factors for the onset of obesity and impaired glucose and lipid 
metabolism (23–28). Consequently, we  adjusted the genetic 
susceptibility of these five variables further using MVMR. Since our 
data is derived from publicly accessible GWAS aggregated statistical 
data, no ethical approval is required.

2.2 Data sources

The summary statistical data for PM2.5 originates from the 
MRC-IEU alliance (dataset ID: ieu-b-4879), which includes 423,796 
participants of European ancestry. The Land Use Regression (LUR) 
model was utilized to assess the PM2.5 concentration near the 
participant’s residences (29). Obesity and its associated indicators 
(including VAT, ASAT, Pancreatic fat, Hba1c, TG, and FGF21) were 
chosen as outcomes. The GWAS summary data for obesity (8,908 cases 
and 209,827 controls) are available from the FinnGen consortium. 
This large public-private collaboration research project combines 
estimated genotype data derived from newly collected and legacy 
samples from the Finnish Biobank with digital record data from the 
Finnish Health Registry (30). The combined level data for VAT, ASAT, 
and pancreas fat were obtained from the study on deep learning 
algorithms conducted by Liu Y. et al. in 2021, which utilized abdominal 
magnetic resonance imaging (MRI) to determine the genetic structure 
of body composition (31). The dataset pertaining to HbA1c and TG 
originated from a GWAS study undertaken by Howe LJ et al., involving 
182,416 and 69,360 European males and females, respectively. The IVs 
with regard to FGF21 were extracted from a GWAS study conducted 
by Gilly et  al. (32), which identified 18,160,173 single nucleotide 
polymorphisms (SNPs) among 1,298 samples. In addition, aggregate 
data regarding external smoke exposure, physical activity, EA, 
participation in sports clubs or gym leisure activities, and TDI were 
obtained from the Neale Lab or MRC-IEU consortium. All 
participants in this study are of European descent. Table 1 provides a 
summary of all datasets included in this investigation.

2.3 Selection and evaluation of 
instrumental variable

We implemented a specific procedure for selecting the IVs to 
fulfill the three critical assumptions of MR analysis. Firstly, genetic 

FIGURE 1

Assumption of the Mendelian randomization (MR) analysis for PM2.5 and obesity and its related indicators.
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variations must be strongly associated with the exposure to satisfy 
the first hypothesis. We extracted SNPs strongly related to PM2.5 at 
the significance level of p < 5 × 10−8. To fulfill the requirements of 
hypothesis 2  in the MR framework, we  established a stringent 
criterion (r2 < 0.001 and a clumping distance of 10,000 kb), ensuring 
that the selected IVs were conditionally independent. Only SNPs 
with the lowest p-values were retained to mitigate the impact of 
linkage disequilibrium (LD) among the SNPs (33). Furthermore, 
the potential pleiotropic effects were controlled by extracting the 
secondary phenotype of each SNP from PhenoScan V2 (34).2 It is 
widely recognized that parameters such as body mass index, waist 
circumference, and waist-to-hip ratio are strongly correlated with 
obesity, fat distribution, and glucose and lipid metabolism (35–38). 

2 http://www.phenoscanner.medschl.cam.ac.uk/

Consequently, we eliminated any independent variables associated 
with these parameters or directly linked to outcome measures. This 
approach helps ensure that the IVs used in our MR study are 
specific to the exposure of interest and not influenced by other 
pathways that could bias the results. Ultimately, we  extracted 
exposure IVs from the outcome data and conducted data 
harmonization to exclude SNPs with inconsistent exposure and 
outcome data alleles.

Variance (R2) and the F-statistic were utilized to evaluate the 
robustness of IVs in order to prevent bias from a weak tool. The 
F-statistic for each SNP is determined by the following formula: 
F = R2/(1-R2) [(N-K-1)/K], where N is the sample size, K is the total 
number of SNPs chosen for MR analysis, and R2 is the overall 
proportion of phenotypic variations explained by all SNPs in our MR 
model (39). R2 was estimated for all SNP through the given formula: 
R2 = Σ [2 × (1 – MAF) × MAF × β2/ (SE2 × N)]. MAF is the minor allele 
frequency for each SNP, and SE and β are the standard error and effect 

TABLE 1 Details of studies included in Mendelian randomization (MR) analyses.

Traits Author GWAS ID Sample 
size(cases/
controls)

Number of 
SNPs

Sex Ancestry Year PMID

Exposure

PM2.5 Ben Elsworth ukb-b-10817 423,796 9,851,867
Males and 

females
European 2018 27089921

Exposure to 

tobacco smoke 

outside home

Neale ukb-a-20 286,550 10,894,596
Males and 

females
European 2017 NA

physical activity Neale ukb-a-485 335,599 10,894,596
Males and 

females
European 2017 NA

Year ended full 

time education
Ben Elsworth ukb-b-2709 112,569 9,851,867

Males and 

females
European 2018 NA

Leisure/social 

activities: Sports 

club or gym

Ben Elsworth ukb-b-4000 461,369 9,851,867
Males and 

females
European 2018 NA

TDI Neale ukb-a-44 336,798 10,894,596
Males and 

females
European 2017 NA

Outcomes

Obesity NA
finn-b-E4_

OBESITY
8,908/209,827 16,380,465

Males and 

females
European 2021 NA

VAT Liu Y
ebi-a-

GCST90016671
32,860 9,275,407 NA European 2021 34128465

ASAT Liu Y
ebi-a-

GCST90016672
32,860 9,275,407 NA European 2021 34128465

Pancreas fat Liu Y
ebi-a-

GCST90016675
25,617 9,275,407 NA European 2021 34128465

Triglycerides Howe LJ ieu-b-4850 78,700 7,892,037
Males and 

females
European 2022 NA

HbA1c Howe LJ ieu-b-4841 17,724 NA
Males and 

females
European 2022 NA

FGF21 Gilly A
ebi-a-

GCST90010123
1,298 18,160,173 NA European 2020 33303764

PM2.5, particulate matter 2.5; TDI, Townsend deprivation index at recruitment; VAT, visceral adipose tissue volume; ASAT, abdominal subcutaneous adipose tissue volume; HbA1c, 
glycosylated hemoglobin; FGF21, fibroblast growth factor 21 levels.
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size coefficient, respectively. An F-statistic greater than 10 was 
regarded as adequate for the relationship between IVs and exposure 
to avoid weak tool bias from influencing the results of MR 
analyses (22).

2.4 Statistical analysis

The IVW method was utilized as the primary analysis. In 
addition, weighted median, MR Egger, and maximum likelihood 
were used to assess robustness effects. The IVW method is an 
expansion of the Wald ratio estimator based on meta-analytic 
principles, which can offer precise estimates in the absence of 
horizontal or balanced pleiotropy (40). With at least 50 percent 
of the weight of the analysis originating from valid IVs, the 
weighted median method is able to draw a trustworthy conclusion 
(41). Despite its low statistical power, the MR Egger method can 
detect potential pleiotropy and present estimates after controlling 
for multiple effects (42). The maximum likelihood method is 
analogous to the IVW method, where the results are unbiased, 
and the standard error is less than that of the IVW method under 
the assumption of no heterogeneity and horizontal pleiotropy 
(43). On the basis of prior research (23–28), we  adjusted for 
external smoke exposure, physical activity, EA, participation in 
sports clubs or gym leisure activities, and TDI in MVMR to 
illustrate a causal relationship between PM2.5 and obesity and its 
related indicators. IVW and MR-Lasso (44) were included in the 
approaches we employed to execute MVMR.

In this investigation, numerous sensitivity analyses were 
performed to assure the stability and dependability of the MR 
results. First, Cochran’s Q test was applied to evaluate the 
heterogeneity between SNPs, where a p-value greater than 0.05 
indicated no heterogeneity. Secondly, the MR-Egger intercept was 
utilized to quantify the horizontal pleiotropy of IVs. Thirdly, 
we performed the leave-one-out analysis to check whether any 
single SNP drove the MR results. Finally, we  conducted the 
MR-PRESSO to detect potential outlier SNPs (45). A two-sided 
p-value less than 0.05 was regarded as statistically significant. In 
order to account for multiple hypothesis testing, we calculated 
the adjusted p values (q values) for the false discovery rate (FDR) 
in the significant IVW MR analyses. We  used the sequential 
p-value approach suggested by Benjamini and Hochberg (46). A 
q value less than or equal to 5% was deemed significant. The R 
packages TwoSampleMR (version 0.5.6) and MVMR (version 0.3) 
served as tools to undertake MR analyses. All data analyses were 
conducted utilizing version 4.3.1 of R.

3 Result

3.1 Genetic instruments

In the present research, 6, 6, 6, 6, 4, 6, and 7 SNPs were ultimately 
identified as the IVs for PM2.5 to assess the associations between PM2.5 
and Obesity, VAT, ASAT, pancreas fat, TG, HbA1c and FGF21, 
respectively (Supplementary Tables S1–S7). The F statistic for each of 
these genetic variants was greater than 10, indicating a low probability 
of mild instrumental bias.

3.2 Estimated causal effect of PM2.5 on 
obesity and its related indicators

The UVMR analysis demonstrated a significant association 
between PM2.5 exposure and an increased risk of obesity, as indicated 
by the IVW model (OR: 6.427; 95% CI: 1.881–21.968; PFDR = 0.005). 
Additionally, PM2.5 concentrations were positively associated with fat 
distribution metrics, including VAT (OR: 1.861; 95% CI: 1.244–2.776; 
PFDR = 0.004), particularly pancreatic fat (OR: 3.499; 95% CI: 2.092–
5.855; PFDR =1.28E-05), and ASAT volume (OR: 1.773; 95% CI: 
1.106–2.841; PFDR = 0.019). Furthermore, PM2.5 exposure correlated 
positively with markers of glucose and lipid metabolism, specifically 
TG (OR: 19.959; 95% CI: 1.269–3.022; PFDR = 0.004) and HbA1c (OR: 
2.462; 95% CI: 1.34–4.649; PFDR = 0.007). Finally, a significant negative 
association was observed between PM2.5 concentrations and levels of 
the novel obesity-related biomarker FGF-21 (OR: 0.148; 95% CI: 
0.025–0.89; PFDR = 0.037). Figure  2 depicts the causal associations 
between genetically predicted PM2.5 and the risk of obesity and its 
related indicators. The scatter plots of the association between PM2.5 
and obesity and its related indicators are shown in Figures 3, 4.

In the MVMR-IVW analysis adjusting for external smoke 
exposure, physical activity, EA, participation in sports clubs or gym 
leisure activities, and TDI, the causal relationship between PM2.5 and 
pancreas fat (OR: 3.612; 95%CI: 1.893–6.892; p = 9.82E-05), HbA1c 
(OR: 5.429; 95%CI: 2.327–12.665; p = 9.00E-05) or FGF21 (OR: 0.162; 
95%CI: 0.034–0.776; p = 0.023) remained significant. The MVMR-
Lasso technique results additionally revealed that a causal link 
between PM2.5 and pancreas fat or HbA1c still exists 
(Supplementary Table S8). The association between PM2.5 and Obesity, 
VAT, ASAT, or TG did not persist, however, after adjusting for the five 
confounding factors mentioned above. Table  2 presents the 
MVMR-IVW results in detail.

The Cochran’s Q test revealed no evidence of heterogeneity, and 
the MR-Egger intercept test discovered no indication of horizontal 
pleiotropy in the MR analysis results. In addition, MR-PRESSO failed 
to detect any SNPs that were outliers. The results of the sensitivity 
analysis are presented in Table  3. The leave-one-out plots offer 
additional evidence for the robustness of our results and imply that 
the effects of a single SNP were unlikely to influence causal estimates 
(Supplementary Figures S1–S7).

4 Discussion

This study utilized MR technology to evaluate the causal 
relationship between the air pollutant PM2.5 and obesity, along with 
related indicators. After applying the FDR correction, the UVMR 
results indicate a significant causal relationship between exposure to 
PM2.5 and an increased susceptibility to obesity in the European 
population. Furthermore, supplementary MR analysis revealed a 
positive correlation between PM2.5 concentration and body fat 
distribution, including VAT, particularly pancreatic adipose tissue, 
and ASAT volume. Moreover, there is a direct link between exposure 
to PM2.5 and increased levels of TG and HbA1c. Conversely, a 
significant negative link was observed between PM2.5 concentration 
and the level of the novel obesity-related biomarker FGF-21. After 
adjusting for confounding factors such as external smoke exposure, 
physical activity, EA, participation in sports clubs or gym leisure 
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activities, and TDI, MVMR analysis showed that PM2.5 levels 
maintained a significant association with pancreatic fat, HbA1c, 
and FGF-21.

Our UVMR research results offer genetic evidence for the causal 
relationship between PM2.5 exposure and the likelihood of obesity. In 
additional MR analyses of PM2.5 and fat distribution, we identified a 
positive correlation between PM2.5 concentrations and VAT, ASAT, or 
pancreatic fat. These findings are compatible with previous 
observational epidemiological studies.

A cross-sectional study conducted in Spain examined the 
relationship between PM2.5 levels and the prevalence of overweight in 
young people aged 2–14. It found that compared to areas with low 
PM2.5 levels, areas with moderate PM2.5 levels had a 23% higher risk of 
overweight, while areas with high PM2.5 levels had a 35% higher risk 
(47). An analysis of data from a study involving 11,766 participants 
found an intense connection between exposure to PM2.5 and visceral 
fat index (VFI) in middle-aged and older adult individuals. The 
highest quartile OR was 1.10 (95% CI, 1.07, 1.13) (48). A separate 
cohort study, consisting of 38,824 participants aged 18–79, also 
arrived at comparable conclusions. It observed that the VFI exhibited 
a rising pattern as the amount of PM2.5 increased (49).

An investigation carried out in Chongqing, China, discovered a 
distinct correlation between exposure to PM2.5 and childhood obesity, 
specifically centripetal obesity, as assessed by the waist-to-height ratio 
(WHtR). This study validates that environmental pollution has a 

cumulative effect on obesity, specifically the buildup of abdominal fat, 
in young persons from China (50). Additionally, a comprehensive 
nationwide longitudinal study conducted in China also showed a clear 
link between air pollution and the heightened susceptibility of older 
adult individuals to both general obesity and abdominal obesity. With 
each standard deviation increase in the Average Air Quality Index 
(AQI), the likelihood of becoming centripetal obesity increases by 
2.8% (95%CI, 1.7, 3.9%), and the probability of developing abdominal 
obesity increases by 6.2% (95%CI, 4.4, 8.0%) (51).

Currently, the majority of studies focus on investigating the 
influence of PM2.5 on the overall amount of visceral fat. However, there 
is insufficient study on the correlation between PM2.5 levels and 
specific types of visceral fat, such as pancreatic fat. The excessive 
accumulation of lipids in the pancreas is accompanied by a decline in 
the cellular activity of pancreatic islets (52). Prior research has 
demonstrated a negative correlation (p < 0.03) between the average 
amount of fat in the pancreas, as measured by magnetic resonance 
imaging (MRI), and markers of insulin secretion based on oral glucose 
tolerance tests (OGTT). The results of the subsequent stepwise 
multiple regression analysis indicate that pancreatic fat is more closely 
linked with reduced insulin secretion function compared to other 
visceral lipids, such as liver fat (53). Animal studies have demonstrated 
that exposure to PM2.5 can reduce the expression of glucose transporter 
2 (GLUT 2) in pancreatic tissue of rats with gestational diabetes 
(GDM), thereby increasing the likelihood of pancreatic lipid 

FIGURE 2

Association of genetically predicted PM2.5 and obesity and its related indicators.
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deposition, tissue damage and elevated blood sugar levels (49). The 
research above indirectly demonstrates the correlation between PM2.5 
levels and the abnormal accumulation of fat in the pancreas. A cohort 
research (54) published in 2017 indicated that exposure to high 
amounts of PM2.5 had a deleterious impact on insulin sensitivity (SI) 
and β Cellular function in children and is not tied to obesity markers 
such as body fat percentage. In the MVMR model, after adjusting for 
external smoke exposure, physical exercise, education level, gym 
leisure activities, and TDI, a significant relationship between PM2.5 
concentration and pancreatic fat remains. However, the relationships 
between PM2.5 concentration and obesity, VAT, and ASAT are no 
longer significant. The TDI, which reflects socio-economic status, is 
the main confounding factor, closely related to both PM2.5 exposure 
and obesity (55, 56). The discrepancies between MR analysis results 

and observational research can be  attributed to the influence of 
confounding factors. Therefore, further research is needed to explore 
the relationship between PM2.5 concentration and obesity, VAT, 
and ASAT.

Previous studies have drawn contradictory conclusions about the 
relationship between PM2.5 and TG levels. A recent cohort study has 
shown a correlation between air pollution, including PM2.5, and a 
higher likelihood of blood lipid abnormalities (OR = 1.14, 95% CI: 
1.10, 1.18). It found that for every 10% increase in PM2.5 concentration 
(measured in μg/m3), there was a corresponding 3.04% rise in TG 
levels (95% CI: 2.61, 3.47%) (57). Nevertheless, specific research has 
indicated that prolonged exposure to air pollution, specifically PM2.5, 
is solely linked to raised levels of total cholesterol (TC) and a higher 
incidence of hypercholesterolemia in children and adolescents. 

FIGURE 3

Scatter plots for Mendelian randomization (MR) analyses of the correlation between PM2.5 and obesity and its related indicators. (A) Obesity; (B) VAT; 
(C) ASAT; (D) pancreatic fat.
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However, there is no clear association between air pollution and other 
lipid abnormalities, such as TG and low-density lipoprotein cholesterol 
(LDL-C) (58). This aligns with the findings of our research. In our 
UVMR results, there is a direct correlation between PM2.5 and elevated 
TG levels. However, this relationship becomes insignificant when 
considering external smoke exposure, physical exercise, education 
level, gym leisure, and TDI in the MVMR model. The difference 
between MR analysis and observational data may be attributed to 
confounding variables. Therefore, it is necessary further to investigate 
the relationship between PM2.5 concentration and TG.

Our investigation on MVMR revealed a significant correlation 
between PM2.5 levels and HbA1c after taking into consideration other 
influencing factors. A recent statewide cohort research conducted in 
China has indicated a positive correlation between increased exposure 
to PM2.5 and higher levels of HbA1c. In the primary model, a 10 μg/
m3 increase in PM2.5 exposure concentration corresponded with a 
0.016 mmol/L increase in HbA1c levels (59). Another study conducted 
in South Korea, a developed country, also found that an increase in 
PM2.5 levels by one quartile range (IQR) coincided with a 0.34% 
increase in HbA1c levels (95% CI: 0.04, 0.63) (60). Added to that, 
we  discovered an inverse correlation that is nominally significant 
between the content of PM2.5 and FGF-21 in both the UVMR and 
MVMR models. FGF-21, belonging to the fibroblast growth factor 
family, exerts regulatory metabolic effects, including cholesterol 
reduction, blood sugar reduction, insulin resistance improvement, 
and weight reduction. It is frequently linked with the presence of 
chronic metabolic disorders related to obesity (61). Although 
empirical research exploring the correlation between PM2.5 levels and 
FGF-21 is currently lacking, our MR results suggest that improving air 
quality and reducing PM2.5 concentrations could have beneficial effects 
on mitigating obesity-related chronic metabolic disorders.

At present, the exact mechanism of the association between 
PM2.5 exposure and obesity or glucose and lipid metabolism 
disorders is not clear. However, existing research suggests that this 
correlation may be  related to the following four 
potential mechanisms.

Firstly, PM2.5 can trigger systemic and local chronic 
inflammatory responses, which are vital factors that contribute to 
metabolic disorders and obesity (62, 63). An animal study has 

demonstrated that PM2.5 exposure can induce glucose and lipid 
metabolism disorders in both normal healthy and diabetic model 
mice. This metabolic damage is consistent with an increase in 
inflammatory responses in the respiratory system, circulatory 
system, and VAT, characterized by the release of interleukin (IL)-6 
and tumor necrosis factor-alpha (TNF-α) in the lungs, serum, and 
VAT. Furthermore, the use of AMPK activators to inhibit the release 
of inflammatory cytokines has been shown to alleviate PM2.5-
induced metabolic disorders (64). Another animal study confirmed 
that the activation of NLRP3 inflammasomes and the increase in 
levels of related inflammatory cytokines, including IL-18 and IL-1β, 
are the main mechanisms behind the aggravation of PM2.5-related 
metabolic disorders in diabetic model mice (65).

Secondly, the oxidative stress (OS) response plays an essential 
mediating role in metabolic disorders caused by PM2.5 exposure (66). 
PM2.5 contains various pro-oxidant molecules, and its toxicity is linked 
to its ability to produce reactive oxygen species (ROS). Exposure to 
PM2.5 can induce oxidative stress in different tissues and cell lines (67). 
Animal research data suggests that exposure to PM2.5 can reduce 
vascular insulin sensitivity by inducing oxidative stress in the lungs, 
leading to insulin resistance. Antioxidant treatment or overexpression 
of lung-specific extracellular superoxide dismutase (ecSOD) can 
alleviate insulin resistance in PM2.5-exposed mice (68). On top of that, 
a recently published study revealed that PM2.5 greatly enhances 
xanthine levels in both brown adipose tissue (BAT) and white adipose 
tissue (WAT) in male db/db mice, provoking OS in the adipose tissue 
(69). Higher levels of ROS can promote the accumulation of TG in 
WAT and hinder its breakdown, bringing about an increase in WAT 
content and a decrease in BAT content, consequently impacting 
energy metabolism, diminishing insulin sensitivity, and worsening 
blood glucose disorders (69). PM2.5 exposure can harm skeletal muscle 
function by impairing mitochondrial oxidative activity, resulting in 
adverse effects on energy expenditure, fat storage, and weight 
gain (70).

Thirdly, PM2.5 can penetrate the central nervous system by 
means of neurons in olfactory epithelium cells. This can disturb the 
control of hunger and energy expenditure by triggering 
inflammatory responses in the hypothalamus and causing resistance 
to leptin, ultimately resulting in obesity. An animal study has shown 

FIGURE 4

Scatter plots for Mendelian randomization (MR) analyses of the correlation between PM2.5 and obesity and its related indicators. (A) TG; (B) HbA1c; 
(C) FGF21.
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that short-term exposure to PM2.5 can significantly enhance 
inflammation markers such as Toll-like receptor 4 (Tlr4) and NF-κB 
kinase (Ikbke) in the hypothalamus of mice, leading to metabolic 

consequences similar to those induced by a high-fat diet (71). Long-
term exposure to PM2.5 can lead to leptin resistance, insufficient 
levels of satiety markers, increased appetite, reduced energy 

TABLE 2 Causal estimates of PM2.5 on obesity and its related indicators in MVMR-IVW.

Outcome MVMR Method p value OR Low UP

Obesity IVW Adjusted for Exposure to tobacco smoke 0.598 1.254 0.541 2.907

Adjusted for Strenuous sports in last 4 weeks 0.498 1.303 0.606 2.800

Adjusted for Year ended full time education 0.454 1.368 0.602 3.106

Adjusted for Sports club or gym activities 0.606 1.231 0.559 2.710

Adjusted for Townsend deprivation index 0.886 0.931 0.349 2.481

Adjusted for all 0.401 1.642 0.516 5.228

VAT IVW Adjusted for Exposure to tobacco smoke 2.44E-06* 1.799 1.409 2.297

Adjusted for Strenuous sports in last 4 weeks 0.011* 1.737 1.137 2.651

Adjusted for Year ended full time education 4.03E-12* 2.028 1.661 2.476

Adjusted for Sports club or gym activities 0.018* 1.621 1.085 2.421

Adjusted for Townsend deprivation index 0.326 1.263 0.793 2.012

Adjusted for all 0.233 1.373 0.816 2.311

ATST IVW Adjusted for Exposure to tobacco smoke 0.203 1.408 0.832 2.382

Adjusted for Strenuous sports in last 4 weeks 0.454 1.289 0.664 2.501

Adjusted for Year ended full time education 0.001* 1.840 1.268 2.670

Adjusted for Sports club or gym activities 0.059 1.555 0.984 2.458

Adjusted for Townsend deprivation index 0.887 0.963 0.571 1.622

Adjusted for all 0.700 1.130 0.608 2.101

Pancreas fat IVW Adjusted for Exposure to tobacco smoke 5.42E-09* 3.116 2.127 4.565

Adjusted for Strenuous sports in last 4 weeks 3.40E-10* 3.382 2.312 4.947

Adjusted for Year ended full time education 5.43E-18* 3.347 2.545 4.402

Adjusted for Sports club or gym activities 2.88E-06* 3.029 1.904 4.817

Adjusted for Townsend deprivation index 7.10E-04* 3.388 1.672 6.868

Adjusted for all 9.82E-05* 3.612 1.893 6.892

TG IVW Adjusted for Exposure to tobacco smoke 0.038* 1.665 1.030 2.691

Adjusted for Strenuous sports in last 4 weeks 0.010* 1.720 1.136 2.640

Adjusted for Year ended full time education 0.878 1.047 0.580 1.891

Adjusted for Sports club or gym activities 3.13E-04* 2.775 1.593 4.835

Adjusted for Townsend deprivation index 0.180 1.541 0.819 2.898

Adjusted for all 0.597 1.306 0.486 3.514

HbA1c IVW Adjusted for Exposure to tobacco smoke 0.002* 3.095 1.494 6.411

Adjusted for Strenuous sports in last 4 weeks 0.003* 3.154 1.464 6.794

Adjusted for Year ended full time education 2.00E-04* 3.058 1.686 5.545

Adjusted for Sports club or gym activities 3.00E-04* 2.775 1.593 4.835

Adjusted for Townsend deprivation index 1.90E-04* 5.240 2.197 12.497

Adjusted for all 9.00E-05* 5.429 2.327 12.665

FGF21 IVW Adjusted for Exposure to tobacco smoke 0.003* 0.108 0.025 0.469

Adjusted for Strenuous sports in last 4 weeks 0.010* 0.138 0.030 0.628

Adjusted for Year ended full time education 0.053 0.230 0.052 1.018

Adjusted for Sports club or gym activities 0.001* 0.128 0.036 0.453

Adjusted for Townsend deprivation index 0.023* 0.162 0.034 0.776

PM2.5, particulate matter 2.5; VAT, visceral adipose tissue volume; ASAT, abdominal subcutaneous adipose tissue volume; HbA1c, glycosylated hemoglobin; FGF21, fibroblast growth factor 21 
levels; MVMR, Multivariable Mendelian randomization; SE, standard error; OR, odds ratio; CI, confidence interval; *indicates that the relationship has statistical significance.
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expenditure, energy imbalance, and increased fat accumulation, 
resulting in obesity (71).

Ultimately, an imbalance in the gut microbiota could potentially 
act as a mediator in the relationship between PM2.5 and metabolic 
disorders. Animal and human studies provide evidence that the 
ingestion of air pollutants can result in changes in the diversity and 
relative abundance of gut microbiota, thereby reducing intestinal 
barrier integrity and increasing gastrointestinal inflammation (72). 
Multiple investigations have observed specific gut microbiota profiles 
in individuals with obesity and glucose and lipid metabolism 
disorders, suggesting that gut microbiota is involved in many 
physiological processes related to metabolism (73). Moreover, 
population-based epidemiological research evidence also confirms 
that the gut microbiota partially mediates the impact of PM2.5 on 
obesity and glucose and lipid metabolism disorders (74, 75).

As far as we  know, this is the initial instance where an MR 
Framework has been employed to evaluate the genetic causality 
between PM2.5 concentrations and obesity, as well as related markers 
of glycolipid metabolism. This approach complements traditional 
observational studies and provides further evidence to assess the 
health hazards tied to environmental pollutants. This MR study 
possesses several remarkable benefits. Initially, we eliminated genetic 
variations commonly detected in epidemiological research that other 
causes could potentially influence and specifically chose those that are 
closely correlated with PM2.5-related SNPs. Furthermore, the 
substantial sample size utilized in our MR analysis significantly 
enhanced our statistical power and yielded robust evidence 
supporting the presence of correlations. Besides, we  performed 
comprehensive sensitivity analyses to validate the dependability of 
these findings. All of the F-statistics exceed 10, suggesting a minimal 
likelihood of weak instrumental bias. In addition, the FDR correction 
method was employed to adjust for multiple tests, reducing the 
likelihood of Type I  errors. This approach enables us to balance 
identifying genuine correlations and managing false positives. Given 
the need to compare seven groups in this investigation, the use of the 
Bonferroni correction is considered excessively cautious and 
stringent. While the Bonferroni method minimizes the incidence of 
Type I errors, it also decreases the power to detect genuine associations 
when handling a high number of comparisons, leading to an increased 
occurrence of false negatives. Ultimately, we employed MVMR to 

examine the immediate influence of PM2.5 on obesity and its 
associated indices after controlling for external smoke exposure, 
physical activity, EA, participation in sports clubs or gym leisure 
activities, and TDI.

Although there are advantages, there remain limitations. First, due to 
reliance on summary-level data from the GWAS database, evaluating the 
non-linear correlation between PM2.5 and obesity and related indicators 
was impossible. Secondly, although we have conducted multiple sensitivity 
analyses to detect potential pleiotropy rigorously, it must be acknowledged 
that no method can completely eliminate the possibility of pleiotropy, 
which is a limitation of MR analysis methods. Therefore, considering the 
potential for residual pleiotropy effects, we emphasize that our findings 
should be  interpreted with caution. It is necessary to use additional 
datasets for further validation research in the future. Thirdly, our study 
used the IVW method as the primary statistical approach. When there is 
no heterogeneity and pleiotropy, the IVW method outperforms the MR 
Egger and weighted median methods, providing reliable conclusions. 
However, the differences in results between the IVW analysis and other 
alternative methods still deserve careful consideration. It is necessary to 
use larger datasets for further research in the future to verify these 
findings. Finally, it is worth noting that the participants in this study were 
all of European ancestry. While this choice minimizes potential 
stratification bias, it also limits the generalizability of our results to other 
racial groups. Due to the lack of available PM2.5 GWAS data from other 
ethnicities, we were unable to explore the association between PM2.5 and 
obesity, as well as related indicators, in other ethnic groups. We anticipate 
future updates of GWAS data to comprehensively investigate the impact 
of PM2.5 on obesity and metabolic disorders across diverse populations.

5 Conclusion

The conclusions of our MR study strongly support the existence 
of a significant positive association between genetically predicted 
PM2.5 concentration and pancreas fat, HbA1c, and FGF21 levels. 
However, the specific processes behind this link require more 
exploration. The results from the UVMR and MVMR analyses present 
limited evidence of causal links between the presence of PM2.5 and 
obesity, VAT, ASAT, or TG. This points out that other factors might 
have swayed past observational studies and need to be confirmed by 

TABLE 3 Heterogeneity, horizontal pleiotropy, and MR-PRESSO tests of the associations between PM2.5 and obesity and its related indicators.

Outcomes

Pleiotropy test Heterogeneity test MR-
PRESSO

MR-Egger MR-Egger Inverse-variance weighted Global test

Intercept SE p Q-value Q-df Q-pval Q-value Q-df Q-
pval

p value

Obesity 0.044 0.032 0.239 2.294 4 0.682 4.204 5 0.520 0.563

VAT 0.001 0.010 0.905 1.799 4 0.773 1.816 5 0.874 0.899

ASAT 0.005 0.013 0.727 5.689 4 0.224 5.888 5 0.317 0.349

Pancreas fat 0.007 0.013 0.581 1.423 4 0.840 1.783 5 0.878 0.908

Triglycerides −0.002 0.014 0.885 3.236 2 0.198 3.280 3 0.350 0.428

HbA1c 0.018 0.011 0.198 1.913 4 0.752 4.627 5 0.463 0.483

FGF21 −0.030 0.032 0.385 2.037 5 0.844 2.942 6 0.816 0.870

PM2.5, particulate matter 2.5; VAT, visceral adipose tissue volume; ASAT, abdominal subcutaneous adipose tissue volume; HbA1c, glycosylated hemoglobin; FGF21, fibroblast growth factor 21 
levels; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; Q-value, the statistics of Cochran’s Q test; SE, standard error.
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additional investigations. Our research findings have the potential to 
impact public health by enhancing people’s understanding of the 
correlation between air quality and obesity, along with accompanying 
metabolic disorders. These discoveries have substantial ramifications 
for obesity prevention.
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