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Objectives: Increasing concern about air pollution’s impact on public health 
underscores the need to understand its effects on non-neoplastic digestive 
system diseases (NNDSD). This study explores the link between air pollution and 
NNDSD in China.

Methods: We conducted a national cross-sectional study using 2015 data 
from the China Health and Retirement Longitudinal Study (CHARLS), involving 
13,046 Chinese adults aged 45 and above from 28 provinces. Satellite-based 
spatiotemporal models estimated participants’ exposure to ambient particulate 
matter (3-year average). An analysis of logistic regression models was conducted 
to estimate the association between air pollutants [particulate matter with a 
diameter  ≤  2.5  μm (PM2.5) or ≤10  μm (PM10), sulfur dioxide (SO2), nitrogen dioxide 
(NO2), ozone (O3), and carbon monoxide (CO)] and NNDSD. Interaction analyses 
were conducted to examine potential modifiers of these associations.

Results: The prevalence of NNDSD among participants was 26.29%. After 
adjusted for multivariate factors, we observed a 6% [odd ratio (OR)  =  1.06, 95% 
confidence interval (CI): 0.94, 1.19], 23% (OR  =  1.23, 95% CI: 1.09, 1.38), 26% 
(OR  =  1.26, 95% CI: 1.12, 1.41), 30% (OR  =  1.30, 95% CI: 1.16, 1.46), 13% (OR  =  1.13, 
95% CI: 1.01, 1.27) and 27% (OR  =  1.27, 95% CI: 1.13, 1.43) increase in NNDSD risk 
with an interquartile range increase in PM2.5 (23.36  μg/m3), PM10 (50.33  μg/m3), 
SO2 (17.27  μg/m3), NO2 (14.75  μg/m3), O3 (10.80  μg/m3), and CO (0.42  mg/m3), 
respectively. Interaction analyses showed that PM2.5, SO2, and O3 had stronger 
effects on NNDSD risk among older adults, highly educated individuals, smokers, 
and married people, respectively.

Conclusion: This study demonstrates that long-term exposure to PM2.5, PM10, 
SO2, NO2, O3, and CO is positively associated with NNDSD risk in Chinese adults 
aged 45 and above. Implementing intervention strategies to enhance air quality 
is essential for reducing the burden of NNDSD.
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1 Background

Non-neoplastic digestive system diseases (NNDSD) are 
non-cancerous digestive disorders, encompassing conditions such 
as gastroenteritis, gastroesophageal reflux disease (GERD), 
inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), 
and liver diseases, among others (1, 2). There were 100,317 deaths 
related to non-malignant gastrointestinal diseases in the 
United States in 2019 (3). The incidence of digestive disorders has 
been increasing in China and other countries with Western societies 
(4). Research is increasingly revealing a pathogenic continuum 
between certain NNDSD and the emergence of malignant tumors 
of the gastrointestinal tract (5, 6). Millions worldwide suffer from 
these diseases, which also impose significant economic burdens, 
including high medical costs and lost work hours (7). Consequently, 
NNDSD represents a significant aspect of public health, and 
identifying risk factors for NNDSD is crucial for preventing and 
controlling NNDSD.

Industrialization, urbanization, and urban population growth 
have made air pollution one of the most critical environmental factors 
(8). Exposure to chronic air pollution [particulate matter with a 
diameter ≤ 2.5 μm (PM2.5) or ≤10 μm (PM10), sulfur dioxide (SO2), 
nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO)] has 
been associated with respiratory diseases, cardiometabolic diseases, 
and cancer (9–12). Air pollution has been linked to digestive disorders 
such as enteritis, appendicitis, IBD, liver disease, and peptic ulcers. An 
association has been established between air pollution exposure and 
a higher incidence of NNDSD in urban populations (13–15). Our 
methodology extends previous research by incorporating a broader 
spectrum of air pollutants and a larger sample size. Prior studies 
primarily focused on PM2.5 and its impacts; our study included 
comprehensive pollutants such as PM10, SO2, NO2, O3, and CO, 
allowing for a more detailed analysis of air quality impacts on 
NNDSD. The effects of air pollution on digestive diseases have also 
been studied from a mechanistic perspective. Environmental exposure 
directly impacts epithelial cells, increases intestinal permeability, 
induces oxidative stress, triggers systemic inflammation, and alters gut 
microbiota (16–18). Despite their prevalence, the link between 
environmental factors, especially air pollution, and NNDSD remains 
largely unexplored. Particularly evident is this gap in China and other 
developing countries, where air pollution levels are high and large-
scale population-based studies are lacking.

We conducted a national cross-sectional study to investigate the 
relationship between six major air pollutants (PM2.5, PM10, SO2, NO2, 
O3, and CO) and NNDSD to develop feasible strategies for preventing 
and controlling the disease.

2 Methods

2.1 Study population

The China Health and Retirement Longitudinal Study (CHARLS) 
selected participants from a national cohort of residents aged 45 and 
older. To gather representative data for middle-aged and older Chinese 
people, the study used GIS software and multistage probability 
sampling across 28 provinces. In accordance with the Declaration of 
Helsinki, Peking University’s Ethics Review Board approved the 

CHARLS protocol (IRB00001052-11015). Informed consent was 
obtained from all participants.

CHARLS started in 2011 and has been conducted every 2–3 years 
since then. Evaluations of Chinese air pollution levels have 
predominantly been conducted since 2013. Based on the CHARLS 
dataset from 2015, we conducted a cross-sectional study of 21,095 
middle-aged and older adult who underwent medical examinations. 
We excluded data with missing key information: age (n = 364), body 
mass index (n = 3,348), smoking status (n = 11), alcohol consumption 
(n  = 9), health status (n  = 307), marital status (n  = 2), residence 
(n = 86), education level (n = 2,945), and participants under 45 years 
old (n  = 977). These exclusions were necessary to maintain the 
integrity and the analytical robustness of our study findings. The study 
included 13,046 middle-aged and older adult individuals from 28 
provinces in China (Supplementary Figure S1).

2.2 Definition of NNDSD

A physician-diagnosed NNDSD was identified as one of the 
outcomes of interest in the 2015 questionnaire. During the follow-up 
questionnaire, the self-report question (‘Have you been diagnosed by 
a physician with a gastric or other non-neoplastic disease of the 
digestive system?’) was used to determine if the patient had been 
diagnosed with NNDSD. A subject who answered ‘yes’ to this question 
was defined as having NNDSD.

2.3 Air pollution exposure assessment

Between 2013 and 2015, a geocoding system was employed to 
identify the residential addresses of study subjects. These geocoded 
addresses were then used by Artificial Intelligence (AI) to calculate 
ground-level concentrations of air pollutants such as PM2.5, PM10, SO2, 
NO2, O3 and CO for each individual. The data were derived from the 
ChinaHighAirPollutants (CHAP) dataset and were spatially resolved 
to 0.1° (approximately 10 km). To estimate ambient PM2.5, PM10, SO2, 
NO2, CO, and O3, surface measurements, remote sensing products, 
atmospheric reanalysis and model simulations were used. With 
surface measurements, a 10-fold cross-validation was performed to 
determine R2 and the root mean square error (RMSE) for all daily 
mean estimates of all air pollutants (Supplementary Table S1). Annual 
air pollution exposures were calculated based on each participant’s 
county-level home address. For the main effects analyses, we calculated 
each participant’s long-term air pollution exposure as the 3-year 
average of PM2.5, PM10, SO2, NO2, O3, and CO levels before the 2015 
CHARLS survey. For sensitivity analyses, we  used the two-year 
average air pollution concentrations.

2.4 Covariates

Covariate data from CHARLS 2015 were used to prepare this 
study. As a demographic covariate, age ranges (45–60 years, ≥60 years), 
gender (male, female), residence (rural or urban), educational level 
(primary school and below, secondary school or above), marital status 
(married/cohabiting, unmarried, separated/divorced/widowed). The 
variables of health behavior included Body Mass Index (BMI) 
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(underweight, normal weight, overweight/obese), smoking status (no 
or yes), alcohol consumption status (no or yes), and health status 
(good/very good, fair, poor/very poor).

2.5 Statistical analyses

We used descriptive statistics to compare the basic 
characteristics of participants, presenting categorical variables as 
numbers (percentages). Differences between non-NNDSD and 
NNDSD participants were assessed using the Chi-squared test for 
independence. The strength and direction of the association 
between air pollutants were quantified using Pearson’s correlation 
coefficients, which measure linear correlations between variables 
(Supplementary Table S2).

Logistic regression was used to examine the impact of 3-year 
average air pollutant concentrations on NNDSD. We first developed a 
crude model without adjustments. The base model adjusted for five 
covariates (gender, age, residence, education level, marital status), and 
the main model was fully adjusted for additional covariates (smoking, 
drinking, BMI, health status). NNDSD was expressed as odds ratios 
(OR) for each increment of the interquartile range (IQR) in air 
pollutants with corresponding 95% confidence interval (CI). Subgroup 
analyses and interaction tests were conducted within the logistic 
regression framework to explore potential modifications of the air 
pollution effects on NNDSD by various factors, including sex, age, 
place of residence, education level, marital status, smoking, alcohol 
consumption, BMI, and health status. Interaction terms were added 
to the models to statistically test for these effects.

To verify the robustness of our results, we performed sensitivity 
analyses. First, we reran the analyses using the average air pollution 
concentrations for the 2  years before 2015. Second, we  excluded 
participants who self-reported poor or very poor health. We  also 
conducted propensity score matching (PSM) using a nearest neighbor 
ratio of 1:1 without replacement and a caliper width of 0.05. 
We  conducted the analyses using SPSS Statistics 26, R software 
(version 4.2.2), and Python3.11. R was used for spatial data analysis, 
statistical modeling, and generating forest plots, with packages like 
ggplot2, plyr, maptools, forestplot, and matchit. Python was used for 
air pollution mapping, employing libraries such as geopandas, 
matplotlib.pyplot, osgeo, and gdal. Statistical significance was 
determined by a two-tailed p-value of less than 0.05.

3 Results

3.1 Characteristics of study participants

In total, 13,046 participants were enrolled in this study, and the 
flowchart of participant enrollment can be  seen in 
Supplementary Figure S1. Based on 13,046 participants from 28 
provinces in China, Figure 1 illustrates their distribution. A summary 
of the basic characteristics of the study participants is provided in 
Table 1. The incidence rate of NNDSD was 26.29%. About 56.52% of 
the NNDSD cases were over 60 years old, and 53.18% of these were 
female. The majority of participants with NNDSD were married or 
cohabiting. Additionally, 26.81% of NNDSD cases were in poor health. 
There were 75.40% of participants who lived in rural areas and 68.70% 

who had only a primary school education or less. Aside from age and 
marital status, there was a significant difference between non-NNDSD 
and NNDSD patients with respect to sociodemographic and health 
behavioral characteristics.

A three-year average ambient concentration of PM2.5, PM10, SO2, 
NO2, O3, and CO for the six air pollutants is shown in Table 2 and 
Figure 2 at 49.54 ± 17.49 μg/m3 for PM2.5, 95.64 ± 33.71 μg/m3 for 
PM10, 31.13 ± 14.42 μg/m3 for SO2, 29.89 ± 9.51 μg/m3 for NO2, 
83.04 ± 7.82 μg/m3 for O3 and 1.18 ± 0.33 mg/m3 for CO. Additionally, 
Pearson correlation analysis revealed strong correlations among 
several pollutants. Specifically, PM2.5 and PM10 were the most 
strongly correlated (r = 0.89), indicative of their common sources or 
similar atmospheric behaviors. Notably strong correlations were also 
observed between NO2 and PM2.5 (r = 0.86), as well as between CO 
and SO2 (r = 0.82). The range of correlation coefficients between the 
major pollutants (PM2.5, PM10, SO2, NO2, O3, and CO) varied from 
0.70 to 0.89. O3 showed a distinct pattern with lower correlation 
coefficients compared to other pollutants, as shown in 
Supplementary Table S2.

3.2 Associations between air pollutants and 
NNDSD

The association between each air pollutant and NNDSD is shown 
in Figure 3 and Supplementary Table S3. Higher levels of exposure to 
air pollutants (PM2.5, PM10, SO2, NO2, O3, and CO) are associated 
with an increased risk of NNDSD. According to the crude model, for 
each additional exposure IQR of PM2.5, PM10, SO2, NO2, O3 and CO, 
the OR for NNDSD was 1.19 (95%CI: 1.06, 1.33), 1.36 (95%CI:1.22, 
1.52), 1.44 (95%CI: 1.28, 1.61), 1.48 (95%CI: 1.32, 1.66), 1.30 (95%CI: 
1.16, 1.46), and 1.36 (95%CI: 1.21, 1.53). Significant associations in 
the base model persisted after adjusting for demographic covariates. 
Taking into account all covariates, including age, sex, place of 
residence, education, marital status, body mass index, smoking, 
drinking, and health status, we  observed a 6% (fully adjusted 
OR = 1.06, 95%CI: 0.94, 1.19), 23% (fully adjusted OR = 1.23, 95%CI: 
1.09, 1.38), 26% (fully adjusted OR = 1.26, 95%CI: 1.12, 1.41), 30% 
(fully adjusted OR = 1.30, 95%CI: 1.16, 1.46), 13% (fully adjusted 
OR = 1.13, 95%CI: 1.01, 1.27) and 27% (fully adjusted OR = 1.27, 
95%CI: 1.13, 1.43) increase in NNDSD risk with a IQR increase in 
PM2.5, PM10, SO2, NO2, O3, and CO exposure in the main model, 
respectively. PM2.5’s p-value in the main model is 0.34(>0.05), and the 
rest <0.05.

3.3 Subgroup and interaction analyses of 
air pollutants and NNDSD

The results of the subgroup and interaction analyses are presented 
in Figures 4, 5. According to our findings, the following factors may 
modify the association between air pollution and NNDSD: PM2.5 
significantly increased NNDSD risk in participants over 60 years of 
age (OR = 1.01, 95%CI: 0.96, 1.06), compared to participants aged 
45–60 years (OR = 1.01, 95%CI: 0.95, 1.06) (P interaction = 0.04). In 
participants with higher education (OR = 1.08, 95%CI: 1.01, 1.16) as 
compared to those with lower education (OR = 1.06, 95%CI: 1.02, 
1.11), SO2 had a greater effect on NNDSD in participants with higher 
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education (P interaction = 0.01). In the group of smokers (OR = 1.02, 
95%CI: 0.96, 1.07) (P interaction = 0.02) and of married or cohabiting 
couples (OR = 1.03, 95%CI: 0.99, 1.07) (P interaction = 0.03), ambient 
O3 had a greater effect on the rise in NNDSD.

3.4 Sensitivity analyses

The sensitivity analyses for the association between air pollution 
and NNDSD consistently demonstrated statistical significance in 
line with the main results. When the mean exposure concentration 
of air pollutants was reduced from 3 to 2 years, we observed that 
all the above significant associations remained strong 
(Supplementary Table S4). Additionally, we conducted sensitivity 
analyses that excluded poor/very poor health, which showed effect 
sizes and statistical significance similar to the main results, except 
for the association between exposure to O3 and NNDSD 
(Supplementary Table S5). In order to eliminate other potential 
confounders, sensitivity analyses were conducted when a 1:1 PSM 
was performed. Lastly, 3,430 participants with NNDSD were paired 
with the same number of participants non-NNDSD, and there 
were no significant differences in baseline characteristics between 
the two groups (Supplementary Table S7). Overall, these sensitivity 
analyses indicated that the main analysis results were robust 
(Supplementary Table S6).

4 Discussion

This study was one of the few national epidemiologic studies in 
China that investigated the relationship between continuous exposure 

to air pollutants and NNDSD. The purpose of this study was to 
investigate the effects of PM2.5, PM10, SO2, NO2, O3, and CO on 
NNDSD among middle-aged and older adult Chinese residents. Our 
findings revealed significant associations between several common air 
pollutants and the risk of NNDSD, with varying strengths across 
different pollutants. Nearly the entire global population is exposed to 
airborne pollution, recognized as a significant environmental health 
risk (19). In terms of policymaking aimed at protecting the public 
health from air pollution, our findings supported the hypothesis that 
air pollution exposure adversely affects NNDSD.

PM2.5 and PM10 are particulate air pollutants. Our study revealed 
that PM2.5 and PM10 demonstrate the strongest correlation in Pearson 
correlation analysis. Current research established a significant 
association between PM10 and NNDSD, persisting even after 
adjustment for confounding factors. Conversely, PM2.5 showed 
significant associations only in crude and base models, failing to 
maintain statistical significance in the main model. There appeared to 
be a difference in impact between air pollution particles of different 
sizes on digestive system health, with PM10 having a more pronounced 
effect in our study population than PM2.5.

This observation was corroborated by prior research. A 
comprehensive cross-sectional analysis involving 90,086 participants 
in southwest China demonstrated a positive association between 
prolonged exposure to environmental particulate matter and 
metabolically associated fatty liver disease. Additionally, animal 
studies have identified a steatohepatitis-like phenotype and liver 
fibrosis associated with such exposures, reinforcing the broader 
implications of particulate pollutants on liver health (20, 21). 
According to a cross-sectional study conducted in the United States, 
hospitalized patients with higher ambient PM2.5 exposure were more 
likely to develop non-alcoholic fatty liver disease (22). An extensive 

FIGURE 1

The geographical distribution of 13,046 middle-aged and older participants in 28 provinces of China.
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TABLE 1 Basic characteristics of participants.

Characteristics Total (n =  13,046) NNDSD (n =  3,430) Non-NNDSD (n =  9,616) P

Age, n (%) 0.351

  45–60 5,672 (43.48) 1,468 (42.80) 4,204 (43.72)

  ≥60 7,374 (56.52) 1962 (57.20) 5,412 (56.28)

Gender, n (%) <0.001***

  Males 6,108 (46.82) 1,450 (42.27) 4,658 (48.44)

  Females 6,938 (53.18) 1980 (57.73) 4,958 (51.56)

Residence, n (%) <0.001***

  Rural 9,837 (75.40) 2,708 (78.95) 7,129 (74.14)

  Urban 3,209 (24.60) 722 (21.05) 2,487 (25.86)

Marital status, n (%) 0.899

  Married and living with a spouse 10,710 (82.09) 2,809 (81.90) 7,901 (82.17)

  Married but living without a spouse 599 (4.59) 162 (4.72) 437 (4.54)

  Single, divorced, and windowed 1737 (13.31) 459 (13.38) 1,278 (13.29)

Education level, n (%) <0.001***

  Elementary school or below 8,962 (68.70) 2,550 (74.34) 6,412 (66.68)

  Middle school or above 4,084 (31.30) 880 (25.66) 3,204 (33.32)

BMI, n (%) <0.001***

  <18.5 797 (6.11) 271 (7.90) 526 (5.47)

  18.5–23.9 6,289 (48.21) 1751 (51.05) 4,538 (47.19)

  ≥24 5,960 (45.68) 1,408 (41.05) 4,552 (47.34)

Smoking, n (%) <0.001***

  Yes 5,731 (43.93) 1,411 (41.14) 4,320 (44.93)

  No 7,315 (56.07) 2019 (58.86) 5,296 (55.07)

Drinking, n (%) <0.001***

  Yes 4,479 (34.33) 1,060 (30.90) 3,419 (35.56)

  No 8,567 (65.67) 2,370 (69.10) 6,197 (64.44)

Health status, n (%) <0.001***

  Good/very good 2,886 (22.12) 446 (13.00) 2,440 (25.37)

  Fair 6,663 (51.07) 1719 (50.12) 4,944 (51.41)

  Poor/very poor 3,497 (26.81) 1,265 (36.88) 2,232 (23.21)

BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); NNDSD, non-neoplastic digestive system diseases. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 2

Air pollution distribution over 13–15 years of follow-up. (a) PM2.5: particle with aerodynamic diameter ≤ 2.5 μm; (b) PM10: particle with aerodynamic 
diameter ≤ 10 μm; (c) SO2: sulfur dioxide; (d) NO2: nitrogen dioxide; (e) CO: carbon monoxide; (f) O3: ozone.

nationwide time-series study examined the adverse effects of short-
term PM2.5 exposure on various digestive disorders, including 
intestinal infections, esophageal disease, gastritis, appendicitis, liver 
disease, gastrointestinal bleeding, and non-infectious gastroenteritis 
(23). On cooler days, there has been a significant increase in peptic 
ulcer hospitalizations in Taipei with rising levels of PM10 (24).

Research indicated that the impact of particulate air pollutants 
on the digestive system was primarily mediated through the 
ingestion of contaminants in food and water, as well as the direct 
effects of gaseous pollutants on the gastrointestinal tract during 
swallowing (25, 26). The deposition of air pollution particles in the 
lungs and the resultant epithelial cell responses, including the 

production of free radicals and inflammation, lead to the disruption 
of the alveolar barrier. These factors can subsequently enter the 
bloodstream, directly affecting intestinal epithelial cells and 
increasing intestinal permeability (27–30). Additionally, exposure to 
PM2.5 was associated with elevated levels of cluster of differentiation 
and systemic inflammation (31, 32). Animal studies demonstrate 
that PM10 exposure in mice leads to elevated pro-inflammatory 
cytokine levels in the small and large intestines, potentially 
stimulating alveolar macrophages to produce inflammatory factors 
present in the bloodstream during air pollution episodes (33, 34). 
Furthermore, studies have found that particulate air pollutants 
significantly altered the gut microbiota composition in both animals 
and humans, potentially increasing susceptibility to mucosal 
inflammation (17, 28, 30, 35).

We found a close association between SO2 levels and an increased 
risk of NNDSD. In subgroup and interaction analysis, we observed 
that the impact of environmental air pollutant SO2 on NNDSD was 
more pronounced among subjects with higher education. Residents 
near the Madin Dam in the State of Mexico showed a significant 
correlation between chronic exposure to SO₂ and liver function 
impairment. Specifically, individuals exposed to high levels of SO₂ 
exhibit elevated levels of lipid peroxidation products and oxidative 
stress markers in their blood, which are biomarkers indicating 
hepatocellular damage and dysfunction (36). In a study involving 
more than 2.7 million adults in Northwest China, each 10 μg/m3 
increase in SO₂ concentration was associated with a 2.7-fold increase 
in the incidence risk of metabolically associated fatty liver disease (37). 

TABLE 2 Descriptive statistics 3-years average levels of air pollution.

Variables Mean SD P25 P50 P75 IQR

PM2.5 (μg/m3) 49.54 17.49 36.70 48.05 60.06 23.36

PM10 (μg/m3) 95.64 33.71 63.78 93.96 114.11 50.33

SO2 (μg/m3) 31.13 14.42 20.81 26.01 38.07 17.27

NO2 (μg/m3) 29.89 9.51 22.40 28.57 37.15 14.75

O3 (μg/m3) 83.04 7.82 77.00 81.11 87.81 10.80

CO (mg/m3) 1.18 0.33 0.94 1.08 1.36 0.42

PM2.5, particle with aerodynamic diameter ≤ 2.5 μm; PM10, particle with aerodynamic 
diameter ≤ 10 μm; SO2, sulfur dioxide; NO2, nitrogen dioxide; O3, ozone; CO, carbonic 
oxide; SD, standard deviation; P25, P50, P75, Lower, median and upper quartiles of variables; 
IQR, interquartile range.
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The increase in SO₂ levels have exacerbated inflammation and 
oxidative stress in the liver, both key drivers in the development of 
metabolically associated fatty liver disease. Research on pregnant 
women found that an increase in environmental SO₂ levels during the 
second trimester was associated with an increased risk of intrahepatic 
cholestasis of pregnancy (38). Long-term exposure to SO₂ may have 
increased pro-inflammatory cytokines such as IL-6 and IL-1β, and 
decreased hepatic bile transport proteins, leading to the accumulation 
of bile acids in the liver (39, 40).

A significant association between NO2 levels and NNDSD was 
observed. In our main model, an increase in NO2 exposure by one 
IQR was associated with a 30% increase in risk. An analysis of 8,566 
older adult cases recorded between 2005 and 2010 by Tian et al. (41) 
found that a short-term increase in ambient NO2 levels may have 
increased the risk of peptic ulcer bleeding and related hospitalizations 
in Hong Kong’s older adult population. In a large-scale cohort study 

that investigated the associations between air pollutants and the risk 
of 12 gastrointestinal diseases, positive correlations were observed 
between NO2 and NOx with the risk of peptic ulcers and chronic 
gastritis (42). According to other studies, long-term exposures to NO2 
were associated with ulcerative colitis but not Crohn’s disease (43). 
Research involving 329,048 adults in Taiwan and Hong Kong between 
2001 and 2018 demonstrated that rising concentrations of NO₂ were 
linked to an increased risk of Non-Alcoholic Fatty Liver Disease 
(NAFLD) and its associated advanced fibrosis (44). Empirical evidence 
on the relationship between NO2 and digestive system diseases 
remained limited. As a component of traffic-related air pollution, NO2 
was also found to be associated with elevated levels of cytokeratin-18, 
which may be linked to liver damage (45). NO2 swallowed through 
belching may trigger a nitrification reaction in the stomach, leading 
to redox interactions that disrupt the intestinal lining and promote 
gastrointestinal diseases (46).

FIGURE 3

Associations between air pollution and NNDSD, per IQR increment in air pollutants. Crude model: no adjustment; Base model: Adjusted for age, 
gender, education level, marital status and residence; Main model: Base model + smoking, drinking, body mass index and health status. PM2.5, particle 
with aerodynamic diameter  ≤  2.5  μm; PM10, particle with aerodynamic diameter  ≤  10  μm; SO2, sulfur dioxide; NO2, nitrogen dioxide; CO, carbonic oxide; 
O3, ozone; NNDSD, non-neoplastic digestive system diseases; IQR, interquartile range; OR, odds ratios; CI, confidence interval. *p  <  0.05, **p  <  0.01, 
***p  <  0.001.

https://doi.org/10.3389/fpubh.2024.1372156
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Kou et al. 10.3389/fpubh.2024.1372156

Frontiers in Public Health 08 frontiersin.org

FIGURE 4

Subgroup and interaction analyses of air pollutants (PM2.5, PM10, and SO2) and NNDSD.

FIGURE 5

Subgroup and interaction analyses of air pollutants (NO2, O3, and CO) and NNDSD.

Our study found that exposure to O3 is significantly associated with 
NNDSD, especially among smokers and those who are married or 
cohabiting. One research has shown that for every one standard deviation 
increase in O3 concentration, NAFLD decreases by 12%, and the 
incidence of advanced fibrosis decreases by 11%. This suggested that 
higher levels of O3 might have a protective effect against these conditions 
(44). Conversely, a study from Northwest China indicated that elevated 
O3 levels were linked to a slight increase in the risk of Metabolically 
Associated Fatty Liver Disease (37). Additionally, research from Korea 
reported a positive correlation between short-term exposure to O3 and 
elevated levels of gamma-glutamyl transferase (47). An analysis of the 
7-day cumulative average of terrestrial O3 conducted by a Canadian 
researcher suggests that higher levels of environmental O3 exposure may 
increase the risk of perforated appendicitis (48). Kaplan’s findings 
indicated that higher 5-day average ozone levels increased appendicitis 
rates, especially in summer, with a greater impact on younger individuals 

than older adults. The specific mechanisms by which O3 influenced 
appendicitis incidence remained unclear, but inhaling or ingesting air 
pollutants likely triggered inflammatory responses in humans (49). 
Himuro (50) demonstrated that intrarectal administration of ozone gas 
causes transient epithelial cell damage, which is specifically caused by 
damage to DNA replication and cell cycle pathways. Exposure to O3 
stimulated the production of tumor necrosis factors IL-6 and IL-8 and 
promotes systemic inflammation in humans, which may be a key factor 
in the pathogenesis of these diseases (51, 52).

In our study, exposure to CO was associated with an increased risk 
of NNDSD. There is limited literature on the impact of CO on digestive 
system disorders. Chinese researchers found that CO levels were 
significantly elevated on days of outpatient visits for enterocolitis (53). A 
study in Yichang, China, demonstrated that for every 1 mg/m3 increase 
in CO levels, there is a 19.04% (95% CI: 8.39, 29.68%) rise in daily 
outpatient visits for gastrointestinal diseases. From 2002 through 2007, 
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Seo et al. (54) found that CO may increase the risk of GERD based on 
medical utilization data from the National Health Insurance Institute of 
Korea. Short-term exposure to CO air pollution was associated with 
decreased microvascular endothelial function (55). Microvascular 
dysfunction may have contributed to poor mucosal healing, refractory 
inflammatory ulcers, and intestinal injury in IBD patients, resulting in 
diminished vasodilatory capacity and inadequate tissue perfusion (56). 
CO’s high affinity for myoglobin may cause weakness in the lower 
esophageal sphincter, potentially leading to myasthenia gravis (57).

Our findings underscored the broader public health implications, 
suggesting that reducing air pollution levels could alleviate the burden 
of digestive system diseases among adults, particularly in areas with 
high pollution. Although many epidemiological studies link sustained 
air pollutant exposure to NNDSD risk, the underlying biological 
mechanisms remain unclear (58, 59). A biological and epidemiological 
study will be necessary to elucidate the mechanisms by which air 
pollution affects cognitive function in the future.

5 Limitations

There are several advantages to our study. Firstly, it is a nationwide 
study conducted in China, it offers a high level of generalizability. 
Secondly, this is the first study to investigate the relationship between air 
pollution exposure and NNDSD. Furthermore, we considered more air 
pollutants than previous studies, including the rarely considered NO2. 
However, we also have some limitations to our study. While we used 
satellite-based spatio-temporal modeling to estimate air pollution levels, 
exposure assessments were based on community locations, which may 
not fully represent individual exposures. Additionally, many individuals 
were excluded due to missing data on the variables, which may have led 
to a selection bias. Lastly, the findings may be affected by questionnaire 
and recall bias among older subjects. A lack of detailed types of NNDSD 
in this study also prevented a detailed study of life environmental factors 
on specific subtypes of NNDSD.

6 Conclusion

Our study suggests that chronic exposure to ambient air pollution 
may increase the prevalence of NNDSD among adults aged 45 and 
older in China. Particulates and gaseous pollutants like PM2.5, PM10, 
SO2, NO2, O3, and CO are significantly associated with NNDSD. This 
underscores the need for targeted air quality policies, which could 
reduce the NNDSD burden and prevent many cases.
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