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Intensive care units (ICUs) are specialized environments dedicated to the 
management of critically ill patients, who are particularly susceptible to drug-
resistant bacteria. Among these, carbapenem-resistant Gram-negative bacteria 
(CR-GNB) pose a significant threat endangering the lives of ICU patients. 
Carbapenemase production is a key resistance mechanism in CR-GNB, with 
the transfer of resistance genes contributing to the extensive emergence of 
antimicrobial resistance (AMR). CR-GNB infections are widespread in ICUs, 
highlighting an urgent need for prevention and control measures to reduce 
mortality rates associated with CR-GNB transmission or infection. This review 
provides an overview of key aspects surrounding CR-GNB within ICUs. 
We examine the mechanisms of bacterial drug resistance, the resistance genes 
that frequently occur with CR-GNB infections in ICU, and the therapeutic 
options against carbapenemase genotypes. Additionally, we  highlight crucial 
preventive measures to impede the transmission and spread of CR-GNB within 
ICUs, along with reviewing the advances made in the field of clinical predictive 
modeling research, which hold excellent potential for practical application.
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1 Introduction

Antibiotics play a vital role in controlling bacterial infections; however, the development 
of new antibiotics lags far behind the worldwide spread of antimicrobial resistance (AMR) (1, 
2). It has been estimated that in 2019, drug-resistant bacterial pathogens were responsible for 
1.27 million deaths (3). This number has nearly doubled from the 700,000 deaths reported in 
2016 from AMR globally, in just a few years. According to experts, this number could reach 
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10 million by 2050 if resistance is not reduced or new antibiotics are 
not developed (4). Carbapenem-resistant Gram-negative bacteria 
(CR-GNB) possess a high resistance rate against a wide range of 
antibiotics, further limiting the antibiotic options available for 
patients. CRE (carbapenem-resistant Enterobacteriaceae), CRAB 
(carbapenem-resistant Acinetobacter baumannii), and CRPA 
(carbapenem-resistant Pseudomonas aeruginosa) are classified as 
pathogens posing a significant threat to human health (4).

Patients admitted to the intensive care unit (ICU) are typically 
immunocompromised, presenting with multiple comorbidities, 
overuse of broad-spectrum antibiotics, indwelling catheters, and 
undergoing multiple invasive procedures, which puts them at a 
relatively high risk of bacterial infections (5). According to Vincent 
et al. (6), the incidence of infection in ICU patients exceeds 50%. At 
present, the commonly employed microbiological methods for 
diagnosing bacterial infections suffer from a delayed nature, making 
it challenging to promptly target antibiotics based on drug sensitivity 
tests. The lack of rapid diagnostic methods to identify resistance genes 
in the clinical setting, as well as the scarcity of targeted antimicrobials, 
often results in the overuse of broad-spectrum antibiotics, which is a 
major contributor to AMR (7). Treatment options for infections 
caused by CR-GNB are limited and associated with high rates of 
clinical failure, morbidity, and mortality. Once a CR-GNB infection 
occurs and is left uncontrolled, it is highly likely to progress into a 
severe infection and lead to the mortality of patients in the 
ICU. Understanding the appropriate range of antibiotics for treatment 
is crucial for establishing an effective treatment strategy initially, 
alongside enhancing preventive and control measures within the ward 
to halt pathogen dissemination and deter drug resistance development. 
This paper offers a comprehensive examination of bacterial resistance 
mechanisms, CR-GNB resistance genes, and therapeutic options for 
respective infections. It concludes by outlining strategies for 
preventing CR-GNB colonization and infections in the ICU, including 
advancements in infection prediction models for critically ill 
populations. The application of prediction models in the ICU to 
promptly identify high-risk groups for CR-GNB infection can provide 
valuable insights for controlling the spread of CR-GNB in the ICU and 
improving the prognosis of ICU patients.

2 AMR mechanisms

The AMR is a complex as well as multifactorial phenomenon. In 
terms of its mechanism, AMR is associated with both selective 
pressure on bacteria and horizontal gene transfer between bacteria (8, 
9). Figure 1 illustrates complex resistance mechanisms in bacteria: (i) 
Restriction of antibiotic entry. Many antibiotic targets are within 
bacteria, reducing the uptake of antimicrobials and thereby preventing 
their binding to the target site. (ii) Enhancement of efflux pumps. A 
large amount of antibiotic is released out of the cell, reducing the 
concentration of antibiotics within the bacteria. (iii) Regulation and 
defense of antibiotic target sites. Preventing the antibiotic from 
reaching its binding site and modifying the target site so that the 
affinity of the antibiotic molecule is reduced. (iv) Production of 
hydrolytic enzymes. Inactivation of the drug by adding specific 
chemical parts to the compound or destruction of the molecule itself 
so that the antibiotic cannot interact with its target. In addition, 
bacteria can adapt to antibiotic attacks by acquiring key DNA through 

horizontal gene transfer. Plasmids and transposons play a crucial role 
in developing and spreading bacterial resistance in clinical infections 
(10). Many resistance genes are localized on plasmids, and these 
mobile genetic elements can quickly transfer resistance within or 
between different bacterial species. Transformation (incorporation of 
naked DNA), transduction (phage-mediated), and splicing (bacterial 
“sexing”) are the three main ways. The emergence of resistance in the 
hospital setting usually involves splicing, a very efficient gene transfer 
method involving cell-to-cell contact.

The production of β-lactamases is a crucial mechanism of drug 
resistance in Gram-negative bacteria. Ambler’s classification 
categorizes these bacteria into four groups: A to D. The enzymes in 
classes A, C, and D use serine residues in their active catalytic site to 
hydrolyze β-lactams, while class B enzymes are metallo β-lactamases 
(MBLs) that contain zinc in their active site (11). Among these, 
extended spectrum β-lactamases (ESBLs), which belong to Ambler 
class A, can hydrolyze various β-lactam antibiotics such as cefotaxime, 
ceftriaxone, and ceftazidime, but they cannot hydrolyze and are 
resistant to cephalosporins and carbapenems (12). Infections caused 
by ESBL-producing Enterobacteriaceae (EBLS-E), which are mainly 
Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli, are 
increasing worldwide (13, 14). The primary resistant genotypes of 
ESBL include blaCTX-M, blaSHV, and blaTEM (15). CTX-M type ESBL is 
the most predominant type of Enterobacteriaceae cultured from blood 
and hydrolyzes cefotaxime and ceftriaxone more effectively than 
ceftazidime (16). Carbapenem antibiotics, which are atypical β-lactam 
antibiotics with the broadest antimicrobial spectrum and the strongest 
antibacterial activity, can prevent cell wall synthesis and lead to 
bacterial lysis by inhibiting penicillin binding proteins (17). The 
resistance mechanism of CR-GNB can be classified into enzymatic 
and non-enzymatic types. Production of carbapenemase is a critical 
mechanism of GNB resistance to carbapenem antibiotics. The 
carbapenemase type of CR-GNB is shown in Figure 2. The genes 
encoding for carbapenemases are highly transmissible and easily 
spread through plasmid-and transposon-mediated dissemination 
(18). Non-enzymatic CR is primarily mediated by the acquisition of 
resistance genes, including mutations in chromosomally encoded 
porin genes (e.g., OprD) and overexpression of genes encoding efflux 
pumps (including MexAB-OprM, Mexxy-OprM, and MexCD-OprJ) 
(19). The genes that lead to resistance to carbapenem antibiotics in 
different species of Gram-negative bacilli are thus somewhat different. 
In the following section, the common CR-GNB within the ICU are 
summarized along with the genes they have been found to 
cause resistance.

3 CR-GNB resistance genes in ICUs

3.1 CRE

The Centers for Disease Control and Prevention (CDC) defines 
CRE as Enterobacteriaceae that are resistant to carbapenem antibiotics. 
In the United States, approximately 13,000 infections caused by CRE 
have been reported in hospitalized patients, resulting in an estimated 
1,100 deaths (20). Patients who require medical devices such as 
ventilators, urinary catheters, or intravenous catheters, those who are 
on prolonged antibiotic treatment, and individuals with weakened 
immune systems are at a relatively high risk of contracting CRE 
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infections (21). Hence, it is crucial to exercise caution in implementing 
therapeutic measures to avoid unnecessary invasive procedures for 
patients who usually have underlying medical conditions and those 
who require ICU-level interventions. Based on the resistance 
mechanism, CRE can be categorized into carbapenemase-producing 
enterobacteria (CPE) and non-carbapenemase-producing 
enterobacteria (non-CPE). CPE comprises carbapenemase-resistant 
enzymes such as K. pneumoniae carbapenemase (KPC) in class A, 

benzoxacillin carbapenemase/oxacillinase (OXA) in class D, and 
MBLs belonging to class B, including imipenemase metallo-β-
lactamase (IMP), New Delhi metallo-β-lactamase (NDM), and Verona 
integrase-encoded metallo-β-lactamase (VIM) (11). The blaKPC gene 
is the most prevalent gene in Ambler class A, and its production plays 
a significant role in the carbapenem-resistant K. pneumoniae (CRKp). 
On the other hand, blaOXA-48 is a more common gene responsible for 
resistance to carbapenem antibiotics in Escherichia coli (22). Single 

FIGURE 1

Resistance mechanisms in Gram-negative bacteria and Gram positive bacteria.

FIGURE 2

β-lactamases in MDR-GNB according to Ambler’s classification.
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CRE isolate can possess multiple carbapenemase-encoding genes. For 
instance, in Egypt, where NDM and OXA-48-like enzymes are 
widespread, polymerase chain reaction results demonstrated that 
about 90% of Enterobacteriaceae isolates harbored one or more 
carbapenemase-encoding genes, with blaNDM-1 being the most 
prevalent genotype, followed by blaOXA-48 (23).

3.2 CRAB

Acinetobacter baumannii (A. baumannii) is the most frequently 
isolated pathogen in ICUs (24), leading to various infections such as 
pneumonia, skin and soft tissue infections, and bloodstream infections 
(BSIs) (25, 26). The emergence of CRAB poses a significant challenge 
for treatment and has intensified the prevalence of hospital-acquired 
infections, thus becoming a major threat to global public health (11). 
The mechanisms of carbapenem resistance in A. baumannii involve 
various factors such as increased efflux pumps, decreased expression 
or inactivation of pore proteins, modifications of penicillin-binding 
proteins, and production of several types of β-lactamases (27, 28). The 
most common mechanism observed in CRAB is the production of 
carbapenemases, and the genes encoding the acquired carbapenemases 
play a key role. Among carbapenemases, the OXA enzymes are the 
most frequently reported in A. baumannii, such as OXA-23, OXA-24, 
OXA-40, OXA-51, OXA-58, and OXA-143 (29, 30). Additionally, 
metastable MBLs, including VIM, IMP, and NDM enzymes, have also 
been linked with drug resistance phenotypes in A. baumannii (11). It 
is essential to note that although KPC enzymes have primarily been 
detected in K. pneumoniae, variants of blaKPC, such as blaKPC-2 and 
blaKPC-3, have been reported in A. baumannii in a Brazilian hospital 
(31). The acquisition of blaKPC might be associated with A. baumannii’s 
resistance to carbapenems.

3.3 CRPA

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative 
bacterium commonly found in moist environments, such as washing 
tanks, aerators, respirators, and other equipment, as well as solutions 
exposed in hospital environments (32). It is a significant cause of 
healthcare-related problems, leading to urinary, respiratory, and BSIs 
in long-stay hospitalized patients (11, 33). These infections can be fatal 
in critically ill and immunocompromised patients in ICUs, and they 

may be further exacerbated by AMR (34). Infections caused by CRPA 
result in longer hospitalization periods and higher mortality rates 
compared to infections caused by carbapenem antibiotic-sensitive 
strains (35, 36). The development of CRPA involves the interaction of 
several complex resistance mechanisms. Firstly, the upregulation of 
efflux pumps (e.g., MexAB-oprM) allows for increased drug efflux, 
leading to resistance against most β-lactams (37). Additionally, the 
loss of OprD outer membrane proteins, which normally prevent the 
entry of antibiotics, coupled with the overproduction of Ambler C-like 
enzymes, can result in the near-exhaustion of P. aeruginosa’s resistance 
to β-lactams (38). Resistance to carbapenem antibiotics through 
carbapenemase production is a less common mechanism (39). Out of 
28 CRPA strains isolated in the ICU, only three strains produced KPC 
(40). However, carbapenemase production as a resistance mechanism 
appears to be increasingly common, with blaVIM in MBLs being the 
most commonly detected gene, typically encoded on plasmids that are 
highly capable of dissemination (38). In instances where CRPA lacks 
carbapenemases, resistance is typically due to the absence of OprD or 
the overexpression of efflux pumps.

4 Treatment options

Given the limited therapeutic options for extensively drug-
resistant Gram-negative bacteria, it is crucial to adopt a rational 
approach in utilizing available antibiotics to mitigate the emergence 
and spread of AMR. To effectively manage infections caused by 
CR-GNB, it is recommended to carefully select appropriate therapeutic 
agents based on the genetic characteristics of the bacteria. Below, it 
provides a concise summary of the mechanisms and efficacy of 
therapeutic selection. The activity of the treatment options on 
CR-GNB is summarized in Table 1.

4.1 Ceftazidime/avibactam

Avibactam binds reversibly to β-lactamases and exhibits activity 
against carbapenemases, thereby restoring the inhibitory activity of 
ceftazidime against the majority of CRE and CRPA. Ceftazidime/
avibactam generally demonstrates high efficacy against organisms 
producing KPC, although resistance has been observed in isolates 
producing KPC-2 and KPC-3, which may be attributable to reduced 
porin expression (41). Combination therapy could reduce mortality 

TABLE 1 List of treatment options against carbapenemase-producing Gram-negative organisms.

Treatment options CPE CRPA CRAB

KPC MBLs OXA

Ceftazidime-avibactam + − + +** −

Meropenem-vaborbactam + − − +* −

Imipenem-relebactam + − − +* −

Cefiderocol + + + + +

Polymyxins + + +

Tigecycline/minocycline + − +

Aminoglycosides + − −

+, active; −, not active; *KPC-producing CRPA; **KPC and OXA producing CRPA.
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in BSIs caused by KPC-producing K. pneumoniae (42). However, the 
use of ceftazidime/avibactam in combination with other antimicrobial 
agents for the treatment of CRE and CRPA infections did not exhibit 
significant advantages in terms of survival and cure rates (43, 44). 
Ceftazidime/avibactam alone demonstrates superior effectiveness in 
patients with OXA-48-producing CRE infections compared to 
treatment with colistin, tigecycline, and meropenem (45, 46). 
Therefore, prioritizing ceftazidime/avibactam for the treatment of 
KPC-producing or OXA-48-producing CRE, as well as CRPA, may 
improve survival rates among patients in the ICU and reduce the risk 
of renal injury, as opposed to selecting alternative drugs or multidrug 
combinations. Moreover, since avibactam does not inhibit MBLs 
(NDM, VIM, and IMP), combining it with aztreonam, a drug stable 
against metallo-β-lactamases, may be a potential therapeutic strategy 
for treating CR-GNB infections belonging to class B. The combination 
of ceftazidime/avibactam and aztreonam exhibits good in vitro activity 
against Enterobacteriaceae producing metallo-β-lactamases, with 
favorable in vitro effectiveness (47).

4.2 Meropenem/vaborbactam

Vaborbactam is a β-lactamase inhibitor that primarily targets KPC 
carbapenemases but not MBLs, as well as class D β-lactamases (48). 
On the other hand, meropenem effectively treats Gram-negative 
bacilli, such as K. pneumoniae, Enterobacter spp., and P. aeruginosa. 
Together, meropenem/vaborbactam is a novel combination that 
exhibits strong and specific activity against KPC-producing 
CRE. While Vaborbactam also possesses the capacity to inhibit ESBLs 
and AmpC β-lactamases, its supplementary activity is not necessary, 
as meropenem alone effectively stabilizes these β-lactamases. Though 
multi-agent treatments may benefit high-risk patients, mono-therapy 
may be  enough for other patients. For instance, meropenem/
vaborbactam alone showed higher cure rates and lower patient 
mortality and nephrotoxicity in individuals with predominantly 
bacteremic CRE infections compared to other drug combinations 
(49). Therefore, along with considering the type of carbapenemase, a 
successful treatment of CR-GNB infections also necessitates 
consideration of different infection types, the severity of the infection, 
susceptibility of the causative organism, and the patient’s general 
health condition. Thus, meropenem/vaborbactam is another viable 
option for KPC-producing CRE infections.

4.3 Imipenem/relebactam

Relebactam is a type of β-lactamase inhibitor, structurally similar 
to avibactam, that can inhibit common class A carbapenemases (e.g., 
KPC) and class C cephalosporinases (e.g., AmpC). In vitro, relebactam 
has been shown to reverse resistance to imipenem in KPC-producing 
P. aeruginosa but has no potentiation effect in isolates with class B or 
D carbapenemase activity (50). In an in vivo C. elegans model, 
imipenem/relebactam was found to be a significant treatment for 
KPC-producing K. pneumoniae infections (51). Furthermore, 
relebactam in combination with imipenem/cilastatin inhibited AmpC, 
thus restoring the susceptibility of P. aeruginosa to imipenem. The 
combination demonstrated better efficacy with lower mortality and 
nephrotoxicity for the treatment of patients infected with CR-GNB 

(52). It is worth noting that this study included high-risk patients with 
poor outcomes, and the combination of relebactam and IMI is a 
potential therapeutic option for ICU patients infected with 
CR-GNB. Against blaKPC-containing P. aeruginosa, Imipenem/
relebactam was shown in vitro to have a higher inhibitory activity than 
meropenem/vaborbactam but lower than ceftazidime/avibactam (53). 
Therefore, rapid diagnosis of the carbapenemase genotype of CRE or 
CRPA is significant for β-lactam/β-lactamase inhibitor combinations 
(BL/BLI) selections in clinical settings.

4.4 Cefiderocol

The recently approved BL/BLIs expand the therapeutic options 
available for KPC-producing and OXA-48-producing 
Enterobacteriaceae. Cefiderocol, the first cephalosporin containing an 
iron-based carrier, has gained approval for the treatment of 
carbapenem-resistant non-fermenting bacteria, including 
P. aeruginosa and A. baumannii (54). Current studies have 
demonstrated significant in vitro activity and effectiveness of cefodilol 
against CR-GNB (55). Cefodilol exhibits inherent stability against a 
wide range of carbapenemases, including class A, B, and D, as well as 
class C cephalosporinase hydrolases. Patients infected with KPC, 
NDM, VIM, IMP, and OXA-48 harboring CRE experiencing BSI or 
urinary tract infections can potentially benefit from cefodilol therapy 
(56). However, it is important to acknowledge that resistance may 
arise when cefiderocol is employed in the treatment of CRE. Instances 
of cefiderocol resistance in these isolates can be attributed to factors 
such as the clinical environment, in vitro exposure to cefiderocol, or 
resistance to other β-lactam antibiotics (e.g., ceftazidime or cefepime) 
prior to treatment. The application of cefiderocol in these cases carries 
a risk of mutation resulting in the development of specific mutations, 
such as NDM-5 (57), KPC-41, KPC-50 (58), and OXA-427 (59).

A study by Falcone et al. (60) conducted in the ICU featured 10 
patients with A. baumannii BSI and ventilator-acquired pneumonia. 
These individuals had previous treatment failures with antibiotics, 
including colistin, and had developed renal and hepatic injury. 
Clinical success and survival rates at 30 days were 70 and 90%, 
respectively, with cefiderocol treatment. Cefiderocol monotherapy for 
critically ill patients was revealed to result in a lower infection 
recurrence rate and higher clinical success compared to combination 
therapy using drugs like colistin (61). However, all-cause mortality 
was higher with cefiderocol monotherapy. This trend may be linked 
to the heightened risk of infection recurrence or death in critically ill 
patients, who commonly experience trauma-induced immune 
compromise, prolonged hospitalization, invasive procedures, and 
colonization of the skin by multidrug-resistant organisms. 
Consequently, in addition to the timely and accurate selection of 
appropriate drug therapy, implementing specific preventive and 
control measures against CR-GNB infections in the ICU setting 
is paramount.

4.5 Polymyxins

The newly approved BL-BLIs have emerged as the primary 
treatment options for CRE and CRPA infections. However, the 
treatment landscape for CRAB infections is becoming increasingly 
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limited. Although BL-BLI therapy is recommended for urinary tract 
infections due to the high concentration of polymyxins in the urinary 
tract, it is still considered an alternative therapy for CRAB infections 
(62). According to the 2023 guidelines by the Infectious Diseases 
Society of America (IDSA) for the management of resistant Gram-
negative bacteria infections, high-dose ampicillin-sulbactam in 
combination with other agents, including Polymyxin B, is 
recommended for the treatment of moderate-to-severe CRAB 
infections (63). Polymyxin B is specifically indicated for the treatment 
of severe infections, such as BSIs. However, the efficacy and safety of 
Polymyxin B as a monotherapy are not well-established. Thus, it is 
generally advised to administer Polymyxin B in combination with at 
least one other antimicrobial agent from a different class. Colistin, 
another approved drug from the polymyxin class of antibiotics, is 
considered a last-resort treatment for A. baumannii infections (64).

However, the emergence of polymyxin-resistant strains has been 
well-documented, potentially due to colistin’s prodrug nature and the 
prolonged presence of its active form in the body, which can 
predispose to resistance (65). Typically, colistin is recommended in 
combination with other agents for the treatment of CRE with CRPA 
infections. However, a clinical observational study (66) found that the 
difference in outcomes between patients treated with colistin sulfate 
alone versus in combination with other antibiotics was not statistically 
significant. The use of low-dose polymyxins in the treatment of 
multidrug-resistant A. baumannii infections may elevate the risk of 
mortality (66). A trial in 2018 demonstrated that colistin combined 
with meropenem treatment did not yield improved outcomes for 
severe infections caused by CR-GNB (67). Additionally, colistin 
therapy, especially when employed as part of combination therapy for 
patients with CR-GNB infections, may result in unfavorable clinical 
outcomes and potentially increase the risk of kidney injury in patients 
(68, 69). Combination therapy could heighten the probability of 
adverse effects, escalate the cost of antimicrobial therapy, and 
contribute to the development of antimicrobial resistance. Further 
clinical trials are imperative to establish the efficacy and safety of 
colistin as a complementary or alternative treatment for severe 
CR-GNB infections, particularly in cases where BL-BLI treatment 
proves ineffective.

4.6 Tigecycline and minocycline

Tigecycline is a novel intravenous antibiotic with broad-spectrum 
activity and is derived from minocycline. It has traditionally been 
considered the preferred treatment for infections caused by 
CRE. However, the latest guidelines from the IDSA recommend 
β-lactams as the primary option for treating CRE infections, with 
tigecycline as an alternate option if necessary (63). Combining 
tigecycline with colistin, carbapenems, or aminoglycosides is the most 
commonly used regimen for treating CRE infections. Studies 
comparing these combinations found that tigecycline-colistin was 
most effective against Klebsiella, while imipenem-colistin was best 
against Escherichia coli (70). Tigecycline combined with amikacin and 
colistin, or minocycline with cefoperazone-sulbactam, showed 
synergistic inhibitory activity against CRAB (71, 72). OXA-24-
producing strains are more sensitive to tigecycline-amikacin and 
OXA-23-producing strains are more sensitive to tigecycline-mucin 
use [1]. Minocycline and tigecycline have lower nephrotoxicity 

compared to mucins versus aminoglycosides and can be  used in 
combination with other drugs as another treatment option for CRAB 
(72). Notably, tigecycline-based regimens with high-doses (200 mg 
loading and 100 mg maintenance) showed lower mortality rates in 
ICU patients than standard doses (100 mg loading and 50 mg 
maintenance), and combination therapy with tigecycline was more 
effective than monotherapy (73). Consequent to exposure to 
tigecycline, resistance was induced in CRKp but tigecycline-resistant 
strains exhibited greater susceptibility to other drugs, including 
aminoglycosides, carbapenems, and cephalosporins (74). Sequential 
combination therapy with tigecycline and aminoglycosides may be a 
more effective approach to treating CRE.

4.7 Aminoglycosides

Aminoglycoside antibiotics possess strong bactericidal properties 
and remain effective in treating MDR-GNB. However, their 
application is somewhat limited due to the side effect of nephrotoxicity. 
Generally, aminoglycosides are not the primary treatment option for 
severe infections. However, they can still be considered as a therapeutic 
alternative for combating CR-GNB when other options are 
unavailable. This is usually done in combination with other drugs such 
as β-lactams (75). For instance, studies have shown that the 
combination of imipenem and amikacin has a synergistic effect on 
CR-GNB both in vivo and in vitro (76–78). Amikacin exhibits lower 
resistance than gentamicin in most CRE strains (79). Many studies 
have supported the use of aminoglycosides in the treatment of CRE 
infections in critically ill patients before the introduction of novel 
BL-BLIs (80). Furthermore, gentamicin has demonstrated the 
potential to reduce mortality in K. pneumoniae sepsis caused by class 
A β-lactamase-producing enzymes, including KPC-3, SHV-11, and 
TEM-1 (81). A recent case report highlighted successful treatment of 
a patient with a CRKp intracranial infection after craniotomy using 
intrathecal injection of gentamicin and intravenous injection of 
amikacin, which displayed gentamicin susceptibility (82).

Plazomicin, a next-generation aminoglycoside antibiotic, has 
demonstrated a lower minimum inhibitory concentration compared 
to other aminoglycosides, making it a potential treatment option for 
infections caused by carbapenemase-producing, NDM-producing 
CRE (83). In a multicenter, randomized, open-label phase III trial that 
compared plazomicin with colistin (both in combination with 
imipenem) for the treatment of severe infections in CRE, plazomicin 
proved to be effective with a relatively low mortality and complication 
rate (84). Due to the nephrotoxicity associated with aminoglycoside 
antibiotics, they are generally not used in combination with colistin. 
To ensure optimal efficacy and minimal toxicity, appropriate dosage, 
administration, and therapeutic drug monitoring of the patient are 
essential when using aminoglycosides.

5 Control strategies of CR-GNB

Infection control measures can be broadly classified into two 
types: horizontal and vertical strategies (85). Horizontal strategies 
are not pathogen-specific and aim to reduce infections caused by all 
pathogens. These strategies include standard precautions, such as 
hand hygiene, universal decolonization, and antimicrobial 
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stewardship programs. On the other hand, vertical strategies are 
designed to target specific pathogens, involving carrier screening 
and contact precautions. The debate continues as to which of these 
two approaches is more effective. Nevertheless, implementing both 
strategies in parallel in the ICU setting may optimize infection 
control. Although monitoring the transmission route of CR-GNB 
is challenging, identifying high-risk groups is relatively simple. 
Implementing targeted prophylaxis and control measures for 
patients at high risk seems to be a promising approach. Furthermore, 
predictive or early warning models for CR-GNB infection are 
currently being explored and hold potential for application in 
the ICU.

5.1 Horizontal strategies

Hand hygiene: Multi-drug resistant organisms (MDROs) have 
exhibited the ability to persist in hospital environments, such as 
floors, walls, beds, doorknobs, bedside tables, and equipment (86). 
Barnes et al. (87) developed a patient–patient transmission model 
within the ICU and compared the effects of hand hygiene and 
environmental cleanliness on MDRO acquisition rates; findings 
suggest that universal decolonization methods could eliminate 
colonization of MDRO Gram-positive bacteria. For example, 
patients in the ICU receiving mupirocin nasal injection have lower 
rates of MRSA BSIs compared to those undergoing chlorhexidine 
bathing (88). Extensively resistant MDROs, such as CRE, have 
shown poor response to chlorhexidine treatment, and current 
clinical evidence does not support the removal of patient 
colonization (89, 90). A meta-analysis indicated that ICU bathing 
with chlorhexidine significantly reduces A. baumannii colonization 
(91). Compliance with hand hygiene is widely considered as the 
foundation for preventing MDRO spread in ICUs. However, in 
hospitals with low compliance rates, proactive detection of CR-GNB 
has substantial benefits for patients when implemented with 
increased environmental cleanliness. Nevertheless, in high hand 
hygiene compliance environments, contact precautions and 
screening for CR-GNB colonization contribute little to preventing 
MDRO spread, especially for CR-GNB.

Antimicrobial Stewardship: Antimicrobial Stewardship (AMS) 
is a significant measure of importance as defined by the IDSA. It 
entails implementing coordinated interventions aimed at enhancing 
and evaluating proper utilization of antimicrobials. This is 
accomplished through facilitating optimal selection of antimicrobial 
regimens, determining appropriate dosage, therapy duration, and 
administration route. For patients in the ICU, the potential negative 
consequences of antimicrobial overuse are considered less perilous 
compared to the inadequate employment of restraints. Reports 
indicate a substantial proportion of ICU patients receiving excessive 
antimicrobial therapy, which includes treatment involving 
antimicrobials for suspected infections, utilization of overly broad-
spectrum antibiotics, delayed initiation of timely antibiotic 
de-escalation and optimization, and prolonged duration of therapy 
(92, 93). The implementation of Antibiotic Stewardship Programs 
(ASP) within the ICU setting can potentially reduce the misuse of 
antimicrobials, shorten hospital stays, minimize costs, and decrease 
the emergence of drug resistance (94). Also, the study conducted by 
Khdour et  al. (95) highlights the importance of establishing a 

well-structured antimicrobial stewardship team in the context of 
AMS. They found that timely feedback and prospective audits from 
the antibiotic stewardship team, within 48–72 h of antibiotic 
administration for ICU patients, had a positive impact on patient 
outcomes. Calcitoninogen as a biomarker in the ICU has been 
shown to reduce the use of antibiotics and mortality rates to some 
extent (96). However, further investigation is needed to determine 
the efficacy of calcitonin as a treatment indicator, and the cost of 
frequent testing must be  balanced with potential savings from 
shorter antibiotic therapy. To address the growing issue of 
carbapenem resistance, experts emphasize the importance of 
implementing clear strategies to guide the appropriate use of 
carbapenem antibiotics (97).

5.2 Vertical strategies

Rapid Diagnostic Tests: Standard microbial identification 
techniques typically take 48–72 h, while optimizing antibiotic 
therapy within the first 6–12 h of infection is critical for treating 
life-threatening infections. Rapid diagnostic tests (RDTs) provide 
assistance to ASP by contributing to timely and effective 
antimicrobial therapy, potentially reducing mortality, 
hospitalization, and costs, as well as improving antimicrobial use 
and clinical and economic outcomes. Recently developed RDTs are 
able to provide identification results within 3 h of collection and 
2.5 h after Gram staining (98). The RDTs provide an opportunity to 
rapidly optimize antimicrobial therapy, but have been shown to 
be  combined with ASP to maximize translation into improved 
patient outcomes (99). Studies have identified genotyping and 
phenotyping of Escherichia coli, Klebsiella, etc. based on RDTs to 
predict susceptibility to β-lactams (ceftazidime, piperacillin-
tazobactam, imipenem, and meropenem). RDTs can support 
downgrading decisions for the treatment of GNB infections (99).

Screening and prophylactic isolation: Patients in the ICU are 
particularly vulnerable to colonization or infection with MDRO 
either upon admission or during their hospital stay due to various 
risk factors. To reduce the spread of MDRO, it is crucial to 
implement proactive screening or isolate patients with high-risk 
factors (100). Although proactive testing methods differ among 
hospitals in different regions, they usually involve obtaining fecal/
rectal swabs from patients upon admission or at regular intervals 
(weekly or bi-weekly). This practice applies to all patients or those 
at high risk (e.g., ICU patients, those with a history of previous 
colonization/infection), with a focus on identifying CRE. Results of 
a study revealed a high incidence of CRKp colonization and a 
likelihood of eventual CRKp infection in patients who carried 
Klebsiella pneumoniae (including CRKp or carbapenem antibiotic-
susceptible Klebsiella pneumoniae) upon ICU admission (101). 
Proactive screening in high-risk units for CRE colonization or 
infection has also shown that CRE-positive patients, both neonatal 
and non-neonatal, exhibit different genotypes of carbapenemases. 
Notably, over 90% of CRE-positive neonates carry NDM. Isolating 
and placing these patients appropriately may help reduce the risk of 
CRE infection (102).

Additionally, the implementation of proactive testing and 
isolation strategies has shown a decrease in infections caused by 
CRAB and CRPA at a broader scale (103). Hospitals with limited 
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isolation facilities have commonly resorted to a contact precautions 
approach in confining ICU patients to their own beds, similar to 
horizontal measures. Notably, no transmission of resistant 
organisms, such as Klebsiella pneumoniae, was detected in these 
cases (89). Implementing universal contact precautions, regardless 
of the specific pathogen, may also impede the spread of CR-GNB 
within the ICU.

5.3 Predictive model and practical 
application

The emergence and spread of CR-GNB are influenced by various 
factors. Identifying high-risk factors to determine ideal target 
populations for proactive testing or prophylactic contact helps 
optimize the allocation of limited resources. Depending on the 
purpose of the prediction model, different target populations can 
be  selected for retrospective or prospective studies. The CR-GNB 
infection prediction model and the early warning model in Table 2 
were designed to identify patients infected with or carrying CR-GNB, 
respectively. In order to prevent the spread of CR-GNB before culture 
results are available, modeling techniques have been employed to 
assist in the pre-isolation of potential carriers of CR-GNB or patients 
who are at a high risk of infection upon admission. There is also a type 
of predictive modeling that predicts infection at a particular site. BSI 
is a severe infection characterized by positive blood cultures in 
patients displaying symptoms of systemic infection. BSI often leads to 
unfavorable outcomes for patients in the ICU, including longer 
hospital stays and higher mortality rates (109, 110). While blood 
cultures serve as the gold standard and primary tool for diagnosing 
pathogens causing BSI, they are susceptible to delays in initiating 
effective treatment due to the time required (111). In addition to 
performing timely blood cultures or rapid diagnostic tests when BSI 
is suspected, several studies have explored the use of predictive 
modeling to construct early warning models for BSI. Several studies, 
as depicted in Table  3, have developed early warning models to 
identify BSI in vulnerable populations, such as children, the older 
adults, and individuals with immunodeficiencies. These models rely 
on risk factors or biomarkers to target high-risk populations and 
implement prophylactic measures, thereby reducing the occurrence 
of BSI and the associated mortality risk. While most of these models 
have demonstrated reliable predictive performance, unfortunately, 
only a limited number of studies have conducted validation in diverse 
healthcare settings. Consequently, the geographical applicability of 
these models may be constrained due to this lack of validation across 
multiple centers.

6 Discussion

The ICU is particularly susceptible to the emergence and spread 
of CR-GNB, necessitating the urgent strengthening and 
implementation of preventive measures within this high-risk setting. 
Currently, the range of antibiotics available for treating CR-GNB 
infections is limited. In the long term, it is crucial to prioritize the 
optimal utilization of existing antibiotics rather than relying solely on 
the development of new drugs. The presence of drug resistance genes 
in CR-GNB makes it difficult to promptly diagnose the pathogen and 

select suitable antibiotics. The high-density care provided in ICUs 
further increases the likelihood of cross-transmission of drug-resistant 
gene. This greatly affects the prognosis of ICU patients.

Having a thorough understanding of the common resistance 
genes found in CR-GNB and selecting appropriate antibiotics are 
crucial prerequisites for delaying the development of resistance. 
Pathogenic bacteria producing different genotypes of carbapenemases 
may have varying sensitivities to antibiotics. Selection of rational 
antibiotics based on enzyme genotypes not only controls the patient’s 
condition in time but also delays the development of drug resistance. 
Recent studies have highlighted the efficacy of newly approved 
BL-BLIs like ceftazidime/avibactam, meropenem/vaborbactam, and 
imipenem/relebactam as the first-line therapeutic options for most 
CRE and CRPA infections. However, these BL-BLIs have been found 
to be less effective in treating CRAB. For the treatment of CRAB and 
as an alternative when BL-BLIs are ineffective against KPC, NDM, 
VIM, IMP, and OXA-48 producing Escherichia coli, cefiderocol is 
recommended. While high-dose tigecycline has shown potential 
benefits in managing CR-GNB, conclusive evidence regarding its 
superiority over standard tigecycline dosing or the comparative 
effectiveness of combination therapy versus monotherapy remains 
elusive (120, 121). Monotherapy with cefiderocol has been shown to 
be more effective than combination therapy. Polymyxins, tigecycline, 
minocycline, and aminoglycosides are generally suggested as 
combination therapies or alternative treatments for CRE. Moreover, 
CR-GNB often exhibit a significant degree of co-resistance, limiting 
the range of effective therapeutic interventions. In cases where 
CR-GNB demonstrate resistance to key antibiotics such as 
fluoroquinolones, piperacillin, third-generation cephalosporins, and 
carbapenems, only colistin, aminoglycosides, tigecycline, fosfomycin, 
ceftazidime/avibactam, and ceftolozan/tazobactam are some of the 
few therapeutic options available (122).

The RDTs play a crucial role in ensuring that patients receive 
appropriate treatment in a timely manner, thereby decreasing the 
turnaround time for empirically prescribing broad-spectrum 
antibiotics. Additionally, RDTs aid in screening patients admitted to 
the ICU for carriage of CR-GNB, which is a vital preventive measure. 
The ICU requires strict infection control measures, such as hand 
hygiene, antimicrobial stewardship, proactive screening and 
prophylactic isolation, among other common practices. Another 
valuable tool for decision support is clinical predictive modeling, 
which can forecast the carriage and infection of drug-resistant 
bacteria. Currently, these models are typically built using multivariate 
logistic regression. However, the advancement of machine learning 
technology allows for the construction of infection-related models 
using large datasets and new algorithms, potentially improving their 
stability and effectiveness. The integration of machine learning 
algorithms with RDTs holds promise for enhancing the detection of 
predominant carbapenem resistance genes within clinical isolates of 
CR-GNB (123–125). This approach also enables the refinement of 
dosing regimens through the analysis of in vitro experimental data and 
pharmacodynamic considerations, thereby supporting the ASP of 
CR-GNB infections (126). It was discovered that most of the existing 
clinical prediction models based on machine learning for relevant 
infections lacked external validation, and those that were externally 
validated displayed poor performance. This aspect may also explain 
why prediction models for CR-GNB infection or carriage within the 
ICU are not widely implemented.
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In order to improve patients’ prognosis and enhance their long-
term quality of life, it is crucial to heighten vigilance against CR-GNB 
during ICU hospitalization. As well as administering antibiotics 
rationally based on the pathogen type and susceptibility, it is vital to 
swiftly identify the carbapenemase type in CR-GNB cases and take 

appropriate measures to prevent and control associated infections. 
We anticipate the emergence of more therapeutic strategies based on 
carbapenemase genotypes. We anticipate that future studies will delve 
further into treatment options based on genotypes of drug-resistant 
bacteria. Additionally, exploring CR-GNB-related models based on 

TABLE 2 CR-GNB carriage or infection prediction models in ICUs.

Purpose of model 
application

Constructions and 
effects of the models

Factors for modeling Methods References

CR-GNB acquisition prediction 

in the ICU

 • CR-GNB culture-positive sample/

culture-negative sizes is 343/1029.

 • Model displays good result with 

an accuracy of ∼90% (no external 

validation).

(1) Increased Simplified Acute 

Physiology Score 3;

(2) Severe chronic obstructive 

pulmonary disease;

(3) Exposure to hemodialysis catheter;

(4) Central venous catheter;

(5) Mechanical ventilation.

Multiple logistic regression (104)

CR-GNB carriage prediction in 

the ICU

 • CR-GNB culture-positive sample/

culture-negative sample sizes of 

experimental and validation 

groups are 1385/1535 and 74/132.

 • RF model is the optimal model; 

AUC of model are 0.91 

(experimental cohort) and 0.92 

(prospective validation cohort).

(1) Male sex;

(2) Invasive catheterization;

(3) Single room;

(4) Mechanical ventilation;

(5) Hospital residence history;

(6) History of cephalosporins;

(7) Systolic blood pressure;

(8) Respiratory rate;

(9) Glasgow Coma Scale;

(10) APACHE II scores;

(11) White blood cell count;

(12) Hematocrit;

(13) C-Reactive protein;

(14) Direct bilirubin;

(15) Total protein;

(16) Fibrinogen

Multiple logistic regression;

RF;

XGBoost;

Decision tree

(105)

CRO infection prediction in 

patients with the first ICU 

admission

 • CRO infection sample/total 

sample sizes is 183/4531.

 • The effect is represented by the 

Nomogram; AUC is 0.723 (no 

external validation).

(1) Male sex;

(2) Hemoglobin-min;

(3) Temperature-max;

(4) Use of a peripherally inserted 

central catheter line;

(5) Dialysis treatment;

(6) Use of carbapenems

Logistic regression (106)

CR-GNB infection prediction 

in the ICU

 • CR-GNB infections sample/total 

sample size of experimental and 

validation groups are 143/205 

and 69/104.

 • The effect is represented by the 

Nomogram; AUC of model are 

0.753 (experimental cohort) and 

0.718 (validation cohort).

(1) Combination antibiotic treatments;

(2) Hospital-acquired infection;

(3) Mechanical ventilation ≥7 days

Multiple logistic regression (107)

Identification of CR-GNB 

carriers during ICU admission

 • CR-GNB carries sample/total 

sample sizes is 183/1736.

 • The effect is represented by the 

Nomogram; AUC is 0.83 (no 

external validation).

(1) Neurological disease;

(2) High-risk department history;

(3) Length of stay ≥14 days;

(4) ICU history;

(5) Invasive mechanical ventilation;

(6) Gastrointestinal tube placement;

(7) Carbapenem usage

Logistic regression (108)

CR-GNB, carbapenem-resistant gram-negative bacteria; ICU, intensive care unit; APACHE II, acute physiology and chronic health evaluation; AUC, area under the curve; RF, random forest; 
XGBoost, extreme gradient boosting.
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machine learning is expected to develop more effective infection 
control tools for ICU settings.
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TABLE 3 BSI early warning models of critical patients.

Critical patients Constructions and effects of the 
models

Methods References

Febrile children with cancer  • BSI sample/total sample sizes is 91/463;

 • The effect is represented by probability score and 

nomogram; the C-index is 0.885 (no external 

validation).

Logistic regression (112)

Severe/acute burn patients  • BSI sample/total sample sizes are 118/222 and 59/272;

 • The effects of the two models are represented by 

computing the formula and nomogram; the two 

models’ AUC are 0.84 (external validation) and 0.90 

(no external validation).

Logistic regression (113, 114)

CRE carriers in the ICU  • BSI sample/total sample size is 21/42;

 • The effect is represented by the probability score; AUC 

is 0.921 (no external validation).

Logistic regression (115)

Patients using CVC  • BSI sample/total sample size is 399/7468;

 • AUC = 0.82 (no external validation).

RF;

Forward selection;

Lasso regression

(116)

Burned children  • BSI sample/total sample size is 21/82;

 • AUC = 0.938 (no external validation).

RF; Forward selection; Lasso 

regression

(117)

Pediatric cancer patients with HSCT  • BSI sample/total sample size is 624/11183;

 • AUC = 0.74 (no external validation).

ENR; SVM; XGBoost; GBM (118)

Patients with suspected bacteremia  • In an ICU and another ICU, BSI sample/total sample 

sizes are 151/2351 and 162/1021 respectively;

 • The two models’ AUC are 0.89 and 0.92. The samples 

of the two centers are used for external verification of 

the models, and the outcomes are bad.

RF; XGBoost (119)

The burn patients correspond to the early warning models for two categories of patients, severe burns and acute burns; the patients with suspected bacteremia in the ICU correspond to two 
models constructed from two samples from different centers. The rest are single-center BSI early warning models for such critical patients. BSI, bloodstream infection; ICU, intensive care unit; 
CVC, central venous catheter; HSCT, hematopoietic stem cell transplantation; AUC, area under the curve; RF, random forest; GBM, gradient boosting machines; SVM, support vector 
machine; XGBoost, extreme gradient boosting; ENR, elastic-net regression.
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