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Background: COVID-19-induced pneumonia has become a persistent health 
concern, with severe cases posing a significant threat to patient lives. However, 
the potential of artificial intelligence (AI) in assisting physicians in predicting the 
prognosis of severe COVID-19 patients remains unclear.

Methods: To obtain relevant studies, two researchers conducted a comprehensive 
search of the PubMed, Web of Science, and Embase databases, including all 
studies published up to October 31, 2023, that utilized AI to predict mortality 
rates in severe COVID-19 patients. The PROBAST 2019 tool was employed to 
assess the potential bias in the included studies, and Stata 16 was used for meta-
analysis, publication bias assessment, and sensitivity analysis.

Results: A total of 19 studies, comprising 26 models, were included in the 
analysis. Among them, the models that incorporated both clinical and 
radiological data demonstrated the highest performance. These models 
achieved an overall sensitivity of 0.81 (0.64–0.91), specificity of 0.77 (0.71–
0.82), and an overall area under the curve (AUC) of 0.88 (0.85–0.90). Subgroup 
analysis revealed notable findings. Studies conducted in developed countries 
exhibited significantly higher predictive specificity for both radiological 
and combined models (p  < 0.05). Additionally, investigations involving non-
intensive care unit patients demonstrated significantly greater predictive 
specificity (p < 0.001).

Conclusion: The current evidence suggests that artificial intelligence 
prediction models show promising performance in predicting the prognosis 
of severe COVID-19 patients. However, due to variations in the suitability of 
different models for specific populations, it is not yet certain whether they 
can be fully applied in clinical practice. There is still room for improvement 
in their predictive capabilities, and future research and development efforts 
are needed.

Systematic review registration: https://www.crd.york.ac.uk/prospero/ with 
the Unique Identifier CRD42023431537.
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1 Introduction

The novel coronavirus disease 2019 (COVID-19) pandemic, 
caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), has had a profound effect worldwide (1). As of 
December 2023, the World Health Organization has reported 
773,119,173 COVID-19 cases (2). Currently, the medical 
community has conducted extensive research on the infection and 
pathogenesis mechanisms of COVID-19 (3). A series of measures 
have been implemented to control its spread and infection (4), 
such as the development of vaccines and the implementation of 
policies (5, 6).

While most individuals infected with SARS-CoV-2 experience 
either no or mild respiratory symptoms, a small percentage develop 
severe COVID-19 pneumonia or acute respiratory distress syndrome 
(ARDS). These cases can be life-threatening and necessitate intensive 
care or tracheal intubation (7–9). Studies have indicated that patients 
who undergo invasive mechanical ventilation are vulnerable to 
secondary infections, which can further increase the mortality rate 
(10). Additionally, a study has indicated that the infection fatality rate 
(IFR), the anticipated ratio between deaths and infections, among 
COVID-19 patients, exponentially increases with age (11). 
Furthermore, as the post-pandemic era unfolds, numerous previously 
infected individuals are expected to experience complications and 
sequelae, some of which may be severe and fatal (12). Consequently, 
accurate prognosis prediction is crucial for effectively managing 
these cases.

In recent years, there have been significant advancements in 
technology, leading to the continuous evolution of computer-
aided techniques. These techniques have gradually developed 
into a diverse set of diagnostic and prognostic systems, with a 
particular focus on the field of medical imaging. These systems 
are designed to perform various tasks, including classification, 
regression, segmentation, and tracking (13). Artificial intelligence 
(AI) in medicine is evolving, reshaping medicine, and improving 
the experience of clinicians and patients (14–16). Research has 
demonstrated that artificial intelligence and machine learning 
can outperform clinical doctors in disease prediction on certain 
occasions (17).

In the context of COVID-19, a considerable number of studies 
have been conducted, employing artificial intelligence models for 
the purposes of diagnosis, treatment, and prediction (18–20). In 
intensive care respiratory medicine, artificial intelligence has made 
initial achievements in the prognostic prediction of diseases and 
has gradually become an auxiliary diagnostic tool for clinicians 
(21, 22). Recently, a study successfully developed a random forest 
model to predict hypotensive events in the Intensive Care Unit 
(ICU). The model exhibited an impressive sensitivity of 92.7%, 
enabling the prediction of these events up to 15 min in 
advance (23).

Multiple studies have documented the utilization and 
advancement of AI in prognostic prediction for critically-ill 
COVID-19 patients. However, there is a dearth of comprehensive 
evaluations regarding its effectiveness. Consequently, the true 
potential of current AI technology in clinical practice remains 
uncertain. To address this gap, our study aims to investigate how well 
AI methods provide reproducible prognostic predictions.

2 Methods

2.1 Protocol and registration

This study was performed in accordance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) statement and involved a secondary analysis based on 
published researches (24). This study was registered in the 
International Prospective Register of Systematic Reviews 
(PROSPERO) database (Registration Number CRD42023431537). 
Ethics approval was not obtained for this study.

2.2 Database and search strategy

We searched PubMed,1 Web of Science,2 and Embase3 for all 
studies published before October 31, 2023, on the use of artificial 
intelligence techniques to predict the death of patients with severe 
COVID-19. Our search strategy included a combination of controlled 
vocabulary terms (NCBI’s MeSH terms) and free keywords. The 
keywords used encompassed terms such as “Critical Care,” “Artificial 
Intelligence,” and “COVID-19.” An example of the search strategy 
employed on PubMed can be found in Table 1.

2.3 Inclusion criteria

(1) Research class: all articles in this study were published in 
English. (2) Study subjects: the participants were all patients aged 
>18 years diagnosed with COVID-19 and were either fully or partially 
treated in the ICU. (3) Patient grouping: deceased or surviving. (4) 
Outcome indicators: the actual number of deaths, actual number of 
survivors, at least two of AUC, sensitivity, specificity, accuracy, and 
F1-score were provided. (5) Study type: Cohort or case–control studies.

2.4 Exclusion criteria

(1) Studies with missing outcome indicators, unavailable data, or 
inconvertible data were excluded, as were (2) duplicated reports and 
(3) review reports. (4) The original articles were not included.

2.5 Screening of literature

After literature retrieval, repeated studies were excluded using 
the software. Two researchers read the titles and abstracts, screened 
them according to the inclusion and exclusion criteria, and 
obtained the full texts of the remaining literature. If the original 
text could not be obtained from the Internet, the author of the 
original text was contacted, and the full text was read and 
further screened.

1 nih.gov

2 webofscience.com

3 Ovid

https://doi.org/10.3389/fpubh.2024.1371852
https://www.frontiersin.org/journals/public-health
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2.6 Data extraction

Two researchers independently extracted the following 
literature data: author, publication year, study type, prediction 
model category, country, income level [high-income and non-high-
income economies as defined by the World Bank (25)], total number 
of patients, actual number of dead patients, actual number of 
surviving patients, predicted number of dead patients, and 
predicted number of surviving patients (only the optimal model 
data of the external validation set were extracted; if not explicitly 
specified, the dataset provided in the article was assumed to be the 
validation set). After both researchers completed data extraction, 
the results were cross-checked, and discrepancies were discussed 
and finalized.

2.7 Risk of bias

Individual study bias was independently evaluated by two 
researchers using PROBAST 2019 (26), which includes two parts: 
risk of bias and applicability. The risk of bias section evaluates 
mainly participants, predictors, outcomes, and analyses. The 
applicability section evaluates the participants, predictors, 
and outcomes.

2.8 Evidence quality evaluation

In this study, we utilized the GRADE (Grading of Recommendations, 
Assessment, Development, and Evaluation) system to evaluate the 
credibility of the findings and assign a level of recommendation (27). It 
categorizes the evidence quality into four levels: high, moderate, low, and 
very low, considering factors such as quality of evidence, consistency of 
results, directness, precision, and potential bias.

2.9 Statistical methods

(1) Stata 16 software was used for statistical analysis. (2) The study 
was evaluated using sensitivity, specificity, 95% CI, and receiver operating 
characteristic (ROC) curves; comparisons were performed using forest 
plot descriptive statistics. (3) Literature heterogeneity was analyzed using 
I2 analysis, with I2 > 50% indicating heterogeneity of the results. (4) If no 
heterogeneity was found among the studies, the fixed effect model was 
used. If heterogeneity was evident among the studies, the random effects 
model was used for calculation; (5) heterogeneity survey: subgroup 
analysis was used to investigate heterogeneity; (6) sensitivity analysis was 
performed to detect the literature most affecting the effect size on the 
Diagnostic Odds Ratio (DOR) value; and (7) publication bias was 
detected using Egger’s test and presented using Deeks’ funnel plot.

TABLE 1 Literature search strategy on PubMed.

Search 
number

Query Results

1

“Critical Care” [Mesh] OR “Critical care “[Title/Abstract] OR “Critical Illnesses” [Title/Abstract] OR “Illness, Critical” [Title/Abstract] 

OR “Illnesses, Critical” [Title/Abstract] OR “Critically Ill” [Title/Abstract] OR “Care, Critical” [Title/Abstract] OR “Intensive Care” [Title/

Abstract] OR “Care, Intensive” [Title/Abstract] OR “Surgical Intensive Care” [Title/Abstract] OR “Care, Surgical Intensive” [Title/

Abstract] OR “Intensive Care, Surgical” [Title/Abstract]

271,885

2

“Artificial Intelligence” [Mesh] OR “artificial intelligence” [Title/Abstract] OR “Intelligence, Artificial” [Title/Abstract] OR 

“Computational Intelligence” [Title/Abstract] OR “Intelligence, Computational” [Title/Abstract] OR “Machine Intelligence” [Title/

Abstract] OR “Intelligence, Machine” [Title/Abstract] OR “Computer Reasoning” [Title/Abstract] OR “Reasoning, Computer” [Title/

Abstract] OR “AI (Artificial Intelligence)” [Title/Abstract] OR “Computer Vision Systems” [Title/Abstract] OR “Computer Vision System” 

[Title/Abstract] OR “System, Computer Vision” [Title/Abstract] OR “Systems, Computer Vision” [Title/Abstract] OR “Vision System, 

Computer” [Title/Abstract] OR “Vision Systems, Computer” [Title/Abstract] OR “Knowledge Acquisition (Computer)” [Title/Abstract] 

OR “Acquisition, Knowledge (Computer)” [Title/Abstract] OR “Knowledge Representation (Computer)” [Title/Abstract] OR “Knowledge 

Representations (Computer)” [Title/Abstract] OR “Representation, Knowledge (Computer)” [Title/Abstract] OR “AI” [Title/Abstract]

222,730

3

“COVID 19” [Title/Abstract] OR “2019-nCoV Infection” [Title/Abstract] OR “2019 nCoV Infection” [Title/Abstract] OR “2019-nCoV 

Infections” [Title/Abstract] OR “Infection, 2019-nCoV” [Title/Abstract] OR “SARS-CoV-2 Infection” [Title/Abstract] OR “Infection, 

SARS-CoV-2” [Title/Abstract] OR “SARS CoV 2 Infection” [Title/Abstract] OR “SARS-CoV-2 Infections” [Title/Abstract] OR “2019 

Novel Coronavirus Disease” [Title/Abstract] OR “2019 Novel Coronavirus Infection” [Title/Abstract] OR “COVID-19 Virus Infection” 

[Title/Abstract] OR “COVID 19 Virus Infection” [Title/Abstract] OR “COVID-19 Virus Infections” [Title/Abstract] OR “Infection, 

COVID-19 Virus” [Title/Abstract] OR “Virus Infection, COVID-19” [Title/Abstract] OR “COVID19” [Title/Abstract] OR “Coronavirus 

Disease 2019” [Title/Abstract] OR “Disease 2019, Coronavirus” [Title/Abstract] OR “Coronavirus Disease-19” [Title/Abstract] OR 

“Coronavirus Disease 19” [Title/Abstract] OR “Severe Acute Respiratory Syndrome Coronavirus 2 Infection” [Title/Abstract] OR 

“COVID-19 Virus Disease” [Title/Abstract] OR “COVID 19 Virus Disease” [Title/Abstract] OR “COVID-19 Virus Diseases” [Title/

Abstract] OR “Disease, COVID-19 Virus” [Title/Abstract] OR “Virus Disease, COVID-19” [Title/Abstract] OR “SARS Coronavirus 2 

Infection” [Title/Abstract] OR “2019-nCoV Disease” [Title/Abstract] OR “2019 nCoV Disease” [Title/Abstract] OR “2019-nCoV 

Diseases” [Title/Abstract] OR “Disease, 2019-nCoV” [Title/Abstract] OR “COVID-19 Pandemic” [Title/Abstract] OR “COVID 19 

Pandemic” [Title/Abstract] OR “Pandemic, COVID-19” [Title/Abstract] OR “COVID-19 Pandemics” [Title/Abstract] OR “COVID-19” 

[Mesh]

340,152

4 #1 AND #2 AND #3 237
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3 Results

3.1 Literature screening

Figure 1 shows the PRISMA flow diagram of the study selection 
process. An exhaustive database search yielded 473 articles. Of 
these, 87 were eliminated through EndNote; the remaining 386 were 
screened for titles and abstracts. Following title and abstract 
screening, 285 publications were excluded, leaving 101 articles for 
full-text screening. The full texts of these 101 records were retrieved 
and reviewed for eligibility. For the reasons summarized in Figure 1, 
82 articles were excluded. Ultimately, 19 studies were included in 
our Meta-analysis (22, 28–44).

3.2 Study characteristics

Table 2 lists the datasets extracted from selected articles. Briefly, they 
were published between 2021 and 2022 in Europe (n = 9), Asia (n = 4), 

North America (n = 3), South America (n = 1), and Africa (n = 1). Fifteen 
of the 18 studies were retrospective, in which past samples/images were 
evaluated; the remaining three articles were prospective. Clinical data 
were the most commonly used predictors (n = 12); a combination of 
clinical and imaging data were used to predict severe COVID-19 
mortality (n = 8). The included studies had two main categories of AI 
models: machine learning (n = 9) and deep learning (n = 9).

3.3 Risk of bias

Bias assessment included the risk of bias and applicability sections. 
The results of the qualitative assessment of the included studies are 
shown in Table 3.

For bias risk assessment, six articles (22, 31, 37, 38, 40, 41) were 
determined to have a low risk, demonstrating robust methodologies 
and transparent reporting. Conversely, five articles (33–36, 39) were 
assigned a high risk of bias due to several factors. These included a 
lack of reporting on the appropriate handling of missing data and the 

FIGURE 1

PRISMA flow diagram of study selection.

https://doi.org/10.3389/fpubh.2024.1371852
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TABLE 2 Characteristics and extracted data from included studies.

Author Year Country Income 
levels

Region Study 
design

Parameters 
of model

Type Predictive factors Survivors Deaths Total

Walston, S. L. 2022 Japan High-income Asia Retrospective ID/CD/ID & CD DL Chest radiographs (ID) 230 43 273

Gender, age, smoking history, BMI, medical history, 

laboratory data (CD)

Vagliano, I. 2022
The 

Netherlands
High-income Europe Prospective CD ML

Demographic data, physiological data, diagnoses 

(reason for admission and comorbidities)
1894 796 2,690

Puhr-

Westerheide, D.
2022 Germany High-income Europe Retrospective CD DL SOFA Score on Admission, Age 53 36 89

Pezoulas, V. C. 2022 Greece High-income Europe Retrospective CD ML 607 clinical features 595 70 665

Munera, N. 2022 Colombia
Non-high-

income

South 

America
Prospective ID/CD/ID & CD ML Chest radiographs (ID) 47 22 69

Sociodemographic variables, comorbid conditions, 

symptoms, vital signs on hospital admission and 

treatments received during the hospitalization (CD)

Klén, R. 2022 Finland High-income Europe Retrospective CD ML

Age, Sex, Hemoglobin, Platelet Count, Eosinophils, 

Lymphocytes, Neutrophils, Monocytes, C-Reactive 

Protein, Creatinine, Lactate Dehydrogenase, Aspartate 

aminotransferase, Alanine aminotransferase, Total 

bilirrubin, Serum Sodium, Serum Potassium, Glucose, 

Prothrombin time, Fibrinogen, Dimer

4,352 756 5,108

Elghamrawy, S. 

M.
2022 Egypt

Non-high-

income
Africa Retrospective ID & CD DL CT (ID) 9,352 897 10,249

Clinical features (e.g., sex), laboratory data (e.g., 

D-Dimer) (CD)

Di Napoli, A. 2022 Italy High-income Europe Retrospective ID/ID & CD DL CT (ID) 223 45
269 

(ID&CD)

Demographics, comorbidities, symptoms (CD) 243 47 290 (ID)

Chrzan, R. 2022 Poland High-income Europe Retrospective ID DL High-resolution computed tomography (HRCT) 699 105 804

Cheng, J. 2022 China
Non-high-

income
Asia Retrospective ID/CD/ID & CD DL Chest radiographs (ID) 59 49 108

Demographic, clinical, and laboratory variables

Chamberlin, J. 

H.
2022

United 

States
High-income

North 

America
Retrospective ID & CD DL CT (ID) 228 14 242

(Continued)
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TABLE 2 (Continued)

Author Year Country Income 
levels

Region Study 
design

Parameters 
of model

Type Predictive factors Survivors Deaths Total

Age, BMI, Symptom days, PCR-Imaging A, Sex, 

Female, Male, Ethnicity, Black, Hispanic, Other, White, 

Prior Structural Lung disease, History of Cancer, 

Smoking History, Hypertension, Diabetes, CHF, CKD, 

Autoimmune disease, HIV (CD)

Calvillo-Batllés, 

P.
2022 Spain High-income Europe Prospective ID & CD ML Chest radiographs (ID) 74 14 88

Demographics, clinical and laboratory variables (CD)

Wanyan, Tingyi 2021
United 

States
High-income

North 

America
Retrospective CD DL

Demographics, lab test results, vital signs, comorbid 

diseases
283 98 381

Pezoulas, V. C. 2021 Greece High-income

Europe Retrospective CD ML Demographic information, comorbidities, laboratory 

tests (e.g., C-reactive protein), therapies 

(corticosteroids and antiviral agents), cytokines and 

interleukins measurements at four time intervals

178 36 214

Khan, I. U. 2021 Saudi 

Arabia

High-income Asia Retrospective CD DL Demographic, Hospital Attribute, Symptoms, Chronic 

Disease

97,941 5,947 103,888

Jamshidi, E. 2021 Iran Non-high-

income

Asia Retrospective CD ML Gender, Age, Blood Urea Nitrogen, Creatinine, INR, 

Albumin, WBC, Neutrophil count, Lymphocyte count, 

RDW, MCH, Neurological disorders, Cardiovascular 

disorders, Respiratory disorders

105 158 263

Hou, W. 2021 United 

States

High-income North 

America

Retrospective CD ML Age, Heart Failure, LDH, CRP, Hypertension, 

Immunosuppression, CRP, LDH, Spo, Heart Failure, 

Smoking, SBP

553 82 635

Chassagnon, G. 2021 France High-income Europe Retrospective ID & CD ML Imaging from the disease regions (5 features), lung 

regions (5 features) and heart features (5 features), 

biological and clinical data (6 features: age, sex, high 

blood pressure (HBP), diabetes, lymphocyte count and 

CRP level) and image indexes (2 features: disease 

extent and fat ratio), 23 biomarker consisted

149 8 157

DL, Deep learning; ML, Machine learning; ID, Image data; CD, Clinical data.
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TABLE 3 Assessment of bias by PROBAST.

Risk of bias Applicability Overall assessment

Author Year Participants Predictors Outcome Analysis Participants Predictors Outcome Risk of 
bias

Applicability

Walston, S. L. 2022 − ? − ? ? − − ? ?

Vagliano, I. 2022 − ? − − − − − ? −

Puhr-Westerheide, 

D.
2022 − ? ? − − − − ? −

Pezoulas, V. C. 2022 − − − − − − − − −

Munera, N. 2022 − − − − − − − − −

Klén, R. 2022 − ? − − − − − ? −

Elghamrawy, S. M. 2022 − ? + − − − − + −

Di Napoli, A. 2022 − ? − + − − − + −

Chrzan, R. 2022 − ? − + − − − + −

Cheng, J. 2022 − ? − + − − − + −

Chamberlin, J. H. 2022 − − − − − − − − −

Calvillo-Batllés, P. 2022 − − − − − − − − −

Wanyan, Tingyi 2021 − ? − + − − − + −

Pezoulas, V. C. 2021 − − − − − − − − −

Khan, I. U. 2021 − − − − − − − − −

Jamshidi, E. 2021 − ? − ? − − − ? −

Hou, W. 2021 − ? − ? − − − ? −

Chassagnon, G. 2021 − ? − − − − − ? −
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determination of outcomes without prior knowledge of the predictive 
factor information. These issues pose a potential threat to the validity 
of our results. The risk levels for seven articles (28–30, 32, 42–44) 
remained ambiguous owing to insufficient information. The articles 
did not explicitly state whether the assessment of predictive factors 
was conducted without knowledge of the outcome data and whether 
issues such as model overfitting and optimistic model performance 
could be  explained. This underscores the need for more 
comprehensive reporting.

With respect to the applicability assessment, the majority of 
articles (17 out of 18) were deemed to be of low risk, suggesting that 
their findings are likely relevant and applicable to the research context. 
However, one article (28) received an unclear rating due to insufficient 
evidence to confirm that the included participants and study setting 
aligned with the research question.

3.4 Sensitivity, specificity, and ROC curve

The 18 studies, including 25 AI prediction models, had an overall 
sensitivity of 0.74 (0.64–0.83, I2 = 99.94%) and a specificity of 0.86 
(0.76–0.92, I2  = 99.26%) using clinical data, imaging data and the 
combination of clinical and imaging data. The overall AUC was 0.87 
(0.83–0.89) (Figure 2).

3.4.1 Clinical data
Twelve studies used only clinical data as predictors, with a total 

sensitivity of 0.75 (0.59–0.86) and I2 = 99.98%. The total specificity was 
0.90 (0.70–0.97), I2 = 99.65% (Figure 3). The overall AUC was 0.88 
(0.84–0.90).

3.4.2 Imaging data
Five studies used only imaging data as predictors, with a total 

sensitivity of 0.59 (0.43–0.47) and I2 = 86.29%. The total specificity was 
0.77 (0.66–0.85), I2 = 94.85%. The overall AUC was 0.75 (0.71–0.79) 
(Figure 4).

3.4.3 Combining clinical and imaging data
Eight studies combined clinical data with imaging data, with a 

total sensitivity of 0.81 (0.64–0.91) and I2  = 95.18%. The total 
specificity was 0.77 (0.71–0.82), I2 = 98.99%. The overall AUC was 0.88 
(0.85–0.90) (Figure 5).

3.5 Fagan plot

The Fagan’s nomogram was used to evaluate the diagnostic 
performance of the AI model in predicting mortality in severe COVID-19 
cases. In Figure 6A, The pre-test probability, or the anticipated probability 
of mortality prior to the test results, was set at 20%. The likelihood ratios 
for positive and negative results for all the included articles were 5 and 
0.30, respectively. These values yielded post-test probabilities of 56% for 
positive results and 7% for negative results.

3.5.1 Clinical data
Figure 6B illustrates that, given an initial expected mortality 

probability of 20% prior to testing, a prediction model solely 
utilizing clinical data as predictors yielded likelihood ratios of 8.0 for 
positive results and 0.28 for negative results. These values yielded 
post-test probabilities of 65% for positive results and 6% for 
negative results.

3.5.2 Imaging data
As shown in Figure  6C, under the presumption of a 20% 

mortality probability prior to testing, a prediction model solely 
utilizing imaging data as predictors yielded likelihood ratios of 3 
for positive results and 0.58 for negative results. These values 
yielded post-test probabilities of 39% for positive results and 12% 
for negative results.

3.5.3 Combining clinical and imaging data
As shown in Figure  6D, with an assumed pre-test mortality 

probability of 20%, a prediction model that used a combination of 

FIGURE 2

Overall sensitivity, specificity, and ROC curve. (A) Overall sensitivity and specificity, (B) overall ROC curve.
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clinical and radiographic data as predictors yielded likelihood ratios 
of 3 for positive results and 0.58 for negative results. These values 
yielded post-test probabilities of 39% for positive results and 12% for 
negative results.

3.6 Subgroup analyses

Meta-regression and subgroup analyses we conducted to explore 
the effects of different model types, economic income levels, study 
design methods, and settings in which all patients came from the ICU 
on the prediction power.

The results show that, within the context of the imaging data 
prediction model, high-income economies exhibited 
heightened prediction sensitivity (p < 0.05). Conversely, as 
depicted in Figure 7A, the model type, study design, and ICU 
status did not show significant disparities. Within the combined 
clinical and radiological prediction model, we observed several 
significant differences. Notably, when all patients were 
exclusively from the Intensive Care Unit, as well as in the case of 
artificial intelligence prediction models utilizing deep learning 
and models originating from high-income economies, a higher 
predictive specificity was demonstrated (p < 0.05) as illustrated in 
Figure 7B.

FIGURE 3

Sensitivity, specificity, and ROC curve based on clinical data. (A) Sensitivity and specificity based on clinical data model, (B) ROC curve based on clinical 
data.

FIGURE 4

Sensitivity, specificity, and ROC curve based on imaging data. (A) Sensitivity and specificity based on imaging data model, (B) ROC curve based on 
imaging data.
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3.7 Sensitivity analysis

A sensitivity analysis was conducted to explore the robustness and 
consistency of the results. As shown in Table 4, the overall value of the 
combined effect of DOR did not change significantly after removing 
them individually from the model; the stability was good. However, in 
the model based on imaging data, after excluding the studies by Walston 
et al. (28) and Chrzan et al. (35) the overall I2 changed from 55.6 to 29.30 
and 2.70%, respectively, indicating that these two studies may be a 
source of heterogeneity (Tables 5, 6). In addition, among the eight 
studies based on the combination of clinical and imaging models, the 
overall heterogeneity was reduced from 96.2 to 58.6% after the exclusion 
of the study by Elghamrawy et al. (33) indicating that it may be the main 
source of heterogeneity (Table 7).

3.8 Publication bias

The Deeks’ Funnel Plot Asymmetry Test, as depicted in Figure 8, 
was utilized to investigate the presence of publication bias. The studies, 
represented by individual data points, are not symmetrically 
distributed around the regression line (p  < 0.001), suggesting the 
presence of publication bias or other small-study effects in the 
meta-analysis.

3.9 Evidence quality evaluation

The aforementioned four important outcomes in this meta-
analysis were evaluated using the GRADE system. The evidence 
quality level for each outcome was found to be very low Table 8. Since 
all the included studies in this research had observational designs, the 
initial quality rating of the studies was assessed as “low.” The final 
overall level of evidence was rated as “very low,” which may decrease 
the credibility of any recommendations.

4 Discussion

Since the emergence of COVID-19 in 2019, its global spread of 
novel coronavirus infection has caused significant disruptions in 
mortality patterns worldwide (45, 46). The ongoing 2019 coronavirus 
disease pandemic has prompted substantial efforts to prevent and treat 
COVID-19, leading to remarkable achievements (47–50). The World 
Health Organization ceased considering COVID-19 a global health 
emergency in May 2023. Despite these advancements, SARS-CoV-2 
continues to persist, evolve, and threaten human life (51). Long 
COVID-19 is our big challenge (52, 53). Severe COVID-19 presents 
an ongoing and substantial risk to individual health and well-being, 
with mortality rates as high as 49% among critically ill individuals 
(54). Research exploring AI as an assistive tool for COVID-19 in this 
environment has gained prominence over the past 3 years (55–57). 
This study investigated this important topic.

AI is increasingly used in medicine (14). AI can autonomously 
search and extract intricate task-specific features, offering the 
advantage of cost-effectiveness (56, 58). This systematic review and 
meta-analysis meticulously synthesized the available evidence 
regarding the performance of AI prediction models for severe 
COVID-19 mortality. In the included literature, the clinical data 
encompassed elements including demographic information (such as 
age and sex), comorbidities (hypertension, stroke, atrial fibrillation, 
etc.), laboratory data (albumin, hemoglobin, sodium, potassium, etc.), 
and imaging data, typically consisting of CT scans, X-rays, and their 
associated parameters. Integrating clinical and imaging data is pivotal 
in precision medicine and large-scale research programs, enabling a 
comprehensive understanding of disease patterns and facilitating 
targeted and effective interventions (59, 60). The meta-analysis 
encompassed 25 prediction models, showing commendable sensitivity 
and specificity, with an area under the curve (AUC) of 0.74 (0.64–
0.83) and 0.86 (0.76–0.92), respectively. Furthermore, the Fagan plot 
demonstrated commendable positive post-test probability (56%) and 
negative post-test probability (7%). This indicates that when the AI 

FIGURE 5

Sensitivity, specificity, and ROC curve based on combined clinical and imaging data. (A) Sensitivity and specificity based on combined data, (B) ROC 
curve based on combined data.
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model provided a positive prediction, the probability of death 
increased from the pre-test probability of 20 to 56%. Conversely, 
negative predictions reduced the mortality rate by 7%. This substantial 

difference underscores the potential utility of AI models in identifying 
high-risk patients who may require more intensive care or intervention 
as well as their effectiveness in identifying patients with a lower risk 

FIGURE 6

Fagan Plot. (A) Overall Fagan plot, (B) Fagan plot based on clinical data model, (C) Fagan plot based on imaging data model, (D) Fagan plot based on 
combined clinical and imaging data model.
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of death. Overall, the results suggest that the AI prediction models 
hold promise for predicting severe COVID-19 mortality rates.

However, 25 studies included in our analysis exhibited significant 
heterogeneity. To explore the sources of heterogeneity, we conducted 
sensitivity and subgroup analyses. The overall results showed that despite 
Khan et al. (41) having a significantly larger sample size than the others, 
the exclusion of this study did not result in a significant change in the 
diagnostic odds ratio value and its heterogeneity. This suggests that an 
imbalance in the dataset was not the primary source of heterogeneity. 
We  also conducted a sensitivity analysis of different subgroups of 
predictive factors. We found that, in models based on radiological data, 
the exclusion of the study by Chrzan et al. (35) resulted in a substantial 
decrease in I2 to 2.7% and an increase in the DOR value. This could 
be attributed to the unique nature of the predictive data used in this 
study, which were derived from High-Resolution Computed 
Tomography (HRCT) and its specific parameters such as absolute 
inflammation volume and absolute consolidation volume (ACV), as 
opposed to conventional CT scans or chest X-rays. We conjecture that 
HRCT, as a relatively novel diagnostic instrument, may not be universally 
applicable to all patient populations. This potential limitation could 
contribute to the observed decrease in the DOR value.

Additionally, we conducted subgroup analyses based on different 
model types, income levels, types of study designs, and ICU states. 
Our results indicate that studies employing deep learning, originating 
from high-income economies, or involving patients exclusively in the 
ICU, often exhibit higher specificity. A plausible explanation for this 
could be the urgent need for ICU patients and those in high-income 
economies to avoid death, which might cause the models to lean more 
toward predicting a higher risk of mortality. This could potentially 

enhance the model’s ability to correctly identify true-negative cases, 
thereby increasing specificity. However, it is important to note that 
although this might improve the model’s performance in an ICU 
setting, it may not necessarily work in other contexts. Furthermore, 
our findings suggest that studies employing deep learning models 
demonstrate higher specificity. This can be attributed to the inherent 
capabilities of deep learning models, which are adept at capturing 
complex nonlinear relationships in high-dimensional data. This allows 
them to discern subtle patterns that may be overlooked by traditional 
statistical models, thereby enhancing their ability to correctly identify 
true-negative cases, and consequently, increasing their specificity. 
However, it is important to note that although deep learning models 
can offer improved performance, their effectiveness is heavily 
dependent on the quality and diversity of the training data. Therefore, 
future studies should focus on ensuring the collection of 
comprehensive, high-quality datasets that capture a wide range of 
patient characteristics and clinical scenarios. Moreover, given the 
black-box nature of deep learning models, efforts should be made to 
improve their interpretability (61).

This study had limitations. First, the sample size of the included 
studies was relatively small, and only English literature was considered, 
potentially introducing language and publication biases. The exclusion 
of literature in other languages, including German, Japanese, and 
Korean, may have influenced the findings. Second, the funnel plot 
analysis revealed an asymmetric funnel distribution, suggesting the 
presence of publication bias. This bias could affect the overall 
interpretation of the results and the generalizability of the findings. 
Furthermore, the included studies exhibited high heterogeneity, which 
could affect the accurate assessment of the overall model performance 

FIGURE 7

Meta-regression and subgroup analysis. (A) Based on imaging data prediction models, (B) Based on combination of imaging and clinical data 
prediction models.
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TABLE 4 Sensitivity analysis of included 25 studies (total).

Study omitted Estimate (DOR) [95% confidence interval] I2

Walston, S. L., 2022, ID & CD 14.401 7.691 26.966 95.70%

Munera, N., 2022, ID & CD 14.561 7.823 27.100 95.70%

Elghamrawy, S. M., 2022, ID & CD 10.741 7.212 15.996 87.20%

Di Napoli, A., 2022, ID & CD 14.929 7.980 27.931 95.70%

Cheng, J., 2022, ID & CD 14.641 7.838 27.349 95.70%

Chassagnon, G., 2021, ID & CD 13.664 7.410 25.198 95.70%

Chamberlin, J. H., 2022, ID & CD 15.147 8.167 28.095 95.70%

Calvillo-Batllés, P., 2022, ID & CD 13.239 7.176 24.423 95.70%

Walston, S. L., 2022, ID 14.558 7.765 27.291 95.70%

Munera, N., 2022, ID 14.492 7.786 26.973 95.70%

Di Napoli, A., 2022, ID 15.086 8.096 28.112 95.60%

Chrzan, R., 2022, ID 15.291 8.202 28.506 95.30%

Cheng, J., 2022, ID 14.812 7.935 27.646 95.70%

Puhr-Westerheide, D., 2022, CD 14.727 7.908 27.429 95.70%

Wanyan, Tingyi, 2021, CD 13.513 7.254 7.254 95.60%

Walston, S. L., 2022, CD 14.485 7.732 27.134 95.70%

Vagliano, I., 2022, CD 14.425 7.633 27.259 95.70%

Pezoulas, V. C., 2022, CD 13.619 7.303 25.398 95.60%

Pezoulas, V. C., 2021, CD 14.048 7.528 26.214 95.70%

Munera, N., 2022, CD 14.561 7.823 27.100 95.70%

Klén, R., 2022, CD 15.170 7.514 30.626 95.30%

Khan, I. U., 2021, CD 11.091 6.192 19.865 95.20%

Jamshidi, E., 2021, CD 15.092 8.047 28.304 95.60%

Hou, W., 2021, CD 13.811 7.361 25.911 95.60%

Cheng, J., 2022, CD 15.092 8.103 28.107 95.60%

Combined 14.182 7.746 25.965 95.50%

TABLE 5 Sensitivity analysis of included 12 studies (based on clinical data).

Study omitted Estimate (DOR) [95% confidence interval] I2

Puhr-Westerheide, D., 2022 18.056 9.326 34.958 92.50%

Wanyan, Tingyi, 2021 14.668 7.828 27.484 91.00%

Walston, S. L., 2022 17.578 8.941 34.559 92.50%

Vagliano, I., 2022 17.538 8.733 35.220 92.50%

Pezoulas, V. C., 2022 15.073 7.935 28.630 91.60%

Pezoulas, V. C., 2021 16.356 8.444 31.685 92.40%

Munera, N., 2022 17.600 9.111 34.000 92.50%

Klén, R., 2022 19.495 8.948 42.478 91.30%

Khan, I. U., 2021 11.621 7.113 18.986 87.10%

Jamshidi, E., 2021 19.299 9.798 38.013 91.90%

Hou, W., 2021 15.578 8.087 30.009 91.60%

Cheng, J., 2022 19.077 9.865 36.891 92.20%

Combined 16.431 8.820 30.612 91.80%
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and limit reliable inferences for specific subgroups. Variations in study 
design, patient characteristics, and data sources may have contributed 
to heterogeneity.

Although AI demonstrates promising outcomes in predicting 
severe COVID-19 mortality, it has ample scope for improvement. 

Continued research and development are necessary to enhance the 
sensitivity and specificity of prediction models. Moreover, AI 
applications of artificial intelligence extend beyond predicting 
COVID-19 prognoses. They are increasingly employed in 
diagnosing, screening, and managing other diseases, aligning with 

TABLE 6 Sensitivity analysis of included five studies (based on imaging data).

Study omitted Estimate (DOR) [95% Confidence Interval] I2

Walston, S. L., 2022 3.971 2.587 6.096 29.30%

Munera, N., 2022 4.546 2.696 7.667 59.40%

Di Napoli, A., 2022 5.446 2.902 10.220 66.10%

Chrzan, R., 2022 6.081 3.988 9.274 2.70%

Cheng, J., 2022 4.886 2.674 8.928 64.80%

Combined 4.922 3.015 8.036 55.60%

TABLE 7 Sensitivity analysis of included eight studies (based on the combined data).

Study omitted Estimate (DOR) [95% confidence interval] I2

Walston, S. L., 2022 20.199 3.096 131.805 96.70%

Munera, N., 2022 21.095 3.522 126.358 96.90%

Elghamrawy, S. M., 2022 8.666 4.504 16.677 58.60%

Di Napoli, A., 2022 22.733 3.971 130.150 96.00%

Cheng, J., 2022 21.398 3.489 131.249 96.70%

Chassagnon, G., 2021 16.006 2.824 90.714 97.00%

Chamberlin, J. H., 2022 24.424 4.358 136.876 96.60%

Calvillo-Batllés, P., 2022 14.325 2.479 82.778 97.00%

Combined 18.504 3.615 94.713 96.50%

FIGURE 8

Deek’s funnel plot was used to evaluate publication bias.
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the objectives of tertiary prevention strategies. To promote the 
integration of AI and hospital digitalization, conducting high-
quality, large-scale, multicenter studies is imperative. These studies 
advance the field of AI in healthcare and foster its 
effective implementation.

5 Conclusion

In summary, while artificial intelligence has shown promise in 
predicting severe mortality rates in COVID-19, the suitability of 
different models varies for specific populations, and there is still room 
for improvement in their predictive performance. In addition, The 
full applicability of these models in clinical practice remains 
uncertain. Therefore, ongoing research and development efforts are 
necessary to enhance the performance of these models. The 
application of AI extends beyond COVID-19; it is being utilized in 
diagnosing, screening, and managing other diseases, aligning with the 
objectives of tertiary prevention strategies. Therefore, conducting 
high-quality, large-scale, multicenter studies is imperative for 
advancing the field of AI in healthcare and ensuring its 
effective implementation.
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