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Background: Achieving a higher level of accessibility and equity to community 
healthcare services has become a major concern for health service delivery 
from the perspectives of health planners and policy makers in China.

Methods: In this study, we  introduced a comprehensive door-to-door (D2D) 
model, integrating it with the open OD API results for precise computation of 
accessibility to community hospitals over different transport modes. For the 
D2D public transit mode, we  computed the temporal variation and standard 
deviation of accessibility at different times of the day. Additionally, accessibility 
values for D2D riding mode, D2D driving mode, and simple driving mode were 
also computed for comparison. Moreover, we  introduced Lorenz curve and 
Gini index to assess the differences in equity of community healthcare across 
different times and transport modes.

Results: The D2D public transit mode exhibits noticeable fluctuations in 
accessibility and equity based on the time of day. Accessibility and equity were 
notably influenced by traffic flow between 8  AM and 11  AM, while during the 
period from 12  PM to 10  PM, the open hours of community hospitals became a 
more significant determinant in Nanjing. The moments with the most equitable 
and inequitable overall spatial layouts were 10  AM and 10  PM, respectively. 
Among the four transport modes, the traditional simple driving mode exhibited 
the smallest equity index, with a Gini value of only 0.243. In contrast, the D2D 
riding mode, while widely preferred for accessing community healthcare 
services, had the highest Gini value, reaching 0.472.

Conclusion: The proposed method combined the D2D model with the open 
OD API results is effective for accessibility computation of real transport modes. 
Spatial accessibility and equity of community healthcare experience significant 
fluctuations influenced by time variations. The transportation mode is also a 
significant factor affecting accessibility and equity level. These results are 
helpful to both planners and scholars that aim to build comprehensive spatial 
accessibility and equity models and optimize the location of public service 
facilities from the perspective of different temporal scales and a multi-mode 
transport system.
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1 Introduction

Spatial accessibility and equity of healthcare services, which are 
becoming increasingly important for policymakers and health 
practitioners, play a crucial role in the health and well-being of 
residents. Convincing evidence has demonstrated that spatial barriers 
between demand and supply lead to low healthcare availability and 
decreased uptake of preventive services, which may result in poorer 
health levels (1). However, planners and scholars have been unable to 
comprehensively evaluate spatial equity as it has not been previously 
operationalized (2–6).

Spatial equity is vital in public facilities as it relies on the general 
principle that all residents should enjoy equal spatial proximity or 
spatial separation from the perspective of supply and demand (4, 7–9). 
Various analytical methods have been used to analyze the spatial 
equity of healthcare facilities. Accessibility is a critical metric for 
evaluating spatial equity. Accessibility usually refers to the ease with 
which a destination location (e.g., facilities at that location) can 
be reached from an origin location (e.g., people at that location) based 
on a transport network (10). The methods used to compute 
accessibility vary among studies. In literature, accessibility measures 
are mainly classified into two major categories: location-based 
accessibility and person-based accessibility (11–13). In general, 
location-based accessibility is defined as the degree to which transport 
networks enable people to reach their desired destination (14). 
Common measures of location-based accessibility include travel time 
or travel distances, the gravity model, and the two-step floating 
catchment area (2SFCA) method as well as a series of extended 
methods (15–20). Location-based measures, which only require rough 
and small amounts of aggregated data, have been widely applied in 
large areas. However, the main limitation of traditional location-based 
measures is that they usually employ static metrics to evaluate 
accessibility levels which may vary throughout the day (21, 22).

In fact, accessibility components (people, transport, activities) are 
most often dynamic in nature. Therefore, accessibility results ought to 
also fluctuate during the day based on people’s mobility, temporality 
of traffic flow, and the opening hours of facilities. The use of the time 
dimension as a critical factor has been widely recognized in literature 
with the development of person-based accessibility research. The 
majority of person-based measures are based on the time-geographic 
framework. Compared to location-based measures, they can better 
capture the nature of individual activity behaviors under different 
spatiotemporal constraints. However, such person-based measures are 
only used in personal accessibility research and are difficult to apply 
to large-scale macro research like location-based measures (12, 15) 
because of the privacy and high cost of obtaining large samples of 
personal data.

The rapid development of Location Big Data technologies has made 
it possible to obtain a large amount of spatiotemporal location data (23, 
24). Although these spatiotemporal big data cannot meet the demand 
of person-based accessibility studies for high-precision data, they can 
provide a new data source for location-based accessibility research. In 
recent years, despite progress in time-dependent location-based 
accessibility modeling (25–27), only a few studies have considered the 
differences in spatial equity of accessibility mode at different times 
(28–30). Spatial equity based on static accessibility remains static and 
cannot reflect the results of possible fluctuations. Neglecting the 
dynamic nature of cities probably leads to biased or even misleading 
accessibility results and unreliable outcomes in terms of inequity.

Furthermore, the transport mode in urban areas is crucial for 
accessibility and equity research. Traditional accessibility measures 
assume that all people travel by car to seek healthcare services. 
However, in reality, several kinds of transport modes are available in 
big cities, resulting in great variation in the spatial accessibility and 
spatial equity computed using different transport modes (31–34). 
While numerous studies focus on the impact of different modes on 
spatial accessibility and the importance of integrating multiple modes 
to compute accessibility, far less attention has been paid to the ways in 
which equity of accessibility is influenced by different transport 
modes. This may in part be a corollary of the fact that the real travel 
time of accessibility of different transport modes is difficult to collect.

To summarize, existing studies often overlook the influence of the 
dynamics of temporality and multiple transport modes on spatial 
accessibility and equity in urban environments. To fill the current gap, 
this study computed the temporal variation and standard deviation of 
accessibility to community healthcare at different times of the day for 
the D2D public transit mode in Nanjing. For comparative analysis, 
accessibility values for three other different transportation modes were 
also computed. Additionally, this paper introduced Lorenz curve and 
Gini index to assess the differences in equity of community healthcare 
across different times and transportation modes. The primary 
objective of this study is to explore how the open hours of community 
hospitals, fluctuations in traffic flow, and various transport modes on 
spatial accessibility and equity analyses. The results are supportive for 
the spatiotemporal evaluation and optimization of public service 
facility location.

2 Materials and methods

2.1 Study area and data

The study area is in the city of Nanjing, the capital of the Jiangsu 
province, which is an important central city in eastern China (see 
Figure 1). The metropolitan area includes the main urban area and 
three sub-urban areas (Jiangbei, Xianlin, and Dongshan). The main 
urban area is located to the east of the Yangtze River with ring road to 
the west, comprising the Central, Hexi, Southern, Eastern, and 
Northern Areas.

In 2021, the total population of the study area was 4.87 million 
where male and female comprises 51.05% and 48.95% population, 
respectively. The population aged 0–14 years comprises 12.59% of the 
total population, while the proportion of the older adult aged 60 and 
above is 19.36%. Compared with other provincial capitals, Nanjing’s 
population has higher educational attainment and income levels. 
According to the 2021 Statistical Yearbook of Nanjing, the average per 
capita Gross Regional Product (GRP) was $24,217, ranked the first in 
China. And Nanjing hosts a total of 51 colleges, with the proportion 
of the population having attained an education level of college or 
higher being 35.23%, ranked the second in China.

In Nanjing, residents have access to various transportation modes 
to reach hospitals. According to the statistics, six of them are the most 
popular modes, which account for more than 98 percent (35). The six 
transportation modes are: walking (W), riding by bicycle (B), driving 
(D), public transit (PT), riding by e-bicycle (EB), and riding by 
motorcycle (MC). The number of e-bicycles and car amount were 
approximately 4.83 million and 1.46 million units respectively, with 
the former being the primary mode of transportation in Nanjing. 
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Based on our previous survey, it was observed that when individuals 
seek healthcare services at hospitals, approximately 25% of them opt 
for public transportation, while over 20% of respondents choose 
e-bicycle riding as their mode of transportation (34).

2.1.1 Healthcare service facility
Community healthcare holds significant importance in the 

development of Chinese society, and its level of development serves as 
a reflection of the aspects of social equity and welfare. Community 
hospitals are a type of healthcare facility capable of providing 
fundamental medical services. Each community in Chinese cities has 
one own dedicated community hospital. To address the strain on large 
hospitals, the Chinese government is vigorously promoting the 
development of community hospitals. Therefore, we  choose 
community hospitals as the study object in this study. The information 
on the operating hours and addresses of community hospitals was 
obtained entirely from the website (36). According to statistics, the 
majority of urban residents seek health services at community hospitals 

from 8 AM to 10 PM. Therefore, the temporal scope for spatial 
accessibility and equity in this paper was confined to this timeframe, 
and data was collected on an hourly basis. The open number of these 
community hospitals are shown in Figure 2 based on statistics.

The spatial distribution of community hospitals in the study area 
is illustrated in Figure 3A at 8 AM and 12 PM, while Figure 3B displays 
their distribution at 6 PM and 10 PM. To mitigate the impact of 
classical edge effects inherent in spatial analysis, community hospitals 
within a 2 km radius of the study area are also considered as part of 
the study.

2.1.2 Population multilevel cell division of the 
study area

When computing accessibility, previous literature extracted 
population data from national census records, which often take the 
whole administrative region as a single discrete point in space. However, 
the spatial resolution of this kind of data is too low to meet the needs of 
high-precision accessibility computing. In this study, we distributed 

FIGURE 1

Study area.
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population data among grid cells, rather than concentrating it at a single 
point in the administrative centre (Figure 4). The population data was 
downloaded from the Resource and Environment Science and Data 
Centre. To account for varying population densities and reduce the 
computational load, we  implemented two distinct grid cell sizes. 
Specifically, a grid size of 500 m × 500 m was utilized for the main urban 
area, while the sub-urban areas were represented using a grid size of 
1,000 m × 1,000 m. The study area consisted of a total of 1,512 cells, with 
964 located in the main urban area and 548 in the suburban areas.

2.2 Methods and definitions

2.2.1 Travel time to the closest hospital based on 
the D2D method

Although various types of accessibility models have been 
proposed in healthcare field, the minimum travel time stands out as 
one of the most direct and effective method for accessibility evaluation. 
This method is particularly well-suited for research focused on seeking 
services nearby. Therefore, we specifically applied the minimum travel 
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FIGURE 2

Number of community hospitals open during the day.

FIGURE 3

Spatial distribution of community hospitals that are open at four different times: (a) 8  AM and 12  PM; (b) 6  PM and 10  PM.
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time method from each population point to the nearest 
community hospital.

Traditional methods for computing travel time often rely on 
simple, static road network models, which can deviate significantly 
from actual travel time outcomes. Results obtained from open map 
APIs, on the other hand, are grounded in real road network structures 
and dynamic traffic cost statistics, rendering them more accurate than 
those derived from traditional methods. Despite this accuracy, factors 
such as additional walking, parking costs, and time expenses for 
uncollected roads outside the road network can impact final 
accessibility results. To address these considerations, this paper 
introduces a D2D model, integrating it with crawled OD cost API 
results to enhance the precision of accessibility computations at 
different times.

In contrast to traditional methods, the D2D method takes into 
account more detailed travel aspects, including traffic congestion, 
necessary transfer times, and walking durations, all of which can 
significantly influence travel cost results (37). Based on the survey 
conducted in the study area in our previous study, the most 
frequently used transport modes to the health service facilities 
mainly include e-bicycle riding, driving, and public transit (34). To 
show the entire parts of the journey, we  introduce three D2D 
models: riding, driving, and public transit, as illustrated in 
Figure 5.

The total travel times for the three types of transport modes using 
the above D2D method are expressed in Eqs. (1)−(3):
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where TOB, TOP , and TOM  are the necessary walking times from 
the origin to the bus station, metro station, and car parking, 
respectively. TMM , TBB, and TPP are the travel time by metro, bus, and 
car, respectively. T TMD BD, , and TPD are the travel time from the metro 
station, bus stop, and car parking to the final destination, respectively. 
Optional travel time are denoted with ‘()’, encompassing TBB (possibly 
multiple times), TTC (traffic congestion), and TTT  (traffic transfer). TTT 
is the transferring time for both bus/metro and stop/station. TWAIT  is 
the waiting time for bus/metro arrival and departure.

The total travel time for a given route is defined as the shortest 
time from the origin to the destination among all possible paths for a 
specific mode. In our study, we  designated the population cell 
centroids (refer to Figure  4) as the origin points and community 
hospital points (refer to Figure 3) as the destination points. While the 
Baidu Map API platform can provide dynamic travel costs for driving 
mode at different times of the day, it does not offer dynamic travel 

FIGURE 4

Grid-based spatial distribution of population in study area.

FIGURE 5

Three types of D2D transport modes.
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costs for public transit mode. Simultaneously, the variations in travel 
costs for riding modes are minimal in the study area. As a result, 
we collected travel times for driving and riding modes by integrating 
the D2D model with Baidu Map API data. Additionally, travel times 
for public transit mode were collected by integrating the D2D model 
with Chelaile API data. Chelaile platform can supply the dynamic 
travel costs in public transit mode for different time of the day. The 
computing procedures of the OD travel cost using Baidu Map APIs 
are shown in Figure 6.

In the computation of travel costs for the three D2D transport 
modes, the following rules were applied: In the presence of an off-road 
origin or destination point, we treat the transport mode traveling from 
this point to the nearest road as walking mode, with a set speed of 
1.2 m/s. The parking time and searching time for e-bicycles are both 
set at 1 min, while for cars, they are set at 5 min. Additionally, the 
average waiting time for buses or metro is set at 3 min for each trip.

2.2.2 Lorenz curve and accessibility Gini index
The above travel time is a highly used measure of the accessibility 

of any origin point to a public health service facility. However, this 
index fails to consider crucial information such as population demand, 
making it difficult to conduct intuitive and quantitative analyses of the 
inequality in the accessibility of public facilities. Delbosc and Currie 
(38), and Bhandari et al. (39) introduced an innovative methodology 
that leverages the Lorenz curve, a concept borrowed from economics, 
to evaluate the equity in the distribution of public transportation 

services. This approach was applied to analyze how public 
transportation resources are allocated relative to population and 
employment sectors in Melbourne and Delhi, providing a novel 
perspective on the equity of public transportation provision.

Additionally, the Gini coefficient is a quantitative index derived 
from the Lorenz curve, which can measure the overall degree of 
inequality. Jang et al. (33) employed a comprehensive approach utilizing 
the Lorenz curve and Gini coefficient based on accessibility to assess the 
spatial equity of public transportation in Seoul. There, in our study, 
we  introduced the Lorenz curve and Gini index to assess how the 
general spatial equity of community hospital changes throughout the 
day. A higher Gini index indicates greater inequality, where individuals 
with high accessibility receive a much larger percentage of the total 
accessibility of the population. The Gini index values range from zero 
to one, where zero signifies absolute spatial equity, and one denotes 
perfect spatial inequity. Gini values under 0.2 indicate low spatial 
inequity, those between 0.2 and 0.5 denote medium spatial inequity, and 
values above 0.5 represent high spatial inequity. The mathematical 
formula of the Gini index is provided in Eq. (4).

 
Gini X X Y Yk k k kk

n� � �� � �� �� ���1 1 1
0  

(4)

where Xk  is the cumulative proportion of the accessibility value 
with X0  = 0, X1 = 1, and Y  is the cumulative proportion of the 
population value with Y0 = 0, Y1 = 1 (k  = 0 … n).

FIGURE 6

Technical flow chart of getting OD travel time of a given route.
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In this study, the acquisition and processing of travel time data, as 
well as the computation of the Lorenz curve and Gini index, were all 
implemented using the Python programming language.

3 Results

3.1 Temporal variation of accessibility by 
public transit at different times of the day

In a large Chinese city, people usually seek medical services at 
health facilities either by public transit or e-bicycles (34). Here, we use 
the public transit mode as an example to illustrate the impact of 
varying time on the spatial accessibility of community hospitals. 
According to statistics from the Baidu Map Transportation Big Data 
Platform (40), peak hours typically occur at 8 AM and 6 PM on 
weekdays, while traffic is relatively smooth at 12 AM and 10 PM 
during the day and night, respectively. Additionally, these four times 
coincide with significant fluctuations in the opening numbers of 
community hospitals. Therefore, we measured travel times between 
the centroids of the grid cell and community hospitals at 8 AM, 12 PM, 
6 PM, and 10 PM.

The temporal variation in accessibility to the closest community 
hospitals is shown in Figure 7. In this study, we assume that smaller 
travel times indicate better accessibility, while larger travel times 
signify lower accessibility. As illustrated in Figure  7, four distinct 
accessibility patterns emerge, highlighting the significant impact of 
varying time on the accessibility of community hospitals.

In general, accessibility in urban areas is significantly higher at 
8 AM, 12 PM, and 6 PM compared to suburban areas. Community 
hospitals are relatively concentrated in urban areas, and the spatial 
distribution of open community hospitals during these three periods 
is relatively even. However, overall accessibility is suboptimal. Only 
10% of the population can reach their closest community hospitals 
within 15 min, the threshold set by the Nanjing Municipal 
Government for the service circle. Furthermore, although more 
community hospitals are open at 8 AM compared to 12 PM, the overall 
accessibility is worse at 8 AM. This is primarily due to the morning 
rush hour on weekdays, which is the most congested time of the day 
in the study area.

At 10 PM, a significant number of community hospitals are 
closed along Ruijin Road and in the Northern and Western Areas 
of urban areas, leading to a rapid increase in travel time for these 
regions, especially in the Northwest region of the main urban area. 
According to statistics, 45% of the population in the main urban 
area experiences an accessibility value exceeding 30 min at 
10 PM. However, at 12 PM, only below 1% of the population faces 
a travel time exceeding 30 min. This suggests that, due to the 
relatively high population density of the main urban area, the 
closing time of many community hospitals has a more pronounced 
impact on accessibility and equity.

The majority of low-accessibility areas are situated in the suburban 
areas outside the urban centre. The number of open community 
hospitals in Dongshan remains relatively stable at all four moments, 
and accessibilities also tend to be consistent. However, in the other two 
suburban areas, their accessibilities are significantly influenced by the 
opening hours of community hospitals and traffic flow. For instance, 

traffic flow plays a crucial role in the accessibility of community 
hospitals in Jiangbei. Although the number open at 12 AM is 2 less 
than that at 8 AM, the accessibility of the central area is noticeably 
higher than that at 8 AM (compare Figures  7A,B), with a large 
population facing travel times above 36 min (indicated by blue color 
in Figure 7A). Xinlin area is vast, but there are very few community 
hospitals. Unfortunately, only 1 or 2 hospitals are open at 12 AM, 
6 PM, and 10 PM, resulting in extremely low accessibility outside the 
community hospitals. More than 95% of the population has to spend 
more than 15 min to reach the closest community hospital located at 
the border with the central city for healthcare services. This situation 
is undeniably unfair, especially for low-income families without cars.

Figure 8 illustrates the hourly relationship between the cumulative 
percent of the population and the temporal variation of travel time to 
the closest hospital from 8 AM to 10 PM. Approximately 50% of 
people in this study could reach the closest hospital within 20 min for 
all 15 time scenarios. However, while it took 18.8 min at 8 PM, it only 
took 13.2 min at 2 PM. The same number of hospitals are open 
between 8 AM and 11 AM, but the travel cost gradually decreases due 
to the impact of traffic mitigation. The curves for 12 PM and 1 PM 
almost completely coincide. The travel times at 2 PM, 3 PM, and 4 PM 
are similar to those at 8 AM and 9 AM but with a slight increase. At 
5 PM, 6 PM, and 7 PM, the travel cost increases dramatically compared 
to that of 4 PM. The number of open hospitals at 8 PM, 9 PM, and 
10 PM is almost the same. With the improvement of traffic, the travel 
cost gradually reduces. The results are consistent with the above 
conclusion that temporal accessibility changes significantly when 
considering the open hours of hospitals and traffic flow at 
different times.

To facilitate a better comparison of the spatial difference in 
accessibility dispersion between daytime (8 AM–5 PM) and nighttime 
(6 PM–10 PM), we  computed the standard deviation based on 
accessibility at 10 different time periods during the day and 5 different 
time periods in the evening, as illustrated in Figure 9. The figure 
highlights the noticeable differences in accessibility standard 
deviation between day and night. The highest values of accessibility 
standard deviation are primarily concentrated in the northeast of 
Xianlin, exceeding 6.0. Additionally, during the daytime, the 
accessibility standard deviation is prominent along the Yangtze River 
area of Jiangbei, the northwest of Xianlin, and the northern part of 
the main urban area. In the evening, the maximum standard 
deviation of accessibility is mainly concentrated along the Yangtze 
River in the main urban area, although it is smaller than during 
the daytime.

In this context, it can be inferred that both the traffic congestion 
and open hours of community hospitals over time have an 
important impact on the accessibility of community hospitals, the 
latter (‘open hours’) more strongly. Whether the hospital is open or 
not directly determines the presence or absence of hospital 
services, while traffic congestion only affects the longevity of the 
travel time. The people in the main urban area along the river and 
the northwest of Xianlin are located on the borders of townships 
and have fewer opportunities to seek medical care as compared 
with residents of other areas. Therefore, extending the open hours 
of hospitals or adopting a dynamic allocation of healthcare service 
resources can possibly allow residents to enjoy medical 
services equitably.
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3.2 Temporal variation of spatial equity at 
different times of the day

Figure 10 illustrates the variation curve of the accessibility Gini 
value from 8 AM to 10 PM. The number of open community hospitals 
remains constant from 8 AM to 11 AM. The time-varying trend of the 
Gini value between 8 AM and 11 AM generally aligns with that of 
traffic flow. According to the Baidu Map Transportation Big Data 
Platform, the morning peak around 8 AM is consistently the heaviest 

moment of the day in Nanjing. Correspondingly, the Gini value at this 
moment is the largest of the three time scenarios. As traffic conditions 
gradually ease, the Gini value steadily decreases after 8 AM. The Gini 
value reaches a turning point at 10 AM, exhibiting a ‘V’-shaped curve 
from 8 AM to 1 AM. By 10 AM, the Gini value falls to 0.246, marking 
the lowest point for the day. It can be concluded that 10 AM is the 
moment with the best overall spatial layouts in the study area.

The Gini value begins to gradually increase due to the onset of the 
noon rush hour. Affected by the reduced number of open community 

FIGURE 7

Travel time to closest facility of each population grid at four different times of day: (a) 8AM; (b) 12AM; (c) 6 PM; (d) 10PM.
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hospitals, the Gini values at 12 PM and 1 PM increase further than that 
at 11 AM (see Figure 2). At 2 PM, 3 PM, and 4 PM, several community 
hospitals reopen, resulting in smaller and stable Gini values during 
these periods. From 5 PM to 10 PM, the number of open community 

hospitals decreases, and the Gini value during these moments shows 
a gradually increasing trend. Until 10 PM, a significant number of 
daytime community hospitals along the Yangtze River in the main 
urban area and Xianlin suburban area, coupled with the high-density 

FIGURE 8

Relationship between percent of population and travel time to the closest hospital at different times.

FIGURE 9

Spatial distribution of accessibility standard deviation of community hospitals in day (a) and night (b).
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population in the main urban area, contribute to a rapid increase in 
the travel time from population points to the closest hospital. The Gini 
value is highest at 10 PM, reaching 0.504. Therefore, 10 PM is the 
moment with the worst overall spatial layouts in the study area.

3.3 Impact of different transport modes on 
spatial equity

To compare the accessibility differences between the D2D public 
transit mode (PTM) and the other three modes, Figure 11 illustrates 
their accessibilities to the closest community hospitals, generated by 
the simple driving mode without the D2D method (SDM), D2D 
driving mode (DM), and D2D riding mode (RM), respectively. The 
simple driving mode is a commonly used transport mode in 
traditional accessibility studies, utilizing the speed limit value of the 
road or setting a fixed speed based on the road level. It does not 
consider every part of the OD travel route. The travel time of the SDM 
in this study is computed using the ArcGIS OD Cost Matrix Tool. The 
other three modes are all based on the above D2D model and Baidu 
Map API data. To mitigate the impact of traffic flow on spatial equity 
between different modes, the collected time of travel cost is set at 
10 AM, which is the peak traffic period in the study area.

As shown in Figure  11, these three modes generate similar 
accessibility distribution patterns to the above PTM, with high 
accessibility values in the main urban area and low accessibility values 
in the suburban area. Additionally, proximity to the community 
hospital corresponds to better accessibility. However, each 
transportation mode exhibits unique spatial accessibility 
distribution characteristics.

Whether in the main urban area or suburban area, the 
accessibility of D2D driving mode is generally better than the public 

transit mode. In the main urban area, only 6% of the population 
have to spend more than 15 min to reach the closest community 
hospitals, while in the suburban area, 33% of the population face a 
travel time exceeding 15 min to reach the closest community 
hospitals. However, in D2D driving mode, people face challenges 
such as high parking costs and traffic congestion. In D2D riding 
mode, 40% of the total population can reach the closest community 
hospital within 5 min, which is notably better than other modes and 
areas. Compared with the other three transport modes, SDM shows 
better accessibility than the other three modes. The primary reason 
is that this mode ignores D2D details, significantly reducing 
travel costs.

Taking into account the spatial accessibility of the four 
transport modes (DM, SDM, PTM, and RM), our attention is 
directed toward assessing the influence of these modes on the 
spatial equity of accessibility simultaneously. In order to depict the 
impact of different transport modes on the overall spatial equity of 
community hospitals, Figure 12 illustrates the accessibility Lorenz 
curves and the corresponding Gini values for each of the four 
transport modes.

As shown in Figure 12, the Lorenz curve and Gini values for the 
accessibility of community hospitals across the four transport modes 
exhibit considerable variations, underscoring significant differences 
in the spatial equity of community hospitals contingent upon the 
chosen transport mode. The Gini values of DM and PTM are at 0.327 
and 0.386, respectively, representing levels deemed ‘relatively 
reasonable.’ This observation may be attributed to the comparatively 
faster driving speeds associated with DM and PTM, resulting in 
relatively smaller disparities in accessibility.

It is noteworthy that, despite the RM having a smaller accessibility 
standard deviation than the PTM in the study area, its Gini value is 
0.086 higher than that of the PTM, reaching 0.472 and representing a 

FIGURE 10

Varying curve of accessibility Gini value from 8  AM to 10  PM.
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‘poor’ equilibrium level. This disparity may stem from the more 
pronounced polarization of travel time in the RM. Individuals in 
proximity to the hospital can reach it quickly, while those situated 
farther away must expend significantly more time to access healthcare 
services while riding. In the PTM, there are fewer instances of 
individuals experiencing extremely high or extremely low travel times. 
Therefore, it can be  concluded that the spatial distribution of 
community hospitals in the PTM is more equitable compared 
to riding.

Compared with the other three transport modes, the Lorenz curve 
of the traditional SDM is closer to the line of absolute equity. The Gini 
value is only 0.243, which is the smallest among the four transport 
modes. Due to its ease of implementation in GIS, computing methods 
with SDM were frequently utilized in previous studies. However, this 
method overlooks traffic congestion and necessary walking, leading 
to an underestimation of the level of spatial equity of community 
hospitals. With the introduction of the D2D model and the reduction 
in OD opening API data collection costs, this mode is likely to be less 

FIGURE 11

Travel time to closest facility at three transport modes (unit: minutes).
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used due to its tendency to overestimate the accessibility of 
healthcare services.

4 Discussion

Current research predominantly utilizes static metrics to gauge 
equity in healthcare accessibility. These studies frequently overlook the 
dynamic nature in accessibility and equity over space and time, which 
are inherent to the constantly evolving landscape of our mobile, 24/7 
societies (14, 41–43). Open hours and traffic flow can be  direct 
influencing factors in accessibility and equity as time changes. This 
study found that the accessibility and equity of community healthcare 
during the daytime in the study area were generally higher, while they 
were lower during the night. Moreover, compared to traffic flow, the 
impact of opening hours on the equity of accessibility is more 
significant. These findings are potentially valuable for evaluating 
public facility locations and resource planning, yet they have been 
consistently overlooked in previous research (44, 45). Although traffic 
congestion remains a challenging social issue with no short-term 
solutions, the flexibility of hospital operating hours presents an 
opportunity. Improving community health services could be achieved 
through extended hospital hours or dynamic allocation of medical 
resources at varying times throughout the day.

The study also found that the transport modes are also important 
factors affecting accessibility and equity level. However, the 
predominant focus of accessibility equity studies in health research 
has been on the analysis of single transport modes, predominantly 
centered around car travel. As pointed by Tahmasbi et al. (46) and Hu 
et al. (47), the selection of transportation mode is related to multiple 
factors, including the patient’s health condition and income level, 
travel costs, traffic comfort, hospital’s strength, etc. In case of 
community hospitals in Nanjing, people typically visit for physical 
examinations, vaccines, or minor ailments, with riding and public 

transit being the most common modes of transportation for obtaining 
healthcare services. However, for other healthcare services such as 
hospital first aid, ambulances or private cars are frequently favored in 
the majority of cases due to time-saving considerations (48). Therefore, 
when assessing the spatial equity of public service facilities, the 
evaluation should be primarily based on the most predominant modes 
of transportation, rather than single mode or rarely selected modes 
of transportation.

Additionally, our results indicate that traditional static, rough 
methods of calculating travel time costs often lead to an overestimation 
of spatial accessibility or equity. This method was easy to implement 
in practice by utilizing GIS software, as it did not require consideration 
of many travel details and traffic dynamic characteristics, which was 
used extensively in previous study (49). However, the recent open data 
and novel data sources have made it possible to carry out more 
realistic and detailed spatial analyses (50, 51). To offer more reliable 
estimate, we distributed population data among grid cells instead of 
concentrating it at a single point in the administrative centre. 
Additionally, to obtain more precise OD travel time, we divided the 
real travel path into two parts: “on-road” path and “off-road” path. 
We utilized a network mapping approach to calculate “on-road” travel 
time, which has been demonstrated to be  more straightforward, 
precise, and effective. In this study, the travel time of “off-road” path 
is not disregarded as previous studies (52, 53). Instead, it is quantified 
through pedestrian travel from an off-road point of origin or 
destination to the nearest road. This result is more objective, realistic, 
and reliable for depicting accessibility equity level.

5 Conclusion and limitation

This study is to investigate how the open hours of community 
hospitals, fluctuations in traffic flow, and different transport modes 
influence spatial accessibility and equity level. The conclusions 
obtained are as follows: (1) The proposed method combined the D2D 
model with the open OD API results is effective for accessibility 
computation of real transport modes. Our proposed approach is 
generic and widely applicable given that it is built on openly available 
input data sources that are available for hundreds of regions 
worldwide. (2) Spatial accessibility and equity of community 
healthcare experience significant fluctuations influenced by time 
variations. This insight could inform policymakers and urban planners 
in developing flexible strategies to address temporal variations in 
accessibility and equity, thereby enhancing the resilience and 
responsiveness of healthcare delivery systems. (3) The transportation 
mode is also a significant factor affecting accessibility and equity level. 
It is essential to not only consider optimizing the spatial and temporal 
distribution of community hospitals to enhance accessibility equity 
but also prioritize interventions that promote more equitable access 
to transportation options, especially for marginalized communities 
disproportionately affected by spatial disparities. These results are 
helpful to both planners and scholars that aim to build comprehensive 
spatial accessibility and equity models and optimize the location of 
public service facilities from the perspective of different temporal 
scales and a multi-mode transport system.

Our study has several limitations. Firstly, our study does not 
account for people’s spatiotemporal mobility. In fact, individuals from 
different social groups engage in complex activities at various times 

FIGURE 12

Accessibility Lorenz curve and accessibility Gini value of community 
hospitals under the four transport modes.
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and locations. Therefore, there is a dynamic spatial distribution of the 
population over time in our societies. Future studies should aim to 
propose a comprehensive framework modeling spatial accessibility 
and equity that captures the dynamic nature of all three accessibility 
components (people, transport, activities) in dynamic cities. Secondly, 
due to constraints on obtaining OD travel time data at the same 
moment, the multilevel cell defining the study area was defined as 0.5 
and 1 km. These limitations may reduce the accuracy of the study. 
Thirdly, while this study focuses on location-based accessibility and 
equity, this method pays more attention to the spatial relationship 
between geographical locations. However, there is a lack of 
consideration for individuals or special groups (such as older adult, 
office workers, students, etc.) who are active in geographical space. An 
important direction for future research is how to measure spatial 
accessibility equity for individuals or special groups engaged in 
various activities at different times and locations.
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