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When we  humans travel, our microorganisms come along. These can 
be  harmless but also pathogenic, and are spread by touching surfaces or 
breathing aerosols in the passenger cabins. As the pandemic with SARS-CoV-2 
has shown, those environments display a risk for infection transmission. For a 
risk reduction, countermeasures such as wearing face masks and distancing 
were applied in many places, yet had a significant social impact. Nevertheless, 
the next pandemic will come and additional countermeasures that contribute 
to the risk reduction are needed to keep commuters safe and reduce the 
spread of microorganisms and pathogens, but also have as little impact as 
possible on the daily lives of commuters. This review describes the bacterial 
microbiome of subways around the world, which is mainly characterized by 
human-associated genera. We  emphasize on healthcare-associated ESKAPE 
pathogens within public transport, introduce state-of-the art methods to detect 
common microbes and potential pathogens such as LAMP and next-generation 
sequencing. Further, we  describe and discuss possible countermeasures that 
could be deployed in public transportation systems, as antimicrobial surfaces 
or air sterilization using plasma. Commuting in public transport can harbor 
risks of infection. Improving the safety of travelers can be achieved by effective 
detection methods, microbial reduction systems, but importantly by hand 
hygiene and common-sense hygiene guidelines.
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1 Introduction and discussion

Viruses play a major role in the spread of infectious diseases, most recently SARS-CoV-2, 
which was responsible for the COVID-19 pandemic. Even before the occurrence of SARS-
CoV-2, the Influenza waves are causing 15,000–70,000 deaths of European citizens every 
year (1).

However, in addition to viruses, bacteria are also responsible for the spread of infectious 
diseases. More than half of emerging infectious diseases are caused by bacteria, many of which 
are drug-resistant (2). Antimicrobial resistance has long been recognized as an acute danger 
and is also referred to in the literature as a silent pandemic (3). The spread of microorganisms 
and thus also pathogens does not necessarily begin in hospitals, but rather where people 
move around.
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1.1 Humans represent the main source of 
bacteria within subways

Subway systems are widely used, especially in big cities and carry 
millions of passengers every day. The high frequency of passengers 
using public transportation facilitates an exchange of microorganisms, 
especially when getting in contact with frequently touched surfaces 
such as handrails, and sharing the air within a confined space. In this 
review, the most common taxa within the subway microbiome of 
different cities are presented, and relevant risk factors are discussed. 
Further, a range of microbial detection methods are listed and 
countermeasures that may be applied in public transport are described.

Touching objects, such as handrails, leads to a transfer of the 
human hand microbiome to the touched object. In recent studies, the 
transfer of the hand microbiome from test subjects to objects was 
demonstrated (4, 5), which can also be  transferred to the subway 
environment. The most abundant organisms found in subway 
microbiome studies in various cities are displayed in Table 1. Among 
those, most frequently occurring taxa were Acinetobacter, 
Staphylococcus, Propionibacterium, Corynebacterium, Micrococcus, 
Streptococcus, and Kocuria, which are common for the human skin 
microbiome (15–17). These studies were not specifically focused on 
the detection of pathogens, and only a few were found such as 
Helicobacter pylori, Acinetobacter species (sp.) (10) as well as 
opportunistic pathogenic isolates related to the species 
Propionibacterium acnes and Staphylococcus epidermidis or genera 
Pseudonocardia and Nesterenkonia (14). An important factor that 
should be considered is that in most of the studies listed, microbial 
detection was based on 16S rRNA sequencing, which does not provide 
adequate detection at the species level (18, 19) and therefore, no 
pathogenic strains were conclusively detected.

For this section, we reviewed 30 research articles, including nine 
studies on the subway microbiome, 12 studies on the occurrence of 
ESKAPE pathogens in public transportation environments, and 7 
studies on general information on the human skin microbiome, the 
association with surfaces and the detection of pathogenic species 
in general.

1.1.1 ESKAPE pathogens—detected in public 
transport?

ESKAPE pathogens are the causative agents of most nosocomial 
infections worldwide. The abbreviation stands for the species 
Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, 
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterococcus 
faecium/faecalis. Those organisms can be highly virulent and carry or 
transfer antibiotic resistances (20, 21).

Antibiotic resistance and the spread of multidrug-resistant 
bacteria (AMR) is a problem that was associated with about 4.9 
million deaths worldwide in 2019 (22). However, the spread of these 
organisms does not occur in hospitals alone, but also in places with a 
high frequency of people, such as on public transportation. Notably, 
the following studies were focused on the detection of pathogenic 
species, mostly based on (selective) cultivation followed by PCR of 
pathogen-associated marker genes, e.g., the mcr-1 gene for E. coli that 
mediates colistin resistance.

The most prominent ESKAPE species within the public transport 
studies is the (opportunistic) pathogen Staphylococcus aureus. In 
general, due to the natural passenger’s microbiome, the skin-associated 

species are highly abundant in busses and subways. In a bus, serving 
both hospital and community routes, methicillin-resistant S. aureus 
(MRSA) was found (community-associated SCCmec type IV and 
healthcare-associated SCCmec type II). Of the detected MRSA strains, 
65% were multidrug resistant (23). Within this study, seats and seat 
rails were most contaminated. In subways, S. aureus containing the 
mecA gene was detected, alongside natural skin-associated species of 
S. aureus (11). mecA is associated with methicillin-resistant S. aureus 
(MRSA) and nosocomial infections, but the study concludes no strong 
evidence for pathogenicity based on the obtained sequences. Other 
studies showed the prevalence of MRSA in public transport (24–27).

Escherichia coli with a multidrug resistance, including mcr-1 
which mediates colistin resistance, was found in public transportation 
in Guangzhou, China (28). Twenty-three isolates of 737 samples with 
bacterial growth were positive for mcr-1, most of them were resistant 
against ampicillin, cefotaxime, fosfomycin, and gentamicin.

For Klebsiella pneumoniae, there were less findings of drug resistant 
isolates. In the Beijing (China) subway environment, highly touched 
surfaces were sampled and from a total of 603 samples across 15 metro 
lines, 11 carbapenem-resistant K. pneumoniae isolates were detected (29).

Enterobacter species were also found in public transport studies. 
E. faecium was abundant throughout the subway in New York City, 
United States (11), and multidrug resistant E. faecalis was observed on 
shared bicycles in Chengdu, China (30).

No studies have been found on the occurrence of multidrug 
resistant Acinetobacter baumannii and Pseudomonas aeruginosa in 
public transport.

1.2 Microbial detection methods

There are a number of options for identifying bacteria. Classical 
biochemical or physiological methods such as microscopy are time-
consuming and inefficient when it comes to examining a large number 
of samples and identifying the organism. Most studies reviewed 
within this work used the methodology of next-generation sequencing 
(1.2.1), which displays a modern and high-throughput detection 
approach, in contrast to cultivation on nutrient media. Latter allows 
the analysis of organisms that can grow under specific conditions. 
Several other methods exist, such as matrix-assisted laser desorption 
ionization coupled to time-of-flight mass spectrometry (MALDI-TOF 
MS) (31), or tandem mass spectrometry (19).

1.2.1 Next-generation-sequencing
Nowadays, next-generation-sequencing (NGS) is the most used 

technology for sequencing. With this approach, high throughput analysis 
is possible and enables the identification of microbes within a high 
sample size in a cost-effective manner, generating high amounts of data 
(32, 33). There is a big variation within the NGS DNA sequencing 
technologies, varying in amplification method, sequencing chemistry, 
sequencing speed, etc. (32, 33). The most established NGS platform was 
created by Illumina, followed by Oxford Nanopore, which revolutionized 
the field by releasing a first portable nanopore sequencing device in 2014. 
Each technology differs in its output, advantages and limitations. With 
NGS, not only the microbial identity can be detected, also the diversity 
within or of all samples can be  determined, outshining the limited 
information obtained by cultivation. The possibilities within NGS and 
the bioinformatical analysis are rapidly evolving more and more. 
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TABLE 1 Overview of abundant bacteria across subways and subway stations found in multiple studies.

Organism Location Method References

Five most abundant taxa 
(genus level):
 • Acinetobacter
 • Corynebacterium
 • Streptococcus
 • Staphylococcus
 • Cutibacterium

Ubiquitous in all 
samples:
 • Acinetobacter
 • Corynebacterium
 • Streptococcus
 • Staphylococcus
 • Propionibacterium

 • Kocuria
 • Pseudomonas
 • Micrococcaceae
 • Micrococcus

Subway, Mexico city
 • Turnstiles
 • Stair handrails
 • Escalator handrails
 • Platform floor
 • Train poles
 • Seats

V3–V4 region of 
the 16S rRNA 
gene, MiSeq™ 
Illumina

(6)

Surfaces dominated by human skin and oral commensals:
 • Propionibacterium
 • Corynebacterium
 • Staphylococcus
 • Streptococcus

Subway, Boston
 • Grips
 • Poles
 • Seats
 • Seat backs

 • Touchscreens
 • Sides of fare 

ticketing 
machines

V4 region of the 
16S rRNA gene, 
MiSeq™ Illumina

(7)

Most abundant known genera:
 • Propionibacterium
 • Corynebacterium
 • Streptococcus
 • Staphylococcus

Metro, Mexico city
 • Station turnstiles
 • Vertical handrails inside the train

V3–V4 region of 
the 16S rRNA 
gene, MiSeq™ 
Illumina

(8)

Most commonly detected 
genera:
 • Micrococcus
 • Enhydrobacter
 • Propionibacterium

 • Staphylococcus
 • Corynebacterium

Subway/MTR (Mass Transit Railway), 
Hong Kong
 • Aerosol samples

V4 region of the 
16S rRNA gene, 
MiSeq™ Illumina

(9)

Bacterial species with the highest abundance:
 • Propionibacterium acnes
 • Micrococcus luteus
 • Propionibacterium humerusii
 • Acinetobacter baumannii
 • Staphylococcus epidermidis
 • Escherichia coli
 • Staphylococcus aureus

Subway/MTR (Mass Transit Railway), 
Hong Kong
 • Hands after handrail touching for 

30 min

Metagenome 
sequencing with 
Illumina HiSeq™ 
1,500

(10)

 • Pseudomonas stutzeri
 • Stenotrophomonas 

maltophilia
 • Enterobacter cloacae
 • Acinetobacter 

radioresistens
 • Acinetobacter 

nosocomialis

 • Lysinibacillus sphaericus
 • Enterococcus casseliflavus
 • Brevundimonas diminuta
 • Acinetobacter lwoffii
 • Bacillus cereus

Subway, NYC
 • Turnstiles
 • Emergency 

exits
 • Metro card 

kiosks
 • Benches
 • Stairwell 

handrails

 • Trashcans
 • Doors
 • Poles
 • Handrails
 • Seats

HiSeq™ 2,500 (11)

High abundance:
 • Paracoccus
 • Sphingomonas
 • Kocuria
 • Acinetobacter
 • Staphylococcus

Lower abundance:
 • Dietzia
 • Streptococcus
 • Enterobacter
 • Enterococcus
 • Anaerococcus

 • Blautia
 • Burkholderia

Metro, Athens
 • Bioaerosol of underground station

16S rRNA gene 
and ITS, MiSeq™ 
Illumina

(12)

 • Stenotrophomonas
 • Pseudomonas
 • Dietzia
 • Brevundimonas
 • Intrasporangiaceae_u

 • (Arsenicicoccus/unclassified)
 • Comamonadaceae_u
 • Staphylococcus
 • Rhodococcus
 • Erwinia

Subway, Moscow
 • Information 

stand
 • Bench
 • Floor

 • Wall
 • Railings

V4 region of the 
16S rRNA gene, 
MiSeq™ Illumina

(13)

Air:
 • Unassigned
 • Micrococcus
 • Staphylococcus
 • Rubrobacter
 • Sphingomonas
 • Hymenobacter
 • Arthrobacter
 • Corynebacterium
 • Nocardioides

 • Psychrobacter
 • Blastococcus
 • Kocuria
 • Streptococcus
 • …
Surface:
 • Unassigned
 • Staphylococcus
 • Sphingomonas

 • Streptococcus
 • Hymenobacter
 • Corynebacterium
 • Arthrobacter
 • Kocuria
 • Micrococcus
 • Psychrobacter
 • Flavobacterium
 • …

Subway, Oslo
 • Air and surface samples from 16 

stations
 • Across four seasons

V3–V4 region of 
the 16S rRNA 
gene, MiSeq™ 
Illumina

(14)

There have been studies that investigated the public transport microbiome within different cities. The most common method was the 16S rRNA sequencing, which provides taxa data of the 
genera found within samples more or less confidently. Interestingly, but not surprisingly, the genera of bacteria associated with humans are repeatedly listed as passengers leave their microbial 
footprints in the passenger cabins. These typically found bacterial genera may also be helpful in terms of suitable model organisms to study effective measures to reduce microbial load and 
pathogens in public transportation to reduce the transmission of infectious diseases.
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FIGURE 1

Overview of described microbial countermeasures in public transport. For air cleaning and disinfection, UV-C, fumigation of disinfectants, and plasma 
air sterilization can be used. Of those, plasma air cleaning is suitable for the use during passenger occurrence. For the reduced microbial burden on 
(highly) touched surfaces, antimicrobial surfaces can be implemented. UV-C can be installed during cleaning times without any passenger on board, as 
well as the fumigation of chemicals. Created with BioRender.com.

Nevertheless, there are some shortcomings when it comes to profiling 
uncharacterized species in environmental microbiomes, as strain-level 
analyses are usually tested for human metagenomes and the tools are 
tailored to human metagenomes (34).

1.2.2 Loop-mediated isothermal amplification
Metagenomics is a powerful tool to identify the microbiome of a 

sample. If specific organisms are to be screened for, such as potential 
pathogens, there are methods such as loop-mediated isothermal 
amplification (LAMP) that allow the targeted detection of species. 
LAMP is a fast, cost effective, and easy tool to detect specific organisms 
and requires only a few devices, while the evaluation occurs after 30 min.

Using marker genes, which differ for every organism, fast and 
detailed detection with a high specificity and sensitivity are possible 
(35). The potential of LAMP has already been established in relation 
to the detection of pathogens in the food industry (36). It is also useful 
for hospitals or in human high traffic environments to monitor 
microbial threats. During the SARS-CoV-2 pandemic, several 
publications showed the successful application of reverse transcription 
LAMP for this pathogen (37–39).

To this date and to our knowledge, there is no publication on the 
use of LAMP for pathogen detection in public transport as microbial 
monitoring measure. The detection of drug-resistant organisms is an 
important factor in monitoring the spread of pathogens and has yet to 
be implemented.

1.3 Countermeasures and feasibility in 
public transport

A summary of the mentioned countermeasures is displayed in 
Figure 1. The term antimicrobial includes not only bacteria, but also 

other groups such as viruses and fungi. But even within the group of 
bacteria, the effect of countermeasures varies depending on the 
bacterium, e.g., in the case of spore-forming bacteria, as their spores 
can be highly resistant to heat, for example (40, 41). Many of the 
mentioned countermeasures have been tested within hospital settings 
and in food industry, since the urge of clean and sterile environments 
is inevitable in those areas. Passenger cabins do not have to be sterile, 
but to provide an environment that does not promote the transmission 
of (opportunistic) pathogens, measures are needed.

1.3.1 Antimicrobial surfaces
The transmission of pathogens is especially meaningful when 

it occurs through surfaces in epidemic and endemic scenarios 
(42). Although the transmission of pathogens through contact 
surfaces can be reduced by antimicrobial surfaces, the long-term 
usage and consequences have to be  evaluated. One important 
factor is the increased risk of the development and transmission 
of antibiotic resistances between bacteria, when such materials are 
overused (43).

One of the best investigated antimicrobial material is copper. It 
causes cell damage by releasing copper ions which causes the cell 
membrane to rupture, leading to a membrane potential loss and 
depletion of cytoplasmic subtances (44). Further, copper ions 
induce reactive oxygen species (ROS), which in turn cause DNA 
damage (45). While copper as a material is costly, surfaces using the 
antibacterial effect of copper and integrating it as metal 
nanoparticles within a polymer matrix makes it cost effective, as 
reviewed by Tamayo et al. (46), and therefore could be suitable for 
a broad use.

While the antimicrobial properties of copper have long been 
known and researched, there are many different antimicrobial surfaces 
available (47, 48). For example, anti-biofouling surfaces can reduce 
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microbial adhesion to the surfaces, biocidal nanocomposites kill 
microbes using biocidal species. Physical mechanisms as 
nanostructured surfaces can rupture bacterial cells, others can even 
prevent the attachment on the surfaces (49).

Some innovative antimicrobial materials were already tested in 
public transportation, such as antimicrobial photodynamic coatings, 
showing an absolute risk reduction of 22.6% for high bacterial counts 
(50). Other tested materials showed no significant reduction of the 
microbial burden, using photocatalyst-coated and uncoated hand-
contact surfaces (51).

1.3.2 Fumigation of chemicals as an antimicrobial 
approach

In the process of fumigation, an antimicrobial solution is 
nebulized in an enclosed environment with the aim to reduce the 
microbial burden in the air and on surfaces. The nebulization of 
chemicals, e.g., hydrogen peroxide has been in use (52, 53). There are 
also different forms of fumigation, that even consider the application 
in public transport (54). Here, peracetic acid stabilized with acetic acid 
and hydrogen peroxide showed an effectiveness of disinfection of 
81.7% in busses, and even worked against highly resistant spores. 
Hydrogen peroxide facilitates the penetration of peracetic acid, which 
contributes to a fortified sporicidal activity of the agents, as tested with 
Bacillus subtilis spores (55).

The effectiveness of fumigation is highly dependent on the 
materials to be  disinfected (54, 56), e.g., the effect of fogged 
peracetic acid and hydrogen peroxide was shown to be particularly 
high on glass windows and doors, and low on fabric materials (56). 
Further, the efficacy depends on the type of microorganism, the 
fumigation device and technology and the substance (57–59). One 
downfall of the fumigation of chemicals is the safety measures, that 
have to be ensured. Therefore, the usage of fumigation can only 
occur while the passenger cabins are not in service, but could 
be  performed during night times. Considering the costs of 
fumigation, it depends on the device and fumigation technologies 
used. Costs for consumables are low, e.g., ~2 € / L of 
hydrogen peroxide.

1.3.3 UV-C
Another method for disinfection in public transport, but more 

commonly employed in hospital settings, is UV-C disinfection. UV 
radiation causes DNA damage (60), which is mediated by the 
generation of ROS (61). UV-C operates in a spectrum of 200–280 nm. 
Because UV-C is also harmful to humans, some efforts have been 
made to employ mobile robots for disinfection with UV-C radiation 
(62, 63). In hospitals, there have been several systems using and 
testing UV-C disinfection, that are combined with disinfectant 
chemical agents (64, 65). One disadvantage of this approach is the 
material damage (66) and the incomplete light contact in all areas in 
a room or cabin. An advantage of UV-C disinfection is the 
economical aspect. Some low-cost UV-C light devices can 
be purchased with high efficacy against strains of Candida auris, 
MRSA, and bacteriophage Phi6 (67). Although UV-C disinfection 
shows effectiveness against some pathogens, it can cause bacterial 
mutations (68). A new, LED-based UV-irradiation technology has 
shown to be effective against some bacteria and viruses, but it is 
connected to high costs (69), which is uneconomical for use in 
public transport.

1.3.4 Plasma sterilization
A tool designed to provide both air purification and surface 

disinfection is plasma. Plasma is also known as the fourth state of 
matter, which is a particle mix with a high electrical conductivity and 
is chemically reactive. The use of plasma is well established in the food 
industry (70) and in the medical field (71, 72), but it may be useful for 
the application in public transport.

The antimicrobial effect of plasma has been long known and is 
created by the combination or single effect of charged particles (ions, 
electrons), reactive species (e.g., ozone, ROS), radiation of UV-C/
Vacuum-UV (VUV) as well as heating (73–75).

There are different types of plasma that can be  used for 
disinfection. In a study conducted by Liang and Wu (76), culturable 
bacterial aerosol diversity loss was observed after using non-thermal 
plasma. Tested with Aspergillus niger, Bacillus subtilis, and 
Pseudomonas fluorescens as test organisms, it was described as a highly 
efficient air decontamination method.

To date, no study has used plasma as a system to reduce the 
microbial load in public transport. Only plasma related methods, such 
as a needle-point bipolar ionization system was tested in trams to 
investigate the reduction of bioaerosols (77). It was shown that 
environmental bioaerosols were reduced with this method, but it was 
not sufficient for surfaces. Therefore, more research is needed to test 
the feasibility of plasma technologies in the public transport context. 
Regarding cost-efficiency, only publications are available on the use of 
plasma in water treatment plants or in food industry (78), using 
plasma activated water (79). But in general, the formation of 
non-thermal plasma is connected to low energy input, unlike thermal 
plasma (80).

All approaches that were introduced in this section have their 
advantages and disadvantages. Different factors have to be considered 
when finding a best suiting method for a specific environment, such 
as passenger cabins. These include cost-effectiveness, service life, 
operation of devices, combined with the effectiveness of microbial 
reduction. In the end, the aim to apply countermeasures within the 
passenger cabins is to reduce the microbial load and therefore decrease 
the spread of potential pathogens, and a combination of some 
methods may bring all advantages together and ensure passenger 
safety and comfort.

2 Conclusion

In this review, the most common bacterial organisms from studies 
of the public transport microbiome were presented. Most studies 
performed 16S rRNA sequencing to identify the microbiome. The 
results showed that the public transport microbiome is dominated by 
human-associated organisms, while no pathogens were detected. 
However, targeted studies have shown that many of the so-called 
ESKAPE organisms in particular are found in public transportation 
and that this can be the place for the transmission of pathogens.

The use of the presented countermeasures in public transport was 
classified in this review. The purpose of this research is to show what 
is shaping our microbiome in public transportation and how specific 
organisms can be  detected, but also reduced, to create a safe 
environment where pathogen transmission is minimized. However, 
this review also shows that more research is still needed to establish 
microbial reduction measures in public transportation.
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