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Introduction: Mitigating the spread of infectious diseases is of paramount

concern for societal safety, necessitating the development of e�ective

intervention measures. Epidemic simulation is widely used to evaluate the

e�cacy of such measures, but realistic simulation environments are crucial

for meaningful insights. Despite the common use of contact-tracing data

to construct realistic networks, they have inherent limitations. This study

explores reconstructing simulation networks using link prediction methods as

an alternative approach.

Methods: The primary objective of this study is to assess the e�ectiveness

of intervention measures on the reconstructed network, focusing on the 2015

MERS-CoV outbreak in South Korea. Contact-tracing data were acquired, and

simulation networks were reconstructed using the graph autoencoder (GAE)-

based link prediction method. A scale-free (SF) network was employed for

comparison purposes. Epidemic simulations were conducted to evaluate three

intervention strategies: Mass Quarantine (MQ), Isolation, and Isolation combined

with Acquaintance Quarantine (AQ + Isolation).

Results: Simulation results showed that AQ + Isolation was the most e�ective

intervention on the GAE network, resulting in consistent epidemic curves due

to high clustering coe�cients. Conversely, MQ and AQ + Isolation were highly

e�ective on the SF network, attributed to its low clustering coe�cient and

intervention sensitivity. Isolation alone exhibited reduced e�ectiveness. These

findings emphasize the significant impact of network structure on intervention

outcomes and suggest a potential overestimation of e�ectiveness in SF networks.

Additionally, they highlight the complementary use of link prediction methods.

Discussion: This innovative methodology provides inspiration for enhancing

simulation environments in future endeavors. It also o�ers valuable insights

for informing public health decision-making processes, emphasizing the

importance of realistic simulation environments and the potential of link

prediction methods.
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1 Introduction

The spread of infectious diseases is an issue of paramount

societal significance. As evidenced by the profound impact of

the recent COVID-19 pandemic, the failure to effectively prevent

or mitigate disease transmission can result in substantial social

and economic costs. Therefore, it is imperative for the safety

of society to uncover the fundamental mechanisms underlying

infectious diseases and devise preventive measures accordingly.

Collaborative efforts across various academic disciplines have been

directed toward this goal. Insights from fields such as medicine,

pharmacy, biology, engineering and sciences, and even social

sciences play a crucial role in enhancing our understanding

of disease transmission dynamics. Of particular importance is

understanding how individuals engage in physical interactions, as

disease transmission is intricately linked to the types and patterns

of human contacts. Consequently, there have been concerted efforts

to quantitatively describe and analyze human contacts within the

context of disease transmission. One of the representatives has

been network models (1, 2). Infected cases and their contacts were

represented as nodes and links, respectively, on a network, and

the network was analyzed to obtain insights into the transmission

process (3, 4). In addition, a network can offer an environment

for epidemic simulations, allowing for the acquisition of new

knowledge not possible with compartmental model simulations (5).

Contact-tracing data can be conducive to generating environments

for epidemic simulations. The transmission dynamics of a network

highly depends on the network structure, and networks generated

based on real human behaviors can provide opportunities to build

more realistic models of transmission dynamics in the literature (6–

9) than the theoretical models of networks such as random (10, 11),

small-world (12, 13), and scale-free (SF) (14, 15) networks.

However, using empirical contact-tracing data for epidemic

simulation has limitations (16, 17). One theoretical limitation arises

from the fact that individuals have numerous social relationships,

but only a portion of these relationships result in actual contacts

in practice. In other words, the contacts that individuals make

represent only a subset of the many possibilities within their

social connections. When conducting simulations, we essentially

explore artificial scenarios where social relationships could have

played out differently from the real world. Therefore, the network

environments used in simulations should reflect the range of

possibilities within these relationships, rather than replicating a

single, actual realization. Conducting simulations on a contact-

tracing network may involve exploring artificial scenarios based

on a specific realization, which can pose logical challenges.

Another limitation is of an empirical nature. Real-world data,

including contact-tracing data, are inherently affected by noise.

Contact information can be collected through various means,

such as self-reports, cell phone location tracking, or third-party

observations. However, noise originating from human errors or

technical inaccuracies can result in missing nodes or links within

contact-tracing networks. This missing or inaccurate data can

affect the reliability and accuracy of simulations that rely on

such data. Therefore, using empirical contact-tracing data for

epidemic simulations has limitations related to both theoretical

considerations, where simulations explore artificial scenarios based

on partial realizations, and empirical issues, including noise and

missing data inherent in real-world contact-tracing information.

Researchers and modelers need to be aware of these limitations

and consider them when using such data for epidemiological

simulations.

The aforementioned limitations can be complemented by

network reconstruction (18). Network reconstruction entails

generating a network from another network that has missing or

spurious links in its observed status (19). It can be considered as

correcting errors in network data because the observed network

topology is compared with the theoretical models of network

evolution (20). Among many, link prediction (LP) is a promising

network reconstruction technique (21–23). LP entails estimating

the probability of connecting two nodes that are currently not

connected based on the linkage patterns and node features. Several

techniques, including matrix factorization, the stochastic block

model (24), DeepWalk (25), node2vec (26), and LINE (27), have

been used for LP. Recently, advanced techniques in graph neural

networks (GNNs) have been actively employed for LP, and the

prediction accuracy has been significantly improved in various

domains. Since the notion of GNN was initially devised (28),

various learning models in the graph domain have been developed

(29–31). Convolutional neural networks in the computer vision

domain have been redefined for graph data and developed in

parallel as convolutional GNNs (ConvGNNs) (29, 30). Recent

studies have increased the capabilities and expressive power of

ConvGNNs in various practical applications, such as antibacterial

discovery (31), fake news detection (32), traffic prediction (33), and

recommendation systems (34).

Based on the above considerations, in this study, we reconstruct

networks from real-world contact-tracing data and perform

epidemic simulations on them. In particular, we examine how

the network structure impacts the transmission dynamics and the

effectiveness of intervention strategies. As a case study, we consider

the Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

transmission in South Korea, 2015. Most existing studies onMERS-

CoV focused on its epidemic characteristics and demonstrated its

super-spreading events (35–37). Some other studies analyzed the

contact-tracing data, but their networks were confined only to

confirmed cases (38, 39), single hospitals (40), or regions without

large-scale outbreaks (41). Thus, their contact networks were of

limited use for epidemic simulations. Another study extracted

the parameter of an SF network from MERS-CoV contact-tracing

data and generated a simulation environment with it, but the

contact network itself was not used for simulation (42). In this

study, we construct simulation environments using reconstructed

networks and examine the dynamics of the epidemic within these

environments. Simulation involves utilizing a network generated

through graph autoencoder-based link prediction (GAE network),

and a scale-free (SF) network is employed for comparative

analysis. Then, we conduct epidemic simulations to assess

three intervention strategies: Mass Quarantine (MQ), Isolation,

and Isolation combined with Acquaintance Quarantine (AQ +

Isolation).

The remainder of this article is organized as follows. Section

2 introduces the empirical contact network of the 2015 MERS-

CoV transmission in South Korea and demonstrates the network

reconstruction for simulation environments. Section 3 presents

the simulation procedure, and Section 4 describes the simulation
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results. The implications, and limitations of this study are discussed

in Section 5. Finally, the conclusions are given in Section 6.

2 Materials and methods

2.1 Reconstructing the empirical contact
network by link prediction

2.1.1 Empirical contact network
The data for the 2015 MERS-CoV outbreak was obtained

from the websites of the Korea Centers for Disease Control and

Prevention (KCDC) and the Ministry of Health and Welfare of

South Korea (43). These data included information on confirmed

cases and their contacts. A network was created from this

information, which consisted of 33,093 nodes and 33,090 links, with

186 confirmed cases represented as red nodes and the individuals

who had close or casual contact with them represented as blue

nodes. Figure 1 shows this contact network.

2.1.2 Link prediction using graph autoencoder
The generated contact network lacks some links between nodes

due to some missing information in the data. Thus, the contact

network was reconstructed by LP using a graph autoencoder.

The graph autoencoder is a neural network model for learning

interpretable latent representations of graph-structured data based

on an autoencoder (44). In the graph autoencoder framework for

LP, the encoder employs a graph convolutional network (GCN)

incorporating node features for the latent embedding of each node.

Then, the decoder computes the distance between two nodes in

the given node embeddings, from which the occurrence of an edge

between the two nodes is predicted (see Figure 2 for the model

architecture).

Formally, for a graphG = (V ,E) defined by a set of nodeV and

a set of edges E between nodes, the encoder maps nodes v ∈ V with

node features xv ∈ R
n to latent embedding vectors zv ∈ R

d with

Equation (1):

ENC :V × R
n
→ R

d

(v, xv) 7→ zv.
(1)

Employing the decoder for a pair of node embeddings (zu, zv)

will estimate a graph-structured similarity score S[u, v] between

nodes u and v. The objective of the encoder and decoder is to

minimize the reconstruction loss such that Equation (2),

DEC(ENC(u),ENC(v)) = DEC(zu, zv) ≈ S[u, v]. (2)

For LP, the similarity score between nodes can be considered as

representing whether nodes are neighbors or not; this means that

node embeddings zu and zv are close in the embedding space if they

are linked. The links in the contact network stand for the contact

from confirmed cases to other individuals, and individuals in the

same cluster may have more contacts with each other than with

those in other clusters (the visualization of the contact network in

Figure 1 shows the cluster structure). Thus, the cluster, as well as

infection status, was used as node features to predict links between

nodes using a graph autoencoder. A label propagation algorithm

(45) was used for cluster analysis on the contact network, and 61

clusters were detected.

Our GCN model for the encoder has two graph convolution

layers with a 256-dim hidden layer and 128-dim latent embedding

space. A simple inner product was used for the decoder, which

could provide a score as the probability of internode link

occurrence, and the sigmoid function was used as the activation

function. The model was trained for 500 iterations using an Adam

optimizer with a learning rate of 0.005. The reconstructed networks

were obtained from the ensemble of 10 trained models. Next, two

types of networks were generated. First, a pair of nodes whose

similarity score was >0.995 was connected by links; we name this

network GAE. Second, as an extended version, a pair of nodes

whose similarity score was >0.95 (lower than that of GAE) was

connected by links; we name this network GAE_ex as we extend

GAE. A similarity score of 0.95 was selected to attain a 99.99%

accuracy in recovering existing links. Reducing the similarity score

further did not lead to a significant improvement in accuracy. A

score of 0.995 was employed for 0.95 networks when they were

deemed excessively large (almost twice larger in edges). Increasing

the similarity score results in the prediction of additional links.

When viewed as a generative model for situations where the

original contact network is unavailable, it becomes essential to

generate a network of an appropriate scale for practical use.

We validate the accuracy of our graph encoder model in

generating results that closely match the actual contact network.

It is worth noting that GAE_ex, generated by our graph encoder

model, reconstructs the contact network with an accuracy of

99.99% (missing only three edges out of the existing 33,090

edges) and generates 211,778 new possible edges. Similarly, GAE

reconstructs the contact network with an accuracy of 98.92%

(missing 359 edges out of the existing 33,090 edges) and generates

111,536 new possible edges. Subsequently, both GAE_ex and

GAE are finalized by adding missing edges, likely aiming to

enhance the completeness of the reconstructed networks. Both

GAE_ex and GAE demonstrate effectiveness in reconstructing the

contact network, with GAE_ex achieving slightly higher accuracy in

capturing existing edges, while GAE generates fewer new possible

edges. Therefore, we have selected these two networks for our

simulation network.

2.1.3 Properties of reconstructed networks
In this section, we analyzed the characteristics of the networks

reconstructed using the graph autoencoder before running the

simulations. We opted for the scale-free network for comparative

purposes. By conducting simulations on both types of networks,

we aimed to illustrate the differences in disease spread within the

reconstructed networks compared to the well-understood scale-

free network. We chose the scale-free network because it has been

more commonly employed in the literature than other models,

such as the random-network model, making it more suitable for

meaningful comparisons. First, we fitted the degree distribution of

the GAE network to the power-law distribution, and found that

the scale parameter was 2.19. We then used this parameter to
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FIGURE 1

The empirical contact network of the 2015 MERS-CoV transmission in South Korea. The red and blue nodes denote 186 confirmed cases and their

contact nodes (a total of 33,093), respectively.

FIGURE 2

The model architecture of a graph autoencoder.

generate a scale-free network using the configuration model (46).

The main properties of the scale-free, GAE, and GAE_ex networks

are outlined in Tables 1, 2 and Figures 3, 4.

We compare the properties of networks generated using a

graph autoencoder (GAE), an extended version of the GAE

(GAE_ex), and a scale-free (SF) model. The average degree of

GAE_ex is found to be significantly greater than that of GAE and

SF in Table 1. All three networks have similar degree distributions,

with few nodes having much greater degrees than others as

shown in Figure 3A. GAE and GAE_ex have higher average

clustering coefficients than SF, indicating that the reconstructed

networks have a highly clustered structure similar to those found in

real-world social networks (47). Additionally, while SF hadmultiple

disconnected components (a total of 44 connected components),
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TABLE 1 Basic characteristics of two reconstructed contact networks and scale-free (SF) network.

Nodes Edges Avg.
degree

Connected
components

Avg. shortest
path length

Avg. clustering
coe�cient

SF 31,091 132,372 8.5151 44 3.3481 0.1037

GAE 33,093 144,626 8.7406 1 3.4727 0.4825

GAE_ex 33,093 244,868 14.7988 1 3.3386 0.7275

TABLE 2 Comparison of centrality indexes among two reconstructed contact networks and scale-free (SF) network.

Degree centrality Closeness centrality Betweenness centrality Eigenvector centrality

Avg. Cent(%) Avg. Cent(%) Avg. Cent(%) Avg. Cent(%)

SF 0.000274 17.6450 0.301515 42.8943 0.000075 4.91e-8 0.002145 46.0836

GAE 0.000264 25.4405 0.291004 37.7405 0.000075 6.87e-8 0.002006 29.8501

GAE_ex 0.000447 25.4282 0.301885 37.0357 0.000071 3.01e-8 0.002044 22.4648

FIGURE 3

Basic characteristics of two reconstructed contact networks and scale-free (SF) network. (A) Degree distributions, (B) distribution of shortest path

lengths, (C) clustering coe�cient distributions per degree, and (D) clustering coe�cient distributions.
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FIGURE 4

Distributions of centrality indexes of two reconstructed contact networks and scale-free (SF) network. (A) Degree centrality distribution, (B) closeness

centrality distribution, (C) betweenness centrality distribution, and (D) Eigenvector centrality distribution.

GAE and GAE_ex were fully connected. The average shortest

path length for all three networks is short (see Figure 3B and

Table 1), making them small-world networks. However, SF is found

to have a larger diameter than GAE and GAE_ex, indicating

that some pairs of nodes in SF are connected by larger hops.

The reconstructed networks, GAE and GAE_ex, exhibit greater

variation in the average clustering coefficients per degree when

compared to the SF network (as shown in Figures 3C, D). This

suggests that the connections among the neighbors of nodes with

similar degrees are more varied in GAE and GAE_ex than in

SF. Additionally, even though the average degrees of GAE and

SF are similar, their distributions of average clustering coefficients

differ.

Furthermore, Table 2 and Figure 4 present average centrality

and centralization index using four different centrality measures

in the three networks. Average centrality reflects the characteristics

of each node in the network, while the centralization index

assesses the distribution of centrality. A higher centralization

index suggests a more centralized network, while a lower index

indicates a more evenly distributed centrality (see distributions of

centrality in Figure 4). Specifically, the average degree centrality

for GAE_ex is 0.00044, which is twice as high as that of the

GAE and SF networks presented in Table 2. This indicates that,

on average, nodes in the GAE_ex network have approximately

twice as many connections compared to nodes in the GAE and

SF networks. For the other three centrality measures, there are

no significant differences between the SF and GAE networks.

Closeness centrality, which measures how well-connected a node

is to all other nodes, shows similar low values in both networks.

Eigenvector centrality, indicating the level of influence of nodes

within their respective networks, is similar for nodes in both

networks, and it suggests a relatively low level of influence

on average. Betweenness centrality, which assesses the role of

nodes as intermediaries or bridges between others, also shows

similar low values for nodes in both the SF and GAE networks,

indicating a limited intermediary role on average. In summary,

the analysis of these centrality measures suggests that while the

average degree centrality differs significantly between GAE_ex and

the other networks, the other three centrality measures (closeness,

eigenvector, and betweenness centrality) do not reveal significant

distinctions between the SF and GAE networks. This implies that,

in terms of these specific centrality metrics, the networks share
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similarities in how nodes are connected and their roles within the

network.

2.2 Simulation model

We employed agent-based simulations on the generated

networks as reported in Kim et al. (42). The simulations were

based on the SEIR model, where each agent (node) was assigned

one of four epidemiological statuses: susceptible (S), exposed (E),

infected (I), and recovered (R). The simulation assumed that when

a susceptible agent comes into contact with an exposed or infected

agent, it has a probability of becoming infected with a transmission

rate of β with below Equation (3):

β = 1− (1− β0)
n (3)

In the simulations, an infection was generated when a

susceptible individual came into contact with an exposed or

infected individual, with a transmission probability determined by

the transmission rate constant, β given above. The transmission

rate was modeled as a function of the number of neighbors in the

network and a baseline transmission constant, β0. The simulations

also accounted for the incubation and infectious periods, which

were modeled as gamma probability density functions with means

of 1/κ and 1/γ days and standard deviations of σκ and σγ days,

respectively. The parameters used in the model were estimated

from confirmed cases data from the Korean Centers for Disease

Control and Prevention (KCDC) (43) and are listed in Table 3.

At the initialization phase of each simulation run, all agents,

except an index case (the first infected agent), are set to be S status,

and the predetermined index case is set to be I status. The index

case is selected among the agents (nodes) with a sufficient number

of links; an outbreak does not occur when the index agent is too far

from the hub (when a node with a small degree is selected as the

index case). Based on the preliminary experiments, the threshold

of degree for selecting an index case was set to 100. The number of

agents with more than 100◦ was 232 (out of 31,901) in SF, 80 (out

of 33,093) in GAE, and 109 (out of 33,093) in GAE_ex; the index

case for each simulation run is randomly chosen among them.

The intervention strategies in our research were developed

based on an extensive review of existing literature on mathematical

models of disease transmission (48–51). Previous studies have

incorporated a variety of intervention measures into their models,

with a specific focus on social distancing as a key strategy.

Social distancing aims to reduce the chances of contact between

individuals and has been a major topic of research in disease

modeling (52, 53). In our study, we initially emphasized the

“Mass Quarantine” strategy, which involves quarantining a certain

percentage of the population (53). This strategy serves as an

abstraction of real-world measures that restrict social activities,

such as store closures and changes in public transportation

operations.We selected a parameter of 10% for this strategy, guided

by prior research (54).

We also introduced an “Isolation” strategy, which isolates

individuals who have tested positive for the infection. This

approach is conceptually similar to targeted social distancing, as

TABLE 3 Model parameters and their values.

Parameter Description Value References

S Susceptible

individual

– –

E Exposed individual – –

I Infected individual – –

R Recovered

individual

– –

N Total population

size

31,091 –

T Total simulation

time

100 day –

β0 Background

transmission

constant

0.002 Estimated

n A number of

infected neighbors

– –

β Transmission rate β =

1− (1− β0)
n

(42)

1/κ Mean incubation

period

8.7 (42)

σκ Standard deviation

of the incubation

period

16 (42)

1/γ Mean infectious

period

21 (42)

σγ Standard deviation

of the infectious

period

76 (42)

it specifically targets infected individuals (52). While it may seem

unrealistic to isolate all infected individuals, it was observed during

the 2015 MERS-CoV outbreak and the early stages of the COVID-

19 pandemic in South Korea, where infected individuals voluntarily

isolated at home or were hospitalized under government guidance.

Implicitly, the first two strategies were included for the purpose

of comparison to assess the effectiveness of our third strategy:

“Isolation and Acquaintance Quarantine (AQ + Isolation).” This

approach involves quarantining individuals who have had close

and effective contact with infectious individuals. We selected a

parameter of 50% for this strategy, informed by previous research

findings.

These intervention strategies are central to our study, allowing

us to evaluate and compare their effectiveness in controlling disease

spread. Specifically, the following three intervention strategies were

investigated in terms of their effectiveness. Mass Quarantine (MQ):

quarantining 10% of randomly chosen agents from S and E statuses;

Isolation: isolating all agents from I status; and Isolation combined

with Acquaintance Quarantine (AQ + Isolation): isolating all

confirmed cases (individuals from I status) and quarantining 50%

of randomly chosen agents from all agents who had effective

contact with infected individuals. The intervention began on day

10 in each simulation run. Owing to the stochastic nature of agent-

based models, all simulations were run 1,000 times, and their

epidemic outputs were obtained.
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FIGURE 5

Daily incidences on three contact networks: (A) scale-free (SF), (B) GAE, and (C) GAE_ex [for each plot, 50 realizations of incidence are displayed with

the mean (black curve). Each row shows the results for four distinct intervention strategies; top rows with a much larger peak size are the results with

no intervention].

3 Results

3.1 The impacts of intervention strategies
and di�erent network structure

In this section, we investigate the impact of different network

structures and intervention strategies on epidemic outputs. First,

we present epidemic curves of MERS-CoV transmission dynamics:

daily incidence in Figure 5 and cumulative incidence in Figure 6.

The columns of the figures show the dynamics of three network

structures: (a) SF (green), (b) GAE (blue), and (c) GAE_ex (red).

Meanwhile, the rows show the dynamics for four intervention

scenarios: No intervention, MQ, Isolation, and AQ + Isolation.

Owing to the stochastic nature of our agent-based epidemic

model, each result displays 50 realizations with the mean (black

curve).

The first row of Figure 5 shows the impact of different network

structures in the absence of interventions; it indicates that the

outbreak gets worse in the order of SF, GAE, and GAE_ex, the

peak size gets larger in that order (around 100, 200, and 300,

respectively), and the peak time occurs earlier in GAE and GAE_ex

(around day 30) than in SF (around day 60), attributable to the

shortest path length (see Figure 3B). In addition, larger variances

in the epidemic curve are observed in GAE (blue) and GAE_ex

(red) than in SF (green), attributable to the larger variance in degree

distributions and their clustering coefficients (Figures 3A, C).

Next, the impact of the three intervention strategies is shown

from the second to the last rows in Figure 5, which indicates that
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FIGURE 6

Cumulative incidences on three contact networks: (A) scale-free (SF), (B) GAE, and (C) GAE_ex [for each plot, 50 realizations of incidence are

displayed with the mean (black curve). Each row shows the results for four distinct intervention strategies; top rows with a much larger peak size are

the results with no intervention].

the daily incidence gets larger in the order of SF, GAE, and GAE_ex

for all intervention strategies. In addition, from the second row,

MQ reduced incidence in SF much more dramatically than in GAE

and GAE_ex, attributable to the average and variance of clustering

coefficients being much smaller in SF than in GAE and GAE_ex

[recall that the average clustering coefficient is 0.1037, 0.4825,

and 0.7275 for SF, GAE, and GAE_ex, respectively (Table 1), and

see variances in Figure 3C]. Further, these results suggest that the

most effective intervention is AQ + Isolation in all three network

structures (see the bottom panels), with the earliest peak time and

smallest peak size in all three networks. Besides, for AQ + Isolation,

the most dramatic reduction of incidence was observed in SF than

in GAE and GAE_ex. Isolation is the least effective in all network

structures because only infected individuals are isolated without

any contact-tracing and quarantine. The effectiveness of the three

interventions is further described in Figure 7.

The results in Figure 6 show that, as in daily incidence in

Figure 5, the variances of the cumulative incidences were larger in

GAE andGAE_ex than in SF regardless of the intervention strategy;

the 50 realization curves are less centered around the black mean

curve in GAE and GAE_ex than in SF. Notably, for Isolation, the 50

realization curves generated bimodal results in GAE and GAE_ex:

the black mean curves are placed between high and low cumulative

incidences. These detailed epidemic outputs are further explored in

the next subsection.

Finally, the incidence dynamics are compared with actual

MERS-CoV incidence data and the number of quarantined

individuals in the simulations. Figure 7 shows the averaged
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FIGURE 7

Daily incidences displayed with MERS-CoV data in vertical bar (top row), and the corresponding daily quarantined individuals (bottom row). (A) Mass

Quarantine (MQ), (B) Isolation, and (C) Acquaintance Quarantine (AQ) + Isolation.

FIGURE 8

Cumulative infected (top row) and quarantined individuals (bottom row) under di�erent intervention scenarios and on di�erent networks (for each

intervention, the result of 1,000 runs is shown). (A) SF, (B) GAE, and (C) GAE_ex.

Frontiers in PublicHealth 10 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1386495
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Kim et al. 10.3389/fpubh.2024.1386495

FIGURE 9

Peak size (top row), peak time (middle row), and epidemic duration (bottom row) under di�erent intervention scenarios and on di�erent networks

(for each intervention, the result of 1,000 runs is shown). (A) SF, (B) GAE, and (C) GAE_ex.

dynamics (mean of 1,000 realizations) of incidences on the three

networks with actual MERS-CoV incidence data (histogram) at

the top panels and the number of quarantined individuals at the

bottom panels. Each column in the figure shows the results for

the MQ, Isolation, and AQ + Isolation intervention strategies. The

results in the figure suggest that MQ requires the maximum level

of quarantine at the beginning for all three networks. In addition,

although a similar number of individuals are quarantined under all

networks, MQ is the most effective strategy for SF than GAE and

GAE_ex (see green curves). Obviously, AQ + Isolation is the most

effective intervention strategy for incidence reduction in all three

networks (see the epidemic curves in the top panel). This strategy

combines contact-tracing with quarantine; thus, much fewer people

than in the MQ intervention are quarantined but much fewer

people are infected.

3.2 The impacts of three network on
various epidemic outputs

In this subsection, the mean, median, and distributions of 1,000

simulation runs are summarized in terms of five epidemic outputs.

The final size (cumulative incidence) and the total number of

quarantined individuals for each network structure for different

intervention strategies are presented in Figure 8. In addition, the

peak size, peak time, and epidemic duration are summarized in

Figure 9.

Figure 8 shows that the final size gets larger in the order of SF,

GAE, and GAE_ex. Notably, the variances are smaller in SF than

in GAE and GAE_ex. In addition, there are weak bi-modes in GAE

andGAE_ex. For instance, for No intervention, SF showsmean and

median of around 5,000, respectively, with a very small variance.
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FIGURE 10

Distributions of secondary cases under di�erent intervention scenarios and on di�erent networks.

Meanwhile, GAE shows median and mean around 6,000 and 4,000,

respectively (most of the results are around 6,000 and some are

around 100), and GAE_ex shows median and mean around 9,000

and 8,000, respectively (most of the results are around 9,000 and

some are around 100). The impacts of the three intervention

strategies are distinct on the final size distributions. Again, there

is a very small variance in SF and weak bi-modes in GAE and

GAE_ex, which can be explained by the distributions of index cases

and clustering coefficients (Figure 3D).

Comparing the effectiveness of MQ and AQ + Isolation, both

intervention strategies dramatically reduced the final size in SF

(the first panel at the top row of Figure 8). However, the total

quarantine size significantly differed; MQ quarantined around

25,000 individuals, whereas AQ + Isolation quarantined only

2,000 individuals (the first panel at the bottom row of Figure 8).

Thus, AQ + Isolation can be a more effective strategy than

MQ in SF. This is also the case in GAE and GAE_ex because

similar patterns are observed. Although the means of cumulative

quarantined individuals are similar in all three networks, the overall

effectiveness of SF and GAE are quite different.

In Figure 9, the impacts of intervention strategies on different

networks are compared in terms of the peak size, peak time, and

epidemic duration. The results in the first row show that the peak

size is the largest under No intervention and the second largest

for Isolation in all networks. AQ + Isolation shows the smallest

peak size in all networks. Peak size manifested a small variance
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FIGURE 11

Log-log plots of distributions of secondary cases in Figure 10. (A) SF, (B) GAE, and (C) GAE_ex.

in SF and weak bi-modes in GAE and GAE_ex, as the final size

did in Figure 8; the mean and median are almost the same in SF,

whereas they are quite different in GAE and GAE_ex. The results

in the second row show that the mean and median of peak time

distributions for all intervention strategies are very similar in GAE

and GAE_ex. In addition, the mean, and median of SF are in

the order of No intervention, Isolation, MQ, and AQ + Isolation,

attributable to the shortest path (Figure 3B). The results in the third

row suggest that the impacts of interventions are very different

among networks. Under No intervention, outbreaks lasted about

180 days in SFwith a very small variance. However, outbreaks lasted

about 150 days in GAE and GAE_ex with very large variances.

Notably, epidemic duration is longer for Isolation than for the other

two intervention strategies in SF.

Finally, we investigate the impacts of the three intervention

strategies on the distributions of secondary cases in each network

structure. The mean distribution of 1,000 simulation runs is

presented in Figure 10. An outbreak can be considered a super-

spreading event when its distribution of secondary cases exhibits

a large degree of heterogeneity. Each panel illustrates the type of

intervention strategy and the maximum number of secondary cases

by a single infected individual (denoted by Max). In fact, during

the MERS-CoV outbreak in South Korea in 2015, a single patient

infected 79 other individuals, referred to as a super-spreader (42).

The results in Figure 10 suggest that Isolation is the least effective

strategy to prevent super-spreading events on all networks. For

instance, Max = 57 in SF, which is worse thanMax = 38 in GAE and

GAE_ex. AQ + Isolation showed the lowest level of heterogeneity

in the secondary cases, with Max of 22, 26, and 24 in SF, GAE,

and GAE_ex, respectively. Furthermore, Figure 11 provides a log–

log representation of Figure 10, allowing for a comparison of the

secondary cases for three interventions across various network

configurations. This analysis verifies that Isolation alone (depicted

by the red curves) consistently yields the highest values, signifying

its limited effectiveness, while AQ + Isolation (indicated by the

yellow curves) consistently exhibits the lowest values, highlighting

its superior effectiveness across all network structures.

4 Discussions

We have employed an innovative graph autoencoder technique

to recreate the contact network using real-world contact-tracing

data. This marks the first utilization of such an approach for

reconstructing networks based on contact-tracing data derived

from the 2015MERS-CoV outbreak in South Korea. We conducted

a comparative analysis between the reconstructed networks and

a scale-free network (SF) concerning the effectiveness of various

intervention strategies. Furthermore, we explored the influence

of network structure on epidemic outcomes, including peak size,

final size, incidence, and cumulative incidence. The study’s findings

revealed that the severity of outbreaks followed the order of

SF, GAE, and GAE_ex. Moreover, GAE and GAE_ex exhibited

higher variances in both incidence and cumulative incidence

compared to SF.

We also evaluated the impact of different intervention

strategies, such as mass quarantine (MQ) and acquaintance

quarantine (AQ) + isolation, on epidemic outputs in simulations

on different networks. First, the results showed that MQ was

found to be an equally effective strategy as AQ + isolation in the

SF network. However, the study found that although the average

shortest paths were similar in the three networks, the SF network

was less influenced by hub nodes and had a wider distribution

of shortest paths. We found that the effectiveness of MQ and

AQ+Isolation in the SF network was excessively good, which is

attributed to the low clustering coefficient of SF. The low clustering

coefficient means that the SF network is less dense, which makes it

more sensitive to interventions like MQ and AQ+Isolation.

Moreover, isolation was the least effective strategy in SF. This is

due to the shortest path length and isolation of confirmed cases only
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which do not take pre-symptomatic cases into account. The Scale-

free network is a type of network structure that is often used to

model the spread of infectious diseases with a long tail distribution.

This means that a small number of individuals (referred to

as “super-spreaders”) are responsible for a large proportion of

transmission. However, it has been found that this structure can

lead to over estimations of the impact of interventions, as they may

not be able to effectively target the super-spreaders.

It is important to note that the peak time of the outbreaks

in the GAE and GAE_ex networks did not differ significantly

when comparing the results of no intervention to those of the

various intervention strategies. This is because the high clustering

coefficients in GAE and GAE_ex lead to similar peak times.

This is because nodes with low clustering coefficients do not

typically experience outbreaks, while outbreaks are likely to occur

in nodes with high clustering coefficients. Thus, outbreaks in GAE

and GAE_ex spread uniformly throughout the network, which is

different from the SF network, where the clustering coefficients

and shortest path lengths are different. This trend is due to

the unique characteristics of the GAE and GAE_ex networks,

which are more similar to the contact networks found in hospital

settings, specifically, emergency rooms in South Korea, and have

higher clustering coefficients which implies higher density in most

emergency rooms of hospitals in South Korea (55).

This study has several limitations worth noting. Firstly, it

does not comprehensively explore the influence of index cases

on the outbreak of the epidemic. In our simulations, index cases

were randomly chosen from nodes with a sufficient number

of connections. However, selecting super-spreaders identified

in the contact-tracing data as index cases might produce

different outcomes. Additionally, we refrained from conducting

comparisons with other reconstruction methods. Analyzing our

graph auto encoder approach alongside alternative link prediction

models like Exponential Random Graph Model (ERGM) (56)

and Bayesian statistical models (57) might have provided valuable

insights into the effectiveness of our model. Furthermore, our study

highlights a high clustering coefficient in the reconstructed network

due to the concentrated distribution of emergency rooms in South

Korea. This observation may not be applicable to other regions.

Additionally, since our study utilized contact-tracing data from

the 2015 MERS-CoV outbreak in South Korea, the generalizability

of our findings is limited. Utilizing contact-tracing data from

other outbreaks could lead to more universally applicable results.

Moreover, future research could explore the impact of population

mobility, as it is widely recognized that mobility plays a significant

role in disease transmission (58). Incorporating mobility into

simulation models could offer valuable insights.

5 Conclusions

We employed an innovative graph autoencoder technique to

reconstruct the contact network using real-world contact-tracing

data. This marks the first instance of utilizing such an approach to

reconstruct networks based on contact-tracing data from the 2015

MERS-CoV outbreak in South Korea, which were subsequently

employed in epidemic simulations. Our investigation focused on

five key epidemic outcomes, conducting a comparative analysis

of various network structures and intervention strategies. Our

findings underscore the significant impact of network structures

on epidemic outcomes, emphasizing the variable effectiveness of

intervention strategies across different contexts. These findings

carry significant implications for tailoring precise intervention

measures in response to disease outbreaks.

Our results reveal substantial differences in the impacts

of various network structures on epidemic outputs: outbreaks

were more extensive in the scale-free network, a widely used

theoretical model for epidemic simulation, compared to the

reconstructed network generated by the link prediction method.

Consequently, the effectiveness of intervention strategies can vary

depending on the network structure: intervention measures on

the reconstructed network were found to be less effective than

those on the scale-free network. These results suggest a potential

overestimation of intervention impact in scale-free networks, while

our reconstructed network offers a more realistic assessment of

intervention effectiveness. In this study, we opted for a scale-free

network structure due to its suitability for meaningful comparisons

compared to other models such as random networks. However, it

is crucial to acknowledge the limitations associated with scale-free

networks, as discussed earlier. Thus, to account for potential biases

in our analysis, we emphasize the importance of recognizing the

increased risk of overestimation when utilizing scale-free networks,

as their structure may influence intervention outcomes. Therefore,

the consideration of networks constructed through alternative

methods, such as small-world networks or spatial networks, may

introduce variability in the results (1, 14).

The utilization of networks reconstructed through link

prediction methods proves to be a valuable asset for conducting

epidemic simulations. In the specific context of the 2015 MERS-

CoV outbreak in South Korea, this study leveraged this approach

to reconstruct the contact-tracing network, aiming to evaluate

the effectiveness of intervention strategies. We anticipate that this

innovative methodology will inspire future endeavors aimed at

enhancing simulation environments, providing valuable insights

to guide the decisions of public health authorities. Moreover, it

has the potential to stimulate further research to enhance the

realism of simulation environments through data-driven network

reconstruction methods.
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