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Background: Mexico has one of the highest global incidences of paediatric
overweight and obesity. Public health interventions have shown only moderate
success, possibly from relying on knowledge extracted using limited types of
statistical data analysis methods.

Purpose: To explore if multimodal machine learning can enhance identifying
predictive features from obesogenic environments and investigating
complex disease or social patterns, using the Mexican National Health and
Nutrition Survey.

Methods: We grouped features into five data modalities corresponding to
paediatric population exogenous factors, in two multimodal machine learning
pipelines, against a unimodal early fusion baseline. The supervised pipeline
employed four methods: Linear classifier with Elastic Net regularisation,
k-Nearest Neighbour, Decision Tree, and Random Forest. The unsupervised
pipeline used traditional methods with k-Means and hierarchical clustering, with
the optimal number of clusters calculated to be k = 2.

Results: The decision tree classifier in the supervised early fusion approach
produced the best quantitative results. The top five most important features
for classifying child or adolescent health were measures of an adult in the
household, selected at random: BMI, obesity diagnosis, being single, seeking
care at private healthcare, and having paid TV in the home. Unsupervised
learning approaches varied in the optimal number of clusters but agreed on the
importance of home environment featureswhen analysing inter-cluster patterns.
Main findings from this study di�ered from previous studies using only traditional
statistical methods on the same database. Notably, the BMI of a randomised
adult within the household emerged as the most important feature, rather than
maternal BMI, as reported in previous literature where unwanted cultural bias
went undetected.

Conclusion: Our general conclusion is that multimodal machine learning is a
promising approach for comprehensively analysing obesogenic environments.
The modalities allowed for a multimodal approach designed to critically analyse
data signal strength and reveal sources of unwanted bias. In particular, it may
aid in developing more e�ective public health policies to address the ongoing
paediatric obesity epidemic in Mexico.
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1 Introduction

Paediatric obesity is a systemic, chronic, inflammatory, and
recurrent disease characterised by an abnormal or excessive
accumulation of body fat in children up until 19 years (1). At least
50% of children and adolescents affected by obesity continue being
affected into adulthood (2), compromising their future health,
quality of life, and educational or professional performance (3–6).
Paediatric obesity prevalence has more than quadrupled globally
from 1975 (4%) to 2016 (18%), regardless of strategies and efforts to
control it (7). Paediatric obesity’s increasing trend has been found
in countries irrespective to their gross income classification (8, 9),
with low to middle income countries particularly vulnerable due to
the economic burden of obesity which represents on average 8.4%
of the annual health spending even for wealthy Organisation for
Economic Co-Operation and Development (OECD) countries (5).
Mexico is an emergent economy with one of the highest incidences
of paediatric overweight and obesity in the world (10). Thus,
Mexico’s case will be the geographic and demographic focus of this
study, using the Mexican National Survey of Health and Nutrition
(ENSANUT: Encuesta Nacional de Salud y Nutrición) as data source.

ENSANUT is a probabilistic national survey that works as a
regular strategy to assess the status on health and nutrition of the
Mexican population and as basis for Public Health policy-making
(11). Public health policies and strategies designed fromENSANUT
can be observed in Figure 1, and include establishing guidelines
for sale and distribution of foods and beverages in elementary
schools (2010); restrictions on the television advertisement of
high caloric density foods and sweetened beverages for children
audiences (2014); adding a 10% tax to junk food to reduce
consumption (2014); regulations on front package labelling (2015);
updating clinical guidelines for improving timely diagnosis and
treatment (2018); and other diverse campaigns or action plans to
promote behaviour change (11, 12). Since 1999, the number of
children and adolescents in Mexico suffering from overweight or
obesity increased by at least 10%, representing 38.2% of children
and 43.8% of adolescents by 2020, which could indicate that
the implementation of the policies and strategies designed from
ENSANUT have failed to control the epidemic (8, 9). Since,
to our knowledge, the findings from which these public health
strategies and policies were based (11) involved only traditional
mathematical and statistical analyses, it is plausible that other
methods such as those of machine learning (ML) could provide
additional knowledge on the predictors of paediatric overweight
and obesity in Mexico, thanks to its capacity to analyse complex
and non-linear patterns (13).

Efforts to understand more comprehensively the aetiology of
the disease using ML go back to 1995 (14), and a systematic
review on ML models to predict childhood and adolescent obesity
conducted in 2020 reported that when comparing to the results
reached through statistical methods, ML models gave better
prediction performance in internal and external validations (15).
Studies like the following three suggest that building prediction
model using ML, with environmental and phenotypical factors
taken into account, is fruitful. Rehkopt et al. (16) used diet
and physical activity alongside parental risk factors on the
psychological, social, and health aspects. Wiechman et al. (17)

made use of demographics, caregiver feeding style and practices,
home environment characteristics, and familial characteristics such
as social and spousal support. Kim et al. (18) fitted features
coming from behavioural patterns of teenagers like family wealth,
smartphone use, amount of pocket money, academic performance,
and quality of sleep.

An obesogenic environment is characterised by surroundings,
opportunities, or conditions of life, external to the individual,
which promote overweight or obesity (19). The paediatric
population’s environment is almost completely regulated by the
adults who are part of their life and their dwelling (10). Hence,
exploring exogenous factors and studying them as a whole is
key to understanding the aetiology of paediatric obesity more
comprehensively (10, 19, 20). These type of studies could also
promote creating public health strategies to address obesogenic
environmental factors, which are currently rare (11, 19, 20). Out
of the different ML methods, multimodal ML models can be
particularly useful for studying exogenous factors of paediatric
obesity as it lets us process and fuse information from multiple
data modalities. Modalities can convey different sources of data:
applications in health care frequently use this approach to predict
a specific health outcome (21). A supervised multimodal ML
pipeline includes early and late fusion approaches (22). Early, or
feature, fusion involves concatenating the data from the different
modalities after the pre-processing stage and before training the
model. Late, or decision, fusion involves selecting the features,
training and validating the models individually, and then using a
series of techniques to combine the predictions of each modality’s
best performing methods (23).

Our aim is to explore if multimodal ML can enhance, against
a unimodal baseline (see Section 2.6.2), identifying predictive
features from obesogenic environments and investigating complex
disease or social patterns using the latest ENSANUT available to us
(ENSANUT-18) as data source. The study includes twomultimodal
ML pipelines with supervised and unsupervised approaches,
respectively (24). Our approach could help identify clusters that
may not be targeted yet by public health initiatives or could
aid identifying the most predictive features from the household
that promote the development of the disease. Furthermore, the
knowledge extracted could be used to design early interventions
in the form of clinical guidelines (15). This makes it possible to
identify the most predictive features from the child or adolescent’s
environment and to investigate comprehensively explanatory
patterns for the development of paediatric overweight and obesity
in Mexico.

2 Materials and methods

2.1 Study outline

As shown in Figure 2, the study consisted of three phases:
a preparation phase and two separate multimodal ML training
phases (also called pipelines). The preparation phase had the
goal of producing the datasets to train the models in the
consequent phases. The multimodal ML pipelines adhered to
Carbonell et al. (24) for its comprehensiveness and scalability
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FIGURE 1

Trends of overweight and obesity in children and adolescents from 1999 to 2020 in Mexico and the policies and strategies implemented over the
years. Personal elaboration of earlier reported material (11, 20, 44).

(25), and for its critical bias detection features. Additionally,
for replication purposes, we have made available a GitHub
repository containing all scripts used to prepare the datasets and
run the ML pipelines: https://github.com/rosarioss/multimodal-
paediatric-obesity.

2.2 Scoping review

The first step was to perform a scoping review to facilitate
an informed selection of the features to include in the study.
The review focused on identifying studies where the ENSANUT
database was used to explore feature correlations on topic.
Journal articles that used ENSANUT data as their primary source,
published in English or Spanish, at any time, were included. Six
databases were used: Medline, Web of Science (WoS), Cumulative
Index toNursing andAlliedHealth Literature (CINAHL), Scientific
Electronic Library Online (SciELO), Global Index Medicus from
the World Health Organisation (GIM/WHO), and Virtual Health
Library from Pan American Health Organisation (VHL/PAHO).
The databases were selected for their extensive variety of health
informatics-related topics, or because of their inclusion of Mexican
or Latin American journals (SciELO and VHL/PAHO). Detailed

criteria can be found in the Supplement, Section 1, including a
PRISMA chart in Supplementary Figure S1.

2.3 Feature selection and modality
definition

Following the scoping review, the features in each ENSANUT
questionnaire were examined to identify those that should be
“Definitely included” (271 of them), “Definitely excluded,” and
“Neutral.” Since the focus of the study was analysing obesogenic
environments, questionnaires that focused directly on the child
or adolescent were excluded from the feature selection process.
The questionnaires included referred either to a person that
could have a direct influence on daily habits or on the home
environment per se. This could either be represented by the
adult who usually oversee the preparation of food or an adult
randomly selected from the household by the ENSANUT-18
interviewers. The “Definitely included” features were organised
in five modalities: home environment, household expenses and
income, health information, biometrics, and knowledge on
nutritional information (summarised in Figure 3 and detailed in
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FIGURE 2

Complete study outline which includes a data preparation phase preceding the supervised and unsupervised machine learning pipelines.

Supplementary Figure S3). Each modality is further explained in
Section 2.5 to avoid repetition. Criteria for categorising the features
summarises as follows:

• Definitely excluded:

◦ features unrelated to the environment of the child or
adolescent,

◦ features that focused directly on the child or adolescent,
◦ multicollinear features,
◦ features containing more than 35% NaN values;

• Definitely included:

◦ features identified in the scoping review,
◦ Other environmental features;

• Neutral:

◦ Redundant features in view of another “Definitely
included” feature,

◦ Remainder features with no natural inclusion into the other
two categories.

2.4 Sample extraction

The sample population dataset for this study was built
from an anthropometric data questionnaire applied to children
and adolescents. The study population includes female or male
individuals from 5 to 19 years of age (60–228 months) at the time
of ENSANUT-18 data collection. The first step in the data selection
process was to exclude pregnant individuals, due to potentially
altered BMI, and those who were missing anthropometric data.
Afterwards, metadata required to identify the study population
(such as multi-level unique keys) and features to calculate BMI-
for-age (Weight, height, age in months, gender) were extracted
and prepared into the sample population dataset. The International
BMI-for-age curve formula (26), defined by the World Health
Organisation (WHO) to diagnose paediatric overweight and
obesity (27), was applied to calculate the BMI-for-age and interpret
it. WHO’s BMI-for-age measures for children and adolescents
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FIGURE 3

The five modalities defined for the study, with their corresponding sources and types.

from 5 to 19 years consist of sex-specific age curves computed by
percentiles or z-scores. The interpretation of the z-score cut-offs,
based on the number of standard deviations from zero, were used
as labels for the model training (28–30):

• Underweight: less or equal to –1SD,
• Normal weight: more than –1SD and less than +1SD,
• Overweight: more or equal to +1SD and less than +2SD,
• Obesity: more or equal to +2SD.

After the initial data cleaning of the sample population dataset,
a total n = 10,301 observations remained. However, the actual
dataset size to train each of the models depended on the modal
approach. For the late fusion pipeline, each modality had different
sample and dimension sizes. For the early fusion pipeline and
the unsupervised pipelines, three dataset with equal sample size
for different dimension size were required: a numerical dataset, a
categorical dataset, and one containing both. The first two were
used to process separately when using Mean Squared Error as
a dimensionality reduction technique during the unsupervised
traditional approach. The latter was used for the supervised early
fusion and for both unsupervised approaches. See next section for
details on the final dataset size for each modality.

2.5 Data pre-processing

Data pre-processing included a cyclical process of feature
extraction, exploratory data analysis, feature engineering, data
cleaning, and data scaling until the dataset was considered ready

for data preparation. Feature extraction consisted of importing
the “Definitely included” features from the corresponding
questionnaire and concatenating them to form one dataset for each
modality. The dataset then underwent a general exploratory data
analysis that looked for general data patterns such as distribution
of each feature and identifying NaN values, with the purpose of
identifying Feature engineering requirements. Feature engineering
involved different strategies, such as computation of numerical
values or creation of dummy variables for categorical features,
depending of the modality (see Sections 2.5.1 through 2.5.5 for
details). Data cleaning included an additional step to identify
features that should be “Definitely excluded” based on insufficient
data quality. This was defined as having a Pearson correlation of
≥0.70 (multicollinearity) or containingmore than 35%NaN values.
If a feature was discovered to have a multicollinear relationship
with another feature, one of the features were dropped. The criteria
for keeping features considered the amount of information one
questionnaire item provided as compared to the other one, see
Sections 2.5.1 through 2.5.5 for details. Ambiguous answers such
as “I do not know” or “I do not remember” were processed as NaN
values as well. The dropping criteria for NaN values followed these
rules: if the feature had more than 35% NaN values, the whole
feature (column) was dropped. If it had <35% NaN values, then
only the rows that had NaN values were dropped. The exception
to dropping rows was if the dataset forced n below the acceptable
level given by the Cochran equation for infinite values (31):

n =
z2 × ρ(1− ρ)

ǫn
(1)
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where: z = z-score, ǫ = margin of error, n = population size, and ρ

= population proportion.
For the Mexican population of ∼32.5 million 5–19 year olds,

with a margin of error of 2%, a confidence interval of 95% and
an overweight- or obesity-affected population proportion of 42.3%,
the minimum acceptable size of each dataset was n = 2,344.

Data preparation consisted once more on dropping every
observation that had at least one NaN value (imputation was
avoided to prevent generating bias), assigning each observation a
random group number from 1 to 5 in preparation for using Leave-
one-group-out (LOGO) Cross-validation (CV), and performing
feature scaling (for numerical features) or creating dummy features
(for categorical features). The randomised groups are needed for
LOGO-CV so that one of the groups can be excluded from
the training pipeline and the model can be tested against and
independent and unseen fold. This helps prevent overfitting and
inflated performance estimates, even when there’s correlation or
dependency within the groups. In contrast, k-fold cross-validation
randomly splits the dataset into k parts without regard for any
inherent group structure, which may lead to data leakage when
groups are present, since multiple records from the same subject
may end up in both the training and test sets.

2.5.1 Modality 1: home environment
This modality included features about the environment

where the child or adolescent was growing up. It comprised
sociodemographic data, data about subscription to food aid
programs, food safety situation (results of ELCSA), physical
characteristics of the house (e.g., conditions in which food is
prepared), as well as location (locality size and type). Feature
engineering involved three main transformations, the most
significant of which was the calculation and interpretation of the
ELCSA into food safety, as well as mild, moderate, and severe
insecurity in the home. Two features (“fuel type used to cook” and
“stove type”) were dropped due to multicollinearity with another
feature (“has gas stove”); only the latter feature was kept. Since no
dimensions hadmore than 35%missing values, only rows withNaN
values were removed. Label distribution remained similar to the
sample dataset, with suffering from overweight or obesity at 42.5%,
as well as the representation of the sample demographic metadata
after groups were created for LOGO-CV. After pre-processing, the
data set included 39 dimensions and 9585 observations.

2.5.2 Modality 2: household expenses and
income

This modality included features about the monthly income of
the household and food or health expenses per category of product
or service consumed. Feature engineering involved three main
transformations, the most significant of which was the calculation
of the proportion that a specific product or service represented of
the total household expenses, measured in either food or health
expense. Other aspects were analogous to those of Modality 1.
Because Modality 2 contained only numerical features and the
distribution of the label in its SD format was non-Gaussian, the
feature scaling strategy involved standardising the features. After
pre-processing, 21 dimensions and 7, 819 observations remained.

2.5.3 Modality 3: health information
‘ This modality included features about current health status,

personal and familial health history, health risk factors (Table 1),
and food intake patterns of a random adult living in the
same household as the child or adolescent. The demographic
features of the adults selected at random included showed
that 62.3% were between 30 and 49 years old, predominantly
female (57.6%), and predominantly the parent of the child
or adolescent (68.7%). Demographic details are provided in
Supplementary Figure S7, whereas feature engineering is detailed
in Supplementary Figures S12, S13. The latter involved calculation
of the kinship.Worth noting is that since the relationship registered
in the database was that of a resident of the household towards
the “household chief,” a series of functions needed to be created
to translate that into kinship towards the study population. Due
to this situation, certain limitations when computing the kinship
were identified, for instance if the adult selected at random was the
son or daughter of the chief and the child or adolescent was the
grandchild, it was not possible to discern if the adult was the parent
or uncle/aunt. Nevertheless, kinships obtained provided interesting
information presented in the Section 4.

The feature containing the number of working hours per week,
which was originally a numeric feature, was converted to binary for
two reasons. First, to evaluate if the person was working more or
less than the law-regulated maximum of 40 h per week. Second,
because through the experimental data analysis it was discovered
that most answers were either 40 or 50, giving the data a semi-
categorical aspect from the start. Twelve features regarding the
question “Which healthcare institution are you affiliated to?” were
dropped due to multicollinearity with their correspondent items
on the question “Where do you go to receive healthcare?” (see list
of features dropped in Supplementary Figures S12, S13). The latter
features were kept since, by default, included the information on
the healthcare institution affiliation. After pre-processing, the data
set included 113 dimensions and 3, 383 observations.

TABLE 1 Documented risk factors for paediatric overweight and obesity,

per category.

Category Risk factors

Dietary patterns Fast food consumption (4, 32, 52), sugary beverages
consumption (2, 53), snack foods consumption, portion size,
and availability and accessibility of unhealthy food
(4, 32, 33, 52, 54)

Physical activity Level of physical activity, sedentary behaviour, basal
metabolic rate, time in front of screens (1, 4)

Genetics Genetic predisposition (4), genetic conditions such as
hyperphagia (55)

Family dynamics Parenting style, parental physical exercise habits, parental
feeding style, family mealtime structure (4, 34, 56),
grandparent co-residence in the household (57–59)

Environment School policies (4, 60), parents’ work-related demands
(42, 56), fast-food industry (2, 61), regulation of marketing
strategies for unhealthy foods (4), safety of walking/cycling
routes (4), store density (54)

Socio-cultural
influence

Food-as-reward related beliefs (4), perception of being a
normal stage of growth (1)
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2.5.4 Modality 4: biometrics
This modality included the numerical features about the

anthropometric measurements and laboratory results of the same
randomly selected adult as in Modality 3. Feature engineering
involved six main transformations (see Supplementary Figures S12,
S13). The feature regarding “Total cholesterol level” was dropped
due to multicollinearity with “HDL cholesterol” and “LDL
cholesterol” levels. The feature on “Total cholesterol” was dropped
since the type of cholesterol provided more information than
the total cholesterol. Pre-processing produced 19 dimensions and
4, 419 observations.

2.5.5 Modality 5: knowledge on nutritional
information

This modality included the results of a test about the nutritional
information on the packaging. The responding adult was the one
that oversaw most of the cooking in the household. The test
included questions about usage of different types of nutritional
information, labels or legends printed in commercial products, as
well as questions on the supposed importance of different nutrients
such as carbohydrates, proteins, salt, fats, trans-fats, total energy,
etc. About the food intake patterns, previous studies had found
that a pattern of healthy eating could not be defined based on the
numerical self-reported portions in the survey (32–34). Reasons
for this could be under- or over-reporting of food intake based
on social pressure (8, 34), or simply the challenge of answering
the survey, as it required to remember the portion sizes based in
grammes or millilitres per food group (e.g., fruits) and food item
(e.g., bananas) eaten during the past 7 days (8). Hence, to avoid
possible sources of noise or bias, only the binary version of those
questions, based on WHO’s daily food intake recommendations,
were included.

The demographic features of the adults in this modality shows
that 65.1% were between 30 and 49 years old, predominantly
female (58.7%), and predominantly the parent (70.5%). The largest
challenge in the feature engineering was that questions about the
correct identification of three products had to be dropped, due to
two thirds of the values missing. The feature regarding the question
“Do you use the nutritional information of a product to compare
their nutritional value?” had to be dropped due to multicollinearity
with the question “Does the nutritional information of a product
affect your buying decision?”. The latter was kept since our main
interest was to know if the product reached the home environment
of the children or adolescent. After the pre-processing, the dataset
included 70 dimensions and 4, 399 observations.

2.6 Supervised methods

The supervised multimodal ML pipelines used in this study
included early and late fusion approaches (Figure 2); Sections
2.6.1, 2.6.2 detail these, respectively. The pipelines display some
differences to the classical approach to multimodal ML. Firstly,
in the latter, each data modality corresponds to different sources
that capture the same reality (e.g., video and audio from the
same recording). The modalities defined in this study instead
correspond to different environmental sources that could affect

the study population’s behaviour. Second, the classical approach
typically uses data from a micro-level of social analysis (individual
identity, motives, and cognition) to predict an individual’s label
in the model. Since the present study aims to study obesogenic
environments, the data used corresponds to a meso-level of social
analysis (organisations and groups, such as family members in the
same dwelling) to predict an individual’s label (35).

Both early and late fusion pipelines used the same four
ML methods; which are supported by a review on ML for
obesogenic environments among others (15). Decision Trees and
Random Forest methods can both handle continuous features
that have been scaled and categorical data encoded as binary
features. The k-Nearest Neighbour (kNN) was appropriate because
as a non-parametric algorithm it makes no assumptions on
the distribution of the data. Finally, a Linear Classifier with
Elastic Net Regularisation (Elastic Net) offered the calculation
of a Logistic Regression Coefficient that could also be used to
evaluate feature importance and its positive or negative predictive
association (36). Logistic Regression coefficients were used to
analyse predictive patterns of the features and compare their
predictive importance when using early fusion (unimodal) and late
fusion (multimodal) approaches.

For analysing the performance of the supervised models,
several metrics were employed, including Area Under the Receiver
Operating Characteristic (AUROC), Recall, and greater-than-
chance analysis. AUROC was used to compare performance
between classifiers and between the training and validation sets
of the same model and represents the probability that if given
a randomly chosen positive and negative sample, the model
will rank the positive higher (36). Recall is one of the four
common performance measurements calculated from a confusion
matrix (37), measuring the ability to identify all the true positive
predictions. Greater-than-chance analysis was used to compare the
Recall value, representing the random probability of being a True
Positive as 0.25.

The classifier hyperparameters were tuned using Exhaustive
Grid Search (GridSearchCV) method from Scikit learn. This
method tries every possible combination for a set of given
hyperparameters, hence it is both comprehensive and effective
in finding near-optimal hyperparameters. Details and the search
grids can be found in the Section 5 in Supplementary methods and
Supplementary Figures S8, S11. All methods were tested using a
Jupyter Notebook running Python 3.9 and the Pandas, NumPy,
scikit-learn, Pickle, Seaborn and Matplotlib libraries, and the
code is publicly available. In particular, NumPy was used to
run mathematical, statistical, logical, and random simulation
operations that required using a multidimensional array object, for
randomly selecting households and members of those households.
Since the ENSANUT-18 database is openly available, this allows for
reproduction and also for later databases to be tested in the future.

2.6.1 Multimodal data experiments
Multimodal data experiments exclusively involved the

Supervised Late Fusion pipeline. Late fusion, or decision-level
fusion, involves selecting the features, training, and validating
the models individually and then using a series of techniques
to combine the predictions of each modality’s best performing
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classifiers. One of the benefits of late fusion is that it allows
for having different size of observations and data types in
each modality, while early fusion require the same number of
observations before concatenating the data and building the
models. The techniques, or rules, used to combine the predictions
were the following:

• Maximum rule: get max value between classifiers,
• Sum rule: sum the scores from each modality and calculate

the average,
• Product rule: get product value between classifiers,
• Weight criterion: get ratio of each modality and compute the

weighted scores,
• Rule-based: choose classifier according to validation

confusion matrix.

2.6.2 Unimodal data experiments
Unimodal data experiments involved both the Supervised Early

Fusion pipeline and the Unsupervised pipelines. Early fusion, or
data-level fusion, involves concatenating the data from the different
modalities after the pre-processing stage and before training the
model. In terms of training and validation, this can be considered
a unimodal strategy since all the features are used together to
train the model, as a single modality. In this case, all the features
from Modality 1 through Modality 5 were included and feature
engineering involved all of the transformations described above, in
Sections 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5.

The features were first concatenated and then processed
together in terms of dropping columns or rows of missing
values. The biggest difference was that the threshold for dropping
columns with missing values had to be lowered to 30% because
the representativeness of the size of n was compromised (see
Section 2.5). Label distribution remained similar to the sample
dataset, as well as the representation of the sample demographic
metadata after random groups were created for LOGO-CV. Three
different manipulations were required after this point, creating
three separate datasets: one with only numerical features, another
one with only categorical features, and the last one containing both.
The first two were used to process separately when using Mean
Squared Error as a dimensionality reduction technique during
the unsupervised classical approach. The last was used for the
supervised early fusion and for both unsupervised approaches.
For the categorical features, dummy features were created, while
the numerical features were normalised. After the pre-processing,
the three datasets contained 2, 467 observations and varied in
dimension size: the categorical consisted of 183, the numerical of
28, and the multimodal thus of 211 dimensions.

2.7 Unsupervised methods

This study’s unsupervised ML pipeline includes classical
clustering methods and visual examination using TensorFlow
Embedding Projector, where the adjustable parameters were
manually tuned until interesting patterns were found. We have
made everything publicly available so that readers can visualise and

interact with the data themselves. In this way, the dimensionality
reduction algorithms produce separations in the cluster analyses
(38). Traditional clustering methods included k-Means and
hierarchical clustering. The former clusters data trying to separate
samples in n centroids of equal variance, while the latter represents
the hierarchy of clusters as a tree with the root containing all the
samples and the leaves containing only one sample (36).

Dimensionality reduction was used to adjust the models in
terms of pattern recognition. The optimal number of clusters
was calculated using two techniques measuring cluster tightness
and separation: the Calinski-Harabaz score (CH Index) and
the silhouette score. The CH Index has reduced sensibility to
monotonicity, varied cluster densities, subclusters, and skewed
distributions (39). The silhouette score offers a more robust
technique for handling noisy data than CH Index, since it considers
intra-cluster distance and different-nearest-cluster distance (24,
40). Dimensionality reduction methods used were Principal
Component Analysis (PCA), t-distributed Stochastic Neighbour
Embedding (t-SNE), Mean Squared Error (MSE), and Uniform
Manifold Approximation and Projection (UMAP). PCA aids
in identifying the most meaningful patters among redundant
features or noise, while t-SNE improves the visualisation of high-
dimensional data. UMAP is a manifold technique that competes
with t-SNE in visualisation quality but with a better run-time
performance and arguably in mathematical grounding. Finally,
MSE measures how close a regression line is to a set of data
points: we dropped features that had variability close to zero
(≤0.14), to reduce noise in the data. As stated above, the numerical
and categorical datasets were used to process separately when
using Mean Squared Error as a dimensionality reduction technique
during the unsupervised classical approach.

2.8 Ethics approval statement

All information in ENSANUT-18 has been pre-processed to
remove sensitive data before made publicly available and does not
include any open text answers that may give the identity of the
participants away. Special consideration has been taken to limit
the impact of unwanted bias, including handling multi-collinearity,
avoiding imputation of missing values, and analysing the context
in the original Spanish in which the question was phrased and
what answers were offered, when selecting the features to include
in the models.

3 Results

3.1 Scoping review

The 21 articles that met the inclusion criteria of the scoping
review were analysed in four categories: dietary patterns (38.1%);
physical, social, cultural, economic, or political environment
(28.6%); epidemiology (23.8%), and family dynamics (9.5%). The
article that analysed the highest number of features (45) out
of all reviewed was in the first category. All the studies into
dietary patterns found were based on the Food Frequency Intake
questionnaire used in ENSANUT 2006, 2012, 2016, and 2018. Most
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TABLE 2 Performance of the four machine learning methods used for the

early fusion approach, during training and testing.

Classifier Training AUROC Testing AUROC

Elastic Net 0.6429± 0.0070 0.6021± 0.0293

k-NN 0.5662± 0.0048 0.5575± 0.0065

Decision Tree 0.6335± 0.0093 0.6163± 0.0328

Random Forest 0.9750± 0.0012 0.6088± 0.0234

The best quantitative score was obtained by the Decision Tree method, in bold. Random

Forest was overfitting heavily.

studies concluded that the questionnaire overreported healthy
foods and underreported unhealthy foods, especially so in the
cases where the person answering the questionnaire was suffering
from overweight or obesity. In the second category, relevant
sociodemographic features included the region where the subject
lived, type of locality (rural or urban), size of locality, Socio-
Economic Strata (SES), enrolment in governmental food aid
programs, and the result from level of Food Security obtained
from the Latin American and the Caribbean Food Security Survey
(ELCSA: Encuesta Latinoamericana y del Caribe de Seguridad

Alimentaria). In the third category, descriptive statistics and logistic
regression models were the most common analysis strategies. Only
one study proposed a stratified approach of interpreting reduced
or excess weight. Regrettably, it was more beneficial for identifying
the causes of children with an underweight status than for those
with excess weight. In the fourth category, we only found studies
that analysed the relationship of a social factor with maternal
characteristics (professional situation or breastfeeding practices).
The full results of our scoping review can be found in structured
form in Supplementary Figure S2.

3.2 Supervised multimodal pipelines

3.2.1 Early fusion
The best performing classifier in the early fusion approach was

the Decision Tree (Table 2 and Figure 4). Out of the top five highest
logistic regression coefficient feature importance scores, four were
features of the randomly selected adult in the household (BMI,
obesity diagnosis, being single, and seeking private care), while
the fifth was related to the house environment (having paid TV).
Note that ∼85% of the single-person households in Mexico are
single-mother ones.

3.2.2 Late fusion
The best performing classifier (Figure 5) varied per modality

(Figure 6): Elastic Net for Modality 1, Decision Tree for Modality
3 and Random Forest for Modality 2, 4, and 5. In terms of the
recall confusion matrix, Modality 1 had the highest performing
predictor for the Overweight or Obese label (0.61), whileModality 3
had the highest value for the Normal label (0.78). Compared to the
early fusion situation, more Logistic Regression coefficient feature
importance scores with positive or negative values were found per
modality, possibly indicating that some potentially relevant features
are less hidden by noise when modelled in smaller batches. The

highest metric value was the Maximum Criterion, which involved
taking the best performing classifier of all, which was Modality 4
with a validation AUROC of 0.6340 ± 0.0152 and recall values of
0.68 for the normal label and 0.52 values for the Overweight or
Obese label. In this way, a better performance than the early fusion
approach was achieved.

3.3 Unsupervised multimodal pipelines

The multimodal dataset with encoded and normalised
features was evaluated before and after dimensionality reduction
(Figure 7). Although variability between clusters before and after
dimensionality reduction decreased, clear patterns could still
not be identified. Following Carbonell et al. (24), a decision
tree was used to interpret the clusters in terms of underlying
features (Figure 8). Note that the first three nodes are composed
predominantly of home environment features. Looking at the
first decision node, the instances that had urban locality type
smaller than 0.5 ended up in the second cluster. The second
node’s features were having Internet and being in the first socio-
economic stratum, while the third mostly had features about food
expenses (corn and dairy) and a feature indicating not using the
nutritional information on the front-packaging labels of processed
food as buying advice. Three different dimensionality reduction
techniques were employed: PCA, UMAP and t-SNE. Even if no
clear pattern emerged when colouring by label, colouring by the
ternary normal/overweight/obese instead of the binary used to train
the supervised models produced results (Figure 9). A pattern can
be seen for the smaller localities (<2,500 inhabitants) where a
considerably smaller number of children or adolescents suffering
from overweight or obesity can be observed, a pattern that cannot
be seen in any of the other locality sizes. Analogous results were
obtained from UMAP and t-SNE (see Supplementary Figures S5,
S6).

4 Discussion

4.1 Study findings

Our study found that integrally analysing the environment
where the child or adolescent is growing up is essential to
better understand the aetiology of paediatric obesity. Imagining
a home environment built on some of the most important
features identified, it is plausible to identify it as an obesogenic
environment; Hobbs et al. (19) describe them as being characterised
by surroundings, opportunities, or conditions of life, external to the
individual, which promote overweight or obesity. Further studies
should focus on adding features about behavioural patterns of the
children and adolescents per se, analysing them in the context of
obesogenic environments. Additionally, studies should investigate
the daily habit patterns of adults that serve as behavioural examples
for the paediatric population. Features to explore could include
factors that overall contribute to having less time for building or
maintaining healthy habits, such as exercise and leisure, the amount
of time at work, the time spent commuting, the availability of spaces
to exercise in, the safety situation in those spaces, and the economic
and logistics accessibility of healthy foods. Finally, studies could
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FIGURE 4

Summary of early fusion performance measures.

FIGURE 5

Summary of the quantitative late fusion approach and its feature importance results.

be designed with other algorithms, other hyperparameters than
the one we used (see Supplementary Figure S8), or ML methods
in mind. In particular, larger samples could make possible the
use of novel deep learning algorithms (41) to explore patterns
even further.

After data pre-processing, 183 categorical and 28 numerical
features had been extracted. Datasets were then prepared for each
supervised and unsupervised multimodal ML pipeline, but the best

performing late fusion approach did not outdo the best early fusion
by much, as measured by AUROC. Rather than the quantitative
predictive performance in itself, however, the truly meaningful
aspect of the comparison was the analysis the differences of feature
importance using the logistic regression coefficient (Figure 5). In
the home environment modality, it was concluded that having a
refrigerator, washing or drying machine, gas stove, a Mexico City
dwelling, and belonging to the second socio-economic stratum
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FIGURE 6

Late fusion results per modality, with each best-performing validation ML method in bold. Random Forest is consistently overfitting. Expressions of
worst-case time complexity are detailed in the Supplementary Section 4; see Supplementary Figure S9.

were the top five most important features. In the household income

and expenses modality, we were able to identify the expenses in
dairy, bottled water, takeout or restaurant meals, tobacco, as well
as the total food expense mattered as the most important. The
third and fourth modalities concerned the adult randomly selected
in each household and the former pointed to having an obesity
diagnosis, having a father with high cholesterol or triglycerides,
and having a meat intake of more than three days per week.
The latter pointed to BMI, blood glucose, waist circumference,
the number of minutes sitting down during the day, and the
days per week of intense physical activity. By comparison, early
fusion identified a total of eleven features as important, six of
which were also present in the late fusion approach. The top
five most important were BMI, having an obesity diagnosis, being
single, seeking health care at private care, and having paid TV in
the house. Significantly, early fusion results are incomplete, most
likely because the selected features’ interplay has a low signal-to-
noise ratio. Therefore, considering results from two supervised
approaches was beneficial.

4.2 Comparative study

Our study corroborates previous studies in finding that the
lower prevalence of children suffering from obesity and adolescents
in the lowest socio-economic stratum,majorly located in rural areas
with <2,500 inhabitants (42, 43). This prevalence has also been
reported about children from households with high food insecurity,
who on average weighed less than their peers from food-secure
households. However, food insecurity and obesity/overweight did
not appear to have a close correlation in our study. Another
similar finding concerns the correlation of the child or adolescent’s
BMI with that of an adult in their immediate environment (15,
44). However, previous studies that also used ENSANUT data
(43, 45) exclusively studied the correlation between maternal BMI
classified as obesity, and children or adolescents with obesity.
By contrast, our study found that any adult selected in the
household having either a high BMI or the diagnosis of obesity
were the strongest predictor in the population. Furthermore, the
only kinship-related features appeared in Modality 5, and the most
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FIGURE 7

Results of clustering analyses for k = 2 using k-Means (top) and hierarchical clustering with complete distance method (bottom), before (left) and
after (right) dimensionality reduction.

FIGURE 8

A relevant fragment of the decision tree used to interpret the clustering (k = 2 using k-Means, before dimensionality reduction).

important feature concerned a “partner” relationship with the adult
whose nutritional knowledge was evaluated. This finding echoes
studies that found a positive correlation between overweight or
obesity and female adolescents living with a partner (46). It is

worth repeating that our study did not find the sex of the adult a
relevant feature.

The multimodal ML analysis may help reduce cultural or
social bias on the selection of specific features. We noticed a
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FIGURE 9

Patterns found using Principal Component Analysis (PCA) in 2D, constraining the search by the three-layered label and colouring by locality size. (A)
PCA 2D label coloured by locality_size. (B) PCA 2D label coloured by locality_size with normal three-layered label marked. (C) PCA 2D label coloured
by locality_size with overweight three-layered label marked. (D) PCA 2D label coloured by locality_size with obese three-layered label marked.

tendency towards studying almost exclusively maternal influence
on paediatric obesity. In fact, a search in PubMed using the query
“maternal” AND “paediatric obesity” yielded 1, 410 results, while
“paternal” AND “paediatric obesity” yielded only 124 with all of
them, without exception, used the term “paternal” to refer to both
sexes and studied the relationship to risk factors of both parents. By
contrast, studies focusing on obesogenic environments that built

ML models for paediatric obesity prediction had a higher variety
of features and included both sexes as equally relevant features,
leaving the model to indicate importance.

Previous studies (32–34), while suggesting different numbers
and types of dietary pattern, concurred that no pattern could
be classified as healthy, since vegetables and fibre intake did
not reach the minimum recommended portion, as stated by the
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WHO. Similarly, our study could not find a relevant pattern
between the label and the consumption of food categorised as
unhealthy. Some possible explanations of this phenomenon could
be that self-reported surveys are affected by social pressure towards
underreporting unhealthy and overreporting healthy food, or that
the person being interviewed is unaware of their own eating habits.
The most worrisome situation would be if both overreporting
of healthy foods and underreporting of unhealthy foods were
happening simultaneously.

Within the top ten most important features about the
household, expenses in takeout or restaurant meals and in soda

were identified. At the same time, other than a reduction of
prevalence of children and adolescents suffering from obesity in
the lowest socio-economic stratum, both overweight and obesity
were undistinguishably spread among the second through fourth
strata. This indicates that the choice to buy healthy vs. unhealthy
food may not necessarily be related to accessibility, but rather
linked to buying decisions. A study that investigated the price
trends of healthy and unhealthy foods from 2011 to 2018 in Mexico
corroborates this (47). Our study found that the expense in dairy
was the most important feature for Modality 2 and appeared
within the first three decision nodes used during the unsupervised
traditional approach to explain the clustering decisions. From 1990
to 2004, some unfavourable changes happened with consequences
persisting until 2018, including an increase in the price of grains
and milk and a decrease of the price for sweet bread, cookies, and
potato chips.

Comparing the study results to other studies that used ML to
analyse paediatric obesity was a difficult endeavour. Only one study
could be found that was built with data from Mexico (48). It used
16 anthropometric features to predict paediatric obesity in children
from 6 to 13 years old from an indigenous community in Guerrero.
Even though the model was considered to have good performance
for identifying overweight and obesity, the sample consisted of
only 221 children, and methods not recommended for small
samples were used, with neither feature importance nor overfitting
evaluated. Therefore, their conclusions are hard to compare with
the present study. Hammond et al. performed a similar study in
terms of using features from EHRs and publicly available data to
build a model for predicting obesity (49). However, they did not
study the Mexican population, their study population were under
five years old, and only statistical feature associations, rather than
feature importance of the ML models were presented. Neither
studies that used multimodal ML to study paediatric obesity,
nor used a combination of supervised and unsupervised methods
were identified.

4.3 Implications for public health policy

One of the ongoing public health initiatives aims to promote
long-term behavioural changes, focusing on improving the delivery
of nutritional content information with new labels, to influence
healthier buying decisions (11). A study in 2018 showed that most
consumers did not use the new labels, however, because they had
difficulties interpreting them (50). This finding concurs with our
study. We showed that not using the nutritional information on
the front of packaging to make a buying decision were within the

first three decision nodes used during the unsupervised traditional
approach to explain clustering decisions.

We have demonstrated that using multimodal ML methods
could be worthy of consideration for developing public health
policies, especially since the prevalence in Mexico has been
increasing in the past decades regardless of the policies and
strategies being implemented to control it, such as the 10% tax
on sugar-sweetened beverages. Researchers concluded that the tax
imposed is very low compared to the 66.9% for tobacco, which was
effective in reducing the smoking behaviour of adolescents (51).
The efficiency of using ML methods requires data in quality and
quantity, which can be challenging to accomplish through sporadic
efforts. Consequently, evolving the national health monitoring
strategy towards a continuing monitoring health information
system could help attain both enough data and data of sufficient
quality. Furthermore, it could include multimodal data that could
affect individuals seeking to develop andmaintain healthy patterns.
For instance, it could include health data reported by healthcare
professionals, results of laboratory or diagnostic tests, information
about working situation, social demographics, and other types of
data relevant to individuals (cf. Supplementary Figure S7). Such
a system could allow for continuous studies into obesogenic
environments in Mexico.

In conclusion, our recommendations to change or improve
the paediatric obesity situation include to transform the current
periodic survey-based strategy to a continuous monitoring health
information system, analyse other risk factors contributing to
having less time for building or maintaining healthy habits, and
explore the design of policies that may help families have healthy
daily habits, such as investing in active public transportation. Our
contribution to data-driven health informatics is that we present an
alternative to analysing national information from a standardised
survey, and that we seem to reach less biassed and more thoroughly
analysed conclusions than previously reported from work without
learning approaches. Finally, our work shows that practical use
of multimodal ML for public health policy making is feasible and
potentially leads to improving population health.

Three categories of limitations of our study must be noted,
these are dataset-, sample-, and ML-related. First, self-reported
information always comes with challenges with respect the
credibility and quality of the data. The underlying study itself
suffered from missing observations. We also have noted risks of
over- as well as underreporting. Because the majority of articles
selected in our scoping used traditional statistical methods for their
feature selection, there is a risk of unwanted bias in our predictive
features. To detect such bias, onemay use fairnessmetrics to cheque
whether the model’s predictions are equitable across different
stratifications of groups or features. An attractive bias removal
strategy is testing with adversarial datasets to challenge model
robustness. Secondly, the sample-related limitations include that
obesity is so widespread in Mexico that it may bias the results to
interpret them as causality. We also do not always differentiate
between overweight and obesity. Some differences in factors that
affect the development of paediatric obesity could be related to
the age group of the subject. Thirdly, the distribution of the
sample used was complex to determine, before we reached the
conclusion that it was a mixed Gaussian. Principle component
analysis assumes a linear relationship and re-expresses the data
as linear combinations, hence it can skew non-linear relations.
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Analogously, the inertia parameter k-Means algorithm assumes
that the clusters have a convex form and responds weirdly to
elongated clusters.

These limitations notwithstanding, multimodal ML provided a
comprehensive approach to analysing obesogenic environments.
Our approach thus effectively presents an alternative approach
to analysing national information from a standardised
survey, which would seem to risk reaching biassed and less
thorough conclusions.
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