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Asthma is a highly prevalent inflammatory condition, significantly affecting nearly 
six million U.S. children and impacting various facets of their developmental 
trajectories including neurodevelopment. Evidence supports a link between pediatric 
environmental exposures in two key areas: asthma and executive function (E.F.). 
E.F.s are a collective of higher-order cognitive processes facilitating goal-oriented 
behaviors. Studies also identify asthma-associated E.F. impairments in children. 
However, limited research has evaluated the inter-relationships among environmental 
exposures, asthma, and E.F. in children. This review explored relevant research 
to identify and connect the potential mechanisms and pathways underlying 
these dynamic associations. The review suggests that the role of the pediatric 
exposome may function through (1) several underlying biological pathways (i.e., 
the lung-brain axis, neuroendocrine system, and hypoxia), which could drive 
asthma and maladaptive E.F. in children and (2) the relationships between the 
exposome, asthma, and E.F. is a bidirectional linkage. The review reveals essential 
synergistic links between asthma and E.F. deficits, highlighting the potential role 
of the pediatric exposome.
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Highlights

 •  Accumulating scientific evidence supports a link between environmental exposures and 
asthma and executive function, respectively, and a link between asthma and executive 
function in children.

 •  There is a gap on the evaluation of the complex synergistic link between environmental 
chemical exposures, asthma, and E.F. outcomes in children.

 •  This review explores relevant research to identify and connect the potential mechanisms 
and pathways underlying these dynamic associations.

 • We will focus on the chemical exposure due to its heightened risk for children’s health.
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1 Overview of the exposome and 
pediatric health

The exposome represents a comprehensive assessment of the 
environment (1) including all the chemical and non-chemical 
exposures an individual encounters throughout their life course and 
how these exposures influence human development and health (2, 
3). The exposome can be divided into two domains although there 
is considerable overlap in the 2 domains: (1) external and (2) 
internal exposome (4, 5). External refers to exposures external to 
the human body involving chemical, physical, and psychosocial 
mechanisms such as environmental contaminants (e.g., heavy 
metals, pesticides, and other persistent organic pollutants) and 
non-chemical environmental exposures (e.g., diet, stress, climate, 
infections, among others). Internal refers to the biological processes 
within an organism involving molecules, internal chemical 
components (such as endogenous metabolites and exogenous 
chemicals derived from the environment), and biological reactions 
to external exposures (2). Comprehensively identifying 
environmental factors affecting pediatric health and well-being 
requires understanding the exposome. Investigating the exposome 
offers an opportunity to explore multiple ecological layers affecting 
health, including environmental biomarkers, biological mechanistic 
pathways, and adverse health outcomes, particularly during 
sensitive and critical developmental stages of life, as it provides 
researchers and scientists with invaluable insights to explore causal 
interactions among and between the exposome for formulating 
effective prevention strategies.

Environmental exposures begin in-utero and can interact with 
various developmental processes including genetics, epigenetics, and 
physiological mechanisms starting prenatally through childhood. 
Specifically, the exposome is critical as the early years of life are 
highly susceptible to increased physiologic disruptions, increasing 
the risk for exposure-associated health outcomes that can have long-
term effects (6). Evidence has shown that the pediatric exposome 
involving chemical exposures such as essential and nonessential 
metals, per-and poly-fluoroalkyl substances (PFAS), pesticides, 
phthalates, and air pollution has been associated with a range of 
adverse developmental health outcomes, including respiratory 
disease and maladaptive cognitive development. Due to children’s 
distinctive biological composition and behaviors, environmental 
exposures are more hazardous and detrimental to their health than 
adults. Childhood is a time of rapid physiologic growth and 
development, during which various biological systems and organs are 
at different maturation stages, often with underdeveloped 
detoxification mechanisms (7, 8). Moreover, children suffer from 
greater exposure levels as they consume more environmentally 
contaminated substances relative to their body weight than adults. 
They also engage in unique behaviors that introduce them to different 
routes of exposure, including spending more time outdoors (9, 10) 
and engaging with different consumer products (11, 12). This 
increased vulnerability is concerning, especially with the rising 
occurrence of environmental exposure-related diseases like asthma 
and cognitive impairments in executive functions (E.F.s).

Accumulating scientific evidence supports a link between 
environmental exposures and (1) asthma and E.F.s and (2) a link 
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This diagram illustrates the underlying pathways between the exposome, lungs, and E.F. The lungs and the brain are interconnected through neuro, 
endocrine, and immune signaling pathways. Exposomic factors affect the lungs, which can cause asthma, and this, in turn, affects E.F. through 
metabolic signaling pathways that send metabolic signals from the lungs to the brain. 
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between asthma and E.F. in children, but little to no research has 
evaluated the complex synergistic link between environmental 
chemical exposures, asthma, and E.F. outcomes in children. This 
review primarily explores relevant research to identify and connect 
the potential mechanisms and pathways underlying these dynamic 
associations. Our focus is directed toward chemical exposure due to 
its heightened risk for children’s health. Thus, this narrative review 
will (1) provide a comprehensive review of the literature on the 
relationships between chemical exposures on (a) respiratory disease 
and (b) E.F.s; (2) leverage the literature to investigate the (c) link 
between asthma and E.F. dimensions and (d) the dynamic role of the 
exposome in the underlying pathways between asthma and E.F.s; and 
(3) conclude with an discussion on the needs regarding future 
research in this area.

2 Chemical exposures and respiratory 
disease in children

Respiratory diseases are associated with significant global 
mortality and morbidity, especially among infants and young 
children (13). Asthma is one of the most common chronic diseases 
in children worldwide (14–17). Globally, approximately 300 million 
people have asthma, and an estimated 100 million more people, 
mostly children, will have asthma by 2025 (18, 19). In the U.S., 
asthma and wheezing disproportionately affect specific groups, 
including children from urban, low-income, or racial/ethnic 
minoritized backgrounds. Moreover, socioeconomic status is 
inversely related to lung function (20). Early-life lung function is also 
an essential predictor for peak lung function in adults, as well as later-
life declines in lung function (21, 22). Lung growth correlates with 
lung function during childhood and adolescence (23, 24) and predicts 
later-life respiratory disease (21, 24), early multi-morbidity (25), and 
premature mortality (25, 26).

Prenatal environmental exposures have been associated with 
respiratory diseases and can potentially alter lung development and 
growth in childhood and adulthood (27, 28). Lung development 
begins in utero through a carefully orchestrated sequence of events 
vulnerable to disruption by environmental insults leading to 
alterations in lung development, affecting the structure and 
function of the respiratory system across the life span. Therefore, 
identifying early life risk factors that may be  amenable to 
intervention can provide mechanistic information to better 
elucidate the link between environmental exposures and childhood 
respiratory disease and inform the timing of public 
health interventions.

The fetal environment has been shown to be an unrecognized 
contributor to disease risk (29, 30), including lung disease (31–34). 
Lung development begins prenatally through a carefully coordinated 
sequence of events vulnerable to disruption by even relatively 
low-dose environmental exposures, which can alter the maturation 
of organ systems later in life (35). During the first half of gestation, 
the development of bronchi occurs along with the branching of the 
airways (36). Throughout the second half of gestation, the alveoli 
develop, and the lungs continue to mature in number, size, and 
complexity of the alveoli years after birth (37). Classifying modifiable 
early life risk factors can illuminate the mechanisms linking 
environmental exposures to childhood respiratory disease, paving the 

way for targeted interventions (36). To further explore these 
mechanisms, the following section investigates the associations 
between specific chemical exposures and respiratory health outcomes 
among children. This builds on modifiable early life risk factors 
outlined in this section.

3 Associations between chemical 
exposures and respiratory health 
outcomes

3.1 Metals

Metals, specifically manganese (Mn) and lead (Pb), have been 
associated with adverse respiratory health outcomes and lung 
function deficits in children (36). Mn and Pb are the most common 
metals individuals are exposed to. Although not well studied in 
children, Cd is a well-known respiratory toxicant from occupational 
exposure. These metals are naturally occurring and have 
anthropogenic sources (36, 38). There is increasing evidence that 
suggests that prenatal metal exposures adversely affect the subsequent 
development of allergic diseases in children (39–43). Prenatal metal 
mixture exposure was associated with childhood allergic rhinitis (39). 
Prenatal lead was associated with an increased risk for atopic 
sensitization to common aeroallergens in children at 5 years of age in 
Poland. These results suggest that low levels of in-utero lead exposure 
may be implicated in the process of allergic sensitization (44). In 
Italian adolescents, personal air manganese levels were associated 
with greater odds of reported asthma and asthma medication use 
(45). Exposure to lead has also been associated with lung function 
deficits in children (46–48). In Mexico City, researchers found 
associations between prenatal Pb and childhood lung function were 
modified by disrupted maternal cortisol in pregnancy and child 
sex (49).

3.2 Per- and polyfluroalkyl substances

Per-and polyfluroalkyl substances (PFAS) are industrial chemicals 
used in numerous commercial products, which include fabric, cookware, 
and food container coatings (50). They are also used for aqueous film-
forming foams used in firefighting (50–53). PFAS bioaccumulates with 
the highest concentrations detected in the liver and blood (50). It has 
been phased out of productivity in the United States, and alternative 
PFAS has taken its place. When PFAS is inhaled, it targets the lung, and 
it is known to modify lung surfactant function and proinflammatory 
responses (50, 54–58). Previous studies have reported associations 
between exposure to PFAS and asthma, airway hyper-responsiveness 
(AHR), and inflammation (50, 59–61). There have been inconsistencies 
(62, 63) in the studies reporting positive associations between exposure 
to PFAS and asthma-related outcomes in children (64, 65). In Norway, 
total PFAS serum concentrations were associated with the occurrence of 
asthma (50, 66) Total perfluorooctane sulfonic acid (PFOS), linear PFOS, 
and linear perfluorohexane sulfonate (PFHxS) doubled the odds of 
asthma (50, 66). A correlation was found between recurrent respiratory 
tract infection and perfluorobutane sulfonic acid (50, 67). PFAS exposure 
likely alters lung biology influencing asthma, and airway hyper-
responsiveness (50).
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3.3 Phthalates

Phthalates are a group of ubiquitous endocrine-disrupting 
chemicals used as plasticizers in various industrial commodities and 
as additives in cosmetics (68, 69). They are used in cosmetic and 
personal care products, food packaging, toys, containers, shower 
curtains, and cleaning and building materials (70, 71). Phthalates 
with low molecular weight are commonly used in solvents, 
medications, alcohol denaturants, and fixatives (70, 72). Phthalates 
can accumulate at measurable concentrations in various 
environments, which include fresh water, soils, atmosphere, 
sediments, and landfills (69). Individuals are exposed to phthalates 
daily through diet, inhalation, breastmilk, and skin contact (69). 
Phthalate metabolites can also cross the placenta and have been 
detected in cord blood, amniotic fluid, placental tissue, and neonatal 
meconium (69, 73). Due to the ubiquitous nature of phthalates in 
daily life, human exposure to phthalates has become a major concern, 
specifically among potentially vulnerable populations, including 
pregnant women and infants (74). There is evidence from both 
animal (75) and human studies (76, 77) that phthalates affect lung 
health. In animal studies, in utero exposure to phthalates, specifically 
to di-(2-ethylhexyl)- phthalate (DEHP), has been shown to impact 
alveolarization, including lack of formation and maturation of the 
distal parts of alveoli in the lungs of newborn rats exposed to 
phthalates prenatally (78). Epidemiological studies have described 
associations between prenatal phthalate exposure and childhood 
respiratory, allergic, and atopic diseases (70, 74, 79–83). Jahreis et al. 
reported that maternal urinary concentrations of butyl benzyl 
phthalate during pregnancy were associated with increased asthma 
risk at 6 years of age in Germany (82). Gascon et al. reported that 
prenatal exposure to bisphenol A (BPA) and high molecular weight 
phthalates increased the risk of wheezing and asthma outcomes in 
children from birth to 7 years of age in Catalonia, Spain (81). 
However, Johnk et al. investigated associations between maternal 
urinary concentrations of phthalate metabolites and asthma, eczema, 
and rhinitis in offspring aged 5 years and did not report any 
significant findings in the Odense Child Cohort, a prospective 
Danish birth cohort (83).

3.4 Pesticides

Pesticides are a wide group of chemical substances used to kill or 
control pests and are used for both large and small-scale farming (84, 
85). Individuals are exposed to various pesticides simultaneously; 
thus, the general population, specifically pregnant women and 
children, may be exposed to pesticide mixtures (86). A few studies 
have assessed the associations between prenatal pesticide exposure 
and adverse children’s respiratory health outcomes, including asthma, 
wheezing, persistent cough, and lung function impairment. However, 
the results have been inconsistent (87, 88). Researchers have reported 
that higher prenatal dichlorodiphenyldichloroethylene exposure is 
associated with an increased risk of wheeze (89, 90). In addition, 
higher phosphate metabolite exposure in childhood was associated 
with decreased lung function at seven years of age among the children 
of farmworkers in California (91). A study in the Netherlands found 
no association between children living near agricultural fields likely 
treated with pesticides and asthma/respiratory outcomes (92). While 
the importance of investigating mixtures of pesticides is emerging (87, 

88, 93), there is a dearth of research investigating prenatal pesticide 
mixtures and asthma and wheeze, and lung function in childhood (94).

3.5 Particulate matter

Particulate matter (PM) is a complex mixture of solids and liquids 
suspended in the air. The PM can be categorized by its aerodynamic 
diameter as PM10 (<10 μm, inhalable particulate matter), PM2.5 (<2.5 μm, 
fine particulate matter), and PM0.1 (<0.1 μm, ultrafine particulate matter) 
(95). PM2.5 is considered the most harmful and can absorb a variety of 
toxic and harmful substances (96). Due to its small particle size, it 
penetrates deep into the lungs, deposits in the terminal bronchioles and 
alveoli with breath, and enters the circulatory system through the 
gas-blood barrier (97, 98). Exposure to PM2.5 can lead to systemic 
adverse effects, specifically on the respiratory and cardiovascular systems 
(99). The respiratory system is the primary route of toxicity for PM2.5. 
Individuals are primarily exposed through inhalation (95). Exposure to 
PM2.5 can cause the development and progression of acute and chronic 
lung diseases, such as tracheal and pulmonary inflammation (100–102), 
and asthma (103, 104). Moreover, PM2.5 exposure may increase the 
susceptibility to respiratory infections (95).

3.6 Summary

Respiratory diseases and respiratory tract symptoms in children 
are fairly common. Many studies have shown that exposure to 
chemicals such as pesticides, PFAS, PM, phthalates, and metals can 
lead to respiratory diseases in children. Most of these studies have 
reported exposure prenatally as a critical window linked to children 
developing asthma and wheeze. However, these studies have a few 
weaknesses, which include sample size or subject selection. Future 
directions include research on the biological mechanisms of various 
chemical exposures, individually and as a mixture, and their impact 
on asthma and wheeze in children. Furthermore, the dissemination of 
these research findings, and the creation and implementation of 
effective prevention strategies are essential to increase knowledge of 
chemical exposures and their impact on adverse respiratory health 
outcomes in children. In the following section, we delve into children’s 
E.F.s and their relationship with early-life neurotoxic exposures, 
comprehensively analyzing the chemistry between these factors.

4 Chemical exposures and executive 
functioning in children

Executive functions (E.F.s) encompass a group of high-level skills 
that coordinate sophisticated cognitive and behavioral activities and 
allow for complex functions such as planning, attention, emotional 
control, organization, focusing on problem-solving, and shifting 
viewpoints. E.F. development is vital across childhood and consists of 
at least three central domains – inhibitory control, working memory, 
and cognitive flexibility. Accumulating scientific evidence suggests 
that E.F.s are particularly sensitive to early-life environmental 
neurotoxicants (e.g., trace metals, PFAS, phthalates, pesticides, and 
particulate matter) as neurotoxicants can penetrate the blood–brain 
barriers and accumulate in brain regions (e.g., prefrontal cortex, 
hippocampus, and basal ganglia) that regulate E.F. functionality.
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4.1 Inhibitory control

Inhibitory control is a fundamental E.F. with connectivity within 
several anatomical brain networks [e.g., caudate nucleus, subthalamic 
nucleus; (105)], but the prefrontal cortex (PFC) connectivity is essential 
for regulating and orchestrating successful inhibitory control (106, 
107). Inhibitory control enables children to inhibit goal-irrelevant 
stimuli from interrupting goal-directed behavioral and emotional 
responses (107, 108), which is critical for cognitive processes relating 
to attention response, emotional regulation, behavioral control, and 
social development. Inhibitory control begins to develop rapidly 
between ages 3 and 6 years (108, 109) and continues until the functional 
maturation of the frontal lobes, often during late adolescence.

4.2 Working memory

Working memory is a core cognitive feature of the human 
cognitive system with underpinnings to the dorsolateral PFC, an area 
in the PFC during child development (110). It is a system with a 
temporary capacity for simultaneously processing, holding, and 
manipulating information (108). Working memory development is 
vital for children as it is responsible for multi-dimensional cognitive 
activities such as reasoning, decision-making, problem-solving, 
comprehension, and learning (111) that are central for everyday tasks 
while involving dual-task performance with several other high-level 
cognitive faculties (112). Working memory develops during infancy 
and dramatically increases during middle childhood (ages 4 to 8), 
with gradual developments during early adolescence.

4.3 Cognitive flexibility

Cognitive flexibility is a core executive dimension that amplifies on 
the first two E.F. domains, primarily supported by several PFC 
sub-regions (e.g., orbitofrontal, anterior cingulate) but is also 
supported by subcortical structures such as the posterior parietal 
cortex and basal ganglia (113, 114). Cognitive flexibility involves 
focusing on changing perspectives, shifting attention, creative 
thinking, and adapting flexibly to changeable environments (108, 
115). It aids in managing multiple tasks, fostering innovative, 
adaptable behavior, and fundamentally promoting a range of life 
outcomes, including academic achievement, career attainment, and 
successful social relationships (116). During preschool years, cognitive 
flexibility matures swiftly and progresses throughout adolescence, 
paralleling the maturation of neural networks encompassing the PFC, 
while it only reaches full maturation by the early 20s.

5 Associations between neurotoxicant 
exposures and executive function 
development

Accumulating evidence indicates E.F. can be  impaired when 
children are exposed to various environmental neurotoxicants. As 
previously mentioned, once in the body, early-life neurotoxicants can 
cause biochemical neurologic damage by readily penetrating the 
child’s blood–brain barriers, accumulating in supportive brain regions, 
disrupting neurotransmitter systems and their activities, and altering 

structural and functional subcortical components that regulate E.F.s 
(117, 118). In this section, our attention will be directed toward an 
assortment of neurotoxicants, including metals, PFAS compounds, 
particulate matter (PM), pesticides, and phthalate metabolites.

5.1 Metals

Environmental epidemiological studies have shown that essential 
(manganese [Mn], iron [Fe], chromium [Cr], selenium [Se], and zinc 
[Zn]) metals are critical for child growth and brain development. 
However, imbalanced metal levels can lead to deficiencies or 
neurotoxicity, causing maladaptive E.F (119). In addition, any dose 
exposure to nonessential (arsenic [As], cadmium [Cd], lead [Pb], 
mercury [Hg], nickel [Ni], and strontium [Sr]) is considered 
deleterious to E.F. as these metals lack biological significance, with 
substantial evidence identifying an inverse association between 
nonessential metals and E.F. performance among children (120–122). 
Data from children’s studies indicate that prenatal and postnatal under 
and over-exposure to a panel of essential and nonessential metals can 
dysregulate E.F. development on an individual exposure (123, 124) 
and when exposed as mixtures (125–127). For both elements, many 
studies suggest a sexually dimorphic effect, with E.F. performance 
differing in the directionality by child sex, depending on the type and 
dose of metal exposure and time and duration of exposure (128).

5.2 Per- and polyfluroalkyl substances

Evidence from human and non-human animal studies suggests 
that PFAS dysregulates dopamine metabolism (129) while also 
affecting thyroid function (122). Both processes may have persistent 
implications for E.F. development. Animal models have demonstrated 
an increased risk of neurobehavioral deficits relating to inhibitory 
control mechanisms (130–135). Children’s studies on the neurotoxicity 
of certain PFAS compounds are limited and inconsistent. Some 
research investigating prenatal windows of PFAS exposure reported 
positive associations with cognitive functions underpinned by E.F., 
such as reading ability (136), attention (137), and memory capabilities 
(138). Others reported negative associations with measures of 
response inhibition, working memory, and global E.F.s (139–143). 
Research has primarily focused on the prenatal effects of PFAS 
exposure on children’s E.F. outcomes, while the impact of postnatal 
windows is sparse and overlooked. Most epidemiologic research has 
focused on investigating a single PFAS compound on cognitive and 
behavioral measures in children (137, 144, 145), which does not 
capture the mixed-exposure contexts in which people encounter 
PFAS. To our knowledge, only one study has examined the mixture 
effects of PFAS on E.F., but it was conducted in older adults (146). 
Lastly, in the literature, evidence suggests that there were no consistent 
patterns of sexual dimorphism in PFAS associations with E.F (147).

5.3 Phthalates

Human (148) and non-human animal (149–151) studies suggest 
that phthalate compounds cause dopaminergic dysregulation, a 
central neurotransmitter system regulating E.F. and reward processing. 
Animal models of phthalate exposure demonstrate an increased risk 
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of neurobehavioral deficits (152, 153), and memory impairments 
(154). Human studies have shown that prenatal phthalate exposures 
are linked to global E.F.s (155) and cognitive constructs related to E.F., 
such as delayed psychomotor, language development, intellectual 
developmental (156, 157), and attention deficits (158, 159), as well as 
overall abnormalities in cognition and neurobehavior. Some studies 
have also observed sex-specific effects (155, 160, 161). In addition, 
most epidemiologic research has focused on investigating a single 
phthalate compound on cognitive measures (152, 159, 162) with some 
research discovering a link between mixture effects of phthalates and 
E.F. development (163, 164).

5.4 Pesticides

Pesticide exposures have been linked to E.F. impairment in 
children (165–167). Several classes (e.g., organophosphorus pesticides 
[OPPs], carbamate pesticides) of pesticides inherently possess 
neurotoxic properties by design, acting by directly affecting insects’ 
nervous systems (168). In children, they have the potential to induce 
neurological harm (167, 169, 170) even at lower concentrations, 
manifesting as subtle impacts due to oxidative stress and their influence 
on fundamental neuronal systems, thereby impairing the dynamics of 
neurotransmitters involved in synaptic communication (171). Children 
studies have reported associations between early-life neurotoxic 
pesticide exposures and poorer E.F. performance in motor inhibition 
(172, 173), behavioral regulation (173), working memory (173–175), 
and cognitive flexibility (176, 177). Evidence on the sexually dimorphic 
effects is limited, yet a few studies report E.F. differences among boys 
and girls (178–180), highlighting a potentially heightened vulnerability 
in boys exposed to early-life pesticides.

5.5 Particulate matter

Mounting evidence strongly indicates that environmental ambient 
PM and pollutants associated with traffic could potentially function as 
agents of developmental neurotoxicity (181, 182). Moreover, findings 
from various sources, spanning animal experiments to epidemiological 
research, suggest that the detrimental impacts of PM on E.F. might 
initiate during fetal development (183, 184). The developing fetal brain 
is notably vulnerable to the impacts of PM, as multiple studies have 
shown that PM exposure increases neuroinflammation and oxidative 
stress (185) and alters brain morphology (186), further establishing the 
adverse effects of prenatal air pollution on both neurodevelopment and 
neurobehavioral functions relating to E.F. in children. Past research has 
illuminated that exposure to various P.M.s, such as particulate matter 
2.5 (PM2.5) and PM10 levels, during distinct sensitive periods like 
prenatal stages, can amplify the likelihood of maladaptive 
E.F. trajectories in infants and children (183, 187–190). Limited 
research has detected sex-specific effects on E.F. outcomes (188), while 
the majority have not found notable patterns.

5.6 Summary

The implications of these findings are substantial, as childhood is 
a sensitive and pivotal neurodevelopmental stage. Maladaptive 
E.F. caused by subclinical neurotoxicity during this stage can manifest 

later in life and yield enduring ramifications, affecting various aspects 
of life such as quality of life, educational attainment, social interactions, 
and professional achievements. The intricacies of the temporal 
relationships between neurotoxicants and E.F. remain unclear, 
underscoring the need for more longitudinal designs to unravel these 
temporal dynamics. Despite this uncertainty, it remains imperative to 
identify and mitigate risk factors associated with neurotoxic exposures. 
Developing environmental interventions to reduce or eliminate 
exposure becomes paramount to enhance E.F. development.

6 Exploring the link between asthma 
and executive function

Studies have discovered a link between asthma and E.F. decrements 
in children (191–193) and adults (194, 195). This linkage may 
be explained by potential disruptions in the neuroendocrine system and 
chronic to mild intermittent hypoxia (reduced oxygen levels) in children 
with asthma (192, 194, 196); thus, leading to less efficient 
E.F. development. Evidence has shown that asthmatic children manifest 
difficulties in E.F. tasks relating to shifting attention (191, 193) and 
emotional and behavioral regulation, mainly when the condition is 
poorly controlled (197, 198). A cross-sectional study comparing 
asthmatic and healthy adults using diffusion tensor imaging to investigate 
whole-brain variations in white matter integrity revealed that adults with 
asthma exhibited several cognitive deficiencies, including 
E.F. impairments, which strongly correlated with white matter 
abnormalities (194). These findings reinforce the notion that children 
with asthma, particularly those with poorly managed treatments, face a 
heightened risk of E.F. disturbances (199). Consequently, it becomes 
imperative to proactively evaluate children’s E.F. capabilities rather than 
solely focusing on their general intellectual aptitude (191).

Some studies suggest that there may be  a bidirectional link 
between asthma and cognitive activities in children and adults (162, 
193, 200), but the data are limited. Asthma may affect cognitive 
function, including E.F., and poor E.F. may be associated with asthma 
and other comorbid conditions. Further research is needed to better 
understand the mechanisms underlying this association and to 
develop targeted interventions that promote optimal executive 
functioning in individuals with asthma.

7 The role of the exposome in the 
underlying pathways between asthma 
and executive function

7.1 Neuroendocrine system and hypoxia

The neuroendocrine system is comprised of nerves and gland 
cells. The purpose of the system is to create hormones and release 
them into the bloodstream. These cells receive messages and signals 
from the nervous system and respond by making and releasing 
hormones. Glucocorticoids and catecholamines are able to modulate 
various aspects of the immune system. In addition, the pituitary 
hormones prolactin and growth hormone are also released, which 
also can modulate the immune system. Conversely, cytokines and 
hormones released by an activated immune system influence neural 
and endocrine processes. For example, the sympathetic nervous 
system innervates immune organs such as the thymus, bone marrow, 
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spleen, and even lymph nodes (201). We noted earlier that stress 
hormones released during hypothalamic–pituitary–adrenal (HPA) 
axis activation can adversely impact immune function. One way they 
do this is by inhibiting the production of lymphocytes, white blood 
cells that circulate in the body’s fluids that are important in the 
immune response. Overall, these hormones control numerous body 
functions (202). Asthma can impact the central nervous system. It 
can lead to decreases in the oxygen levels due to brain tissue being 
sensitive (192). During acute asthma attacks the oxygen saturation 
can drop to persistently low levels which can influence neural 
abnormalities (192, 203). A potential cause of cerebral hypoxia is 
severe asthma attacks. These attacks can lead to the loss of 
consciousness, cyanosis, anoxic brain damage, or even death (192, 
204, 205). Previous studies have reported that baseline arterial 
hemoglobin oxygen saturation can be found in asthma (192, 206–
208). Cognitive dysfunction could potentially be caused by neural 
changes from hypoxia/ischemia in vulnerable brain regions with high 
metabolic demands (e.g., neocortex, hippocampus, basal ganglia). 
Additionally, animal studies have examined the effects of asthma- 
induced intermittent brain hypoxia on learning and memory show 
deficits, in addition to impaired long-term potentiation (209). Studies 
have shown chronic asthma could result in multiple cognitive 
impairments, specifically learning and memory ability. Lastly, 
chronic asthma damages synaptic structure and function (192, 
194, 209).

7.2 Lung-brain Axis

It has been recently discovered that the brain communicates with 
various organs in the body through a neuroanatomical communication 
system. Studies show a dynamic bidirectional signaling pathway 
between the lung and brain, referred to as the lung-brain axis, 
identified through sophisticated metabolomics analysis (210). This 
bidirectional communication involves several biological components, 
including the central nervous system (CNS), the autonomic nervous 
system, and the hypothalamus–pituitary–adrenal (HPA) axis, as well 
as signaling pathways with metabolites, gases, endocrine, and the 
immune system (211). Activation of the organ-specific immune 
system in the lung or the brain can alter the functioning of the 
respective other organs (212). The lung-brain axis has been explored 
in various pathophysiological conditions, such as inflammatory and 
immune components, amyloid-β pathology, host–microbe 
interactions, and ventilator-induced brain injury (213–215). The lung-
brain axis is thought to correlate lung microbes to neurodegenerative 
diseases and changes in behavior (216).

To our knowledge, no human studies have examined chemical 
exposures’ impact on the lung-brain axis. Much of the research is 
conducted in rodent models. Evidence suggests that air pollutant 
exposures in these models lead to serum-borne, cytokine-
independent signals that elevate brain proinflammatory conditions 
connected to the pulmonary response (217). Exposure to zinc oxide 
nanoparticles may damage the cerebral cortex, possibly via lung-
brain axis disruption (218). The lung-brain axis is involved in a 
process where the pulmonary response to ozone exposures 
indirectly influences CNS neuroimmune function through 
circulating and cellular factors (219). Overall, these findings suggest 
that chemical exposure can impact the lung-brain axis, but the 
various pathways and mechanisms underlying these effects still 

need to be  fully understood, and further research in humans 
is needed.

7.3 Limitations

Our review have limitations that warrant attention. A key 
limitation is the exclusive focus on external chemical exposures within 
the pediatric exposome, omitting internal exposures (2) such as 
metabolites, as well as non-chemical factors (220) like infections, 
lifestyle behaviors, psychosocial stressors, and socioeconomic 
determinants—all of which are integral to the broader exposome 
framework. Additionally, this review did not consider biological 
exposures, such as allergens (221), despite their relevance to pediatric 
health. To comprehensively understand the pediatric exposome, 
future research should integrate both internal and non-chemical 
exposures, capturing the multifactorial nature of environmental 
influences on child health outcomes.

8 Gaps and future directions

Most evidence linking asthma to E.F. and the influence of the 
pediatric exposome comes from animal studies. In human studies, the 
existing data only examine part of the biological pathways between 
chemical exposures, asthma, and E.F. There are a number of other ways 
in which E.F. may influence asthma treatment as well. For example, 
impulsive behavior may increase risk of exposure to asthma triggers 
such as allergens, and children with poor cognitive flexibility may delay 
treatment. Few, if any, human studies have explored whether 
environmental exposure disrupts the lung-brain axis or how exposures 
impact pathways between neuroendocrine systems and hypoxia, 
leading to worse asthma outcomes, which could affect E.F. development. 
As cognitive development is rapid and critical during childhood, 
further investigation among human studies on the impact of chemical 
exposure on the biological pathways between asthma and E.F. is 
necessary. Epidemiological evidence from robustly designed child 
cohorts, encompassing diverse variables such as sex, age, and 
longitudinal follow-up, is imperative. This approach will allow for a 
comprehensive exploration of all three components within each 
pathway, leading to deeper insights into the dynamic interconnections. 
We also emphasize the importance of employing advanced statistical 
methodologies to better understand the dynamics between exposure, 
asthma, and E.F.s (222). The literature has primarily relied on 
traditional regression models that examine individual exposures or 
chemical mixture models, such as Weighted Quantile Sum Regression 
(223) and Bayesian Kernel Machine Regression (224), which do not 
fully capture the underlying structural relationships. Therefore, 
we recommend using a structural equation-modeling framework (225, 
226). This approach can effectively capture the complex 
interrelationships between the chemical exposome, respiratory health, 
and E.F. dimensions while managing individual variability inherent in 
studying complex biological and cognitive processes. By adopting this 
methodology, we can significantly enhance our comprehension of the 
intricate causal dynamics underlying these relationships (227, 228). 
Furthermore, there have been extensive advancements in measuring 
external exposures with personal wearable device (229, 230). This 
could be used with other omics measurements and linked to pediatric 
exposome – health in the future. Utilizing technology advancements 
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in epidemiologic research would be  an effective way to measure 
particulate matter, for example, and assess the relationship between 
executive function and respiratory health outcomes across the lifespan 
(231). Additionally, researchers collaborating with health care providers 
to measure the deficits in cognition and their associations with asthma 
would be useful. This will provide insight into these associations found 
during primary care and/or asthma specialty clinical visits.

9 Conclusion

This narrative review explored the state of the literature pertaining 
to the relationship between the pediatric exposome, respiratory 
health, and E.F. in children. Here, we present scientific evidence that 
may suggest the role of the exposome through the lung-brain axis, 
neuroendocrine systems, and hypoxia, which could potentially be the 
underlying pathways between asthma and E.F. These relationships are 
not unidirectional but rather bidirectional, as evidence suggests that 
the lung-brain axis is a two-way communication pathway between the 
brain and the respiratory system, and the neuroendocrine system is 
involved through HPA, which integrates cognitive and behavioral 
responses to early-life exposures. This review implies that human 
studies in children are needed to understand better the synergistic 
relationships on the impact of chemical exposure on the biological 
pathways and interactions between asthma and E.F.
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