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Purpose: There is limited understanding of the link between exposure to
heavy metals and ischemic stroke (IS). This research aimed to develop e�cient
and interpretable machine learning (ML) models to associate the relationship
between exposure to heavy metals and IS.

Methods: The data of this research were obtained from the National Health
and Nutrition Examination Survey (US NHANES, 2003–2018) database. Seven
ML models were used to identify IS caused by exposure to heavy metals.
To assess the strength of the models, we employed 10-fold cross-validation,
the area under the curve (AUC), F1 scores, Brier scores, Matthews correlation
coe�cient (MCC), precision-recall (PR) curves, and decision curve analysis
(DCA) curves. Following these tests, the best-performing model was selected.
Finally, the DALEX package was used for feature explanation and decision-
making visualization.

Results: A total of 15,575 participants were involved in this study. The
best-performingMLmodels, which included logistic regression (LR) (AUC: 0.796)
and XGBoost (AUC: 0.789), were selected. The DALEX package revealed that age,
total mercury in blood, poverty-to-income ratio (PIR), and cadmium were the
most significant contributors to IS in the logistic regression and XGBoost models.

Conclusion: The logistic regression and XGBoost models showed high
e�ciency, accuracy, and robustness in identifying associations between heavy
metal exposure and IS in NHANES 2003–2018 participants.

KEYWORDS

machine learning, ischemic stroke, heavy metals exposure, NHANES, logistic regression

1 Introduction

This study focuses on ischemic stroke (IS), which is a major global health issue. Strokes
can be classified as hemorrhagic stroke (HS) and ischemic stroke (IS). IS accounts for 87%
of stroke cases (1) and has become a critical disease burden globally. Researchers have
found that chronic hypertension (2), diabetes (3), the age of menopause (4), dyslipidemia,
obesity, and smoking (5) are the risk factors for IS. However, there is limited research on
the relationship between heavy metals and IS (6–8).
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Heavy metals, such as lead, mercury, and cadmium, are
considered some of the most hazardous risk factors due to
their non-biodegradable nature (9). They can accumulate in
the human body, exert neurotoxic effects, and increase the
risk of cardiovascular diseases. Therefore, investigating the
association between heavy metal exposure and ischemic stroke
is significant.

Previous studies, relying on traditional statistical methods
and often focusing on single-exposure models, had limitations in
capturing the non-linear relationships and complex interactions
between multiple heavy metals and IS risk, which are crucial
for understanding the multifaceted nature of heavy metal
toxicity. In the field of ML, computers leverage algorithms
to learn from and discern patterns in data, offering robust
computational and data-fitting abilities for uncovering complex
data relationships, which is a common practice in clinical studies
(10). Moreover, ML models are instrumental in identifying
hazards, assisting in disease diagnosis, and facilitating health-
related decisions (11).

In this research, we used the National Health and Nutrition
Examination Survey (US NHANES, 2003–2018) datasets to explore
the relationship between IS and heavy metal exposure. Seven
ML models were constructed, and then the DALEX package was
utilized to investigate the contribution of each heavy metal to the
identification of IS, enhancing the potential for early intervention.

2 Materials and methods

2.1 Study population

The NHANES is a multi-stage, stratified, large-scale, and
nationally representative study of the US population. It aims to
assess the nutrition and physical condition of Americans. The data
of the research participants included eight contiguous cycles from
2003 to 2018 of the US NHANES.

The inclusion criteria were as follows: (1) the participants were
20 years or older; (2) the participant information about ischemic
stroke (IS) status was verified using the data from the US NHANES
questionnaires; and (3) the participants were involved in the sub-
study that focused on the analysis of heavy metals in urine and
blood. The exclusion criteria were as follows: (1) the participants
who had missing data for more than two heavy metals in the
dataset; (2) the participants who exhibited indeterminate ischemic
stroke (IS) status based on the US NHANES questionnaires; and
(3) the samples that could not be adapted to the model for any
reason. These criteria ensured that our analysis was based on
comprehensive and reliable data, which minimized the impact of
incomplete records on the study’s findings.

2.2 Feature extraction and preprocessing

The participants’ demographic and socioeconomic
characteristics were collected from the questionnaire data of the
NHANES. The characteristics included age, marital, race/Hispanic
ethnicity, sex, body mass index (BMI, kg/m2), education level, and
poverty-to-income ratio (PIR).

The concentrations of heavy metals, including cadmium, lead,
and total mercury in blood and antimony, barium, cadmium,
cobalt, cesium, lead, molybdenum, thallium, tungsten, uranium,
total arsenic acid, arsenobetaine, monomethyl arsenic acid,
dimethylarsenic acid, and mercury in urine, were included
for analysis. Heavy metal exposure levels were measured
using the inductively coupled plasma dynamic reaction cell
mass spectrometry (ICP-DRC MS), following comprehensive
quality procedures established by the National Center for
Environmental Health.

The preprocessing steps included the following:
Handling of missing data:
Participants with missing data for more than two heavy metals

were excluded from the analysis to ensure data completeness.
For participants with fewer missing values, we employed multiple
imputation techniques to manage the missing data, ensuring that
the missingness did not introduce bias into the models.

Encoding of categorical variables:
Categorical variables, such as marital status, race/Hispanic

ethnicity, and education level, were encoded using one-hot
encoding to create binary indicators for each category. This method
prevented the model from assuming any ordinal relationship
between the categories.

Feature scaling:
Continuous variables, including heavy metal concentrations

and BMI, were standardized using Z-score normalization. This step
ensured that all features had a mean of 0 and a standard deviation
of 1, which is crucial for the performance of distance-based models,
such as k-nearest neighbors (kNN) and support vector machines
(SVM). Feature scaling was applied after the data were split into
training and testing sets to prevent data leakage.

Outlier detection and treatment:
Outliers in the heavy metal concentration data were identified

using the interquartile range (IQR) method. The values that fell
outside 1.5 times the IQR above the third quartile or below the
first quartile were considered outliers. These outliers were either
capped at the nearest non-outlier value or retained, depending on
their impact on the model performance during cross-validation.

Feature selection:
To reduce dimensionality and prevent overfitting, we

applied feature selection techniques, such as recursive
feature elimination (RFE) and feature importance from tree-
based models (12), to identify the most relevant predictors
of IS. This step was performed within the training set
to ensure that the testing set remained unseen during the
model training.

2.3 ML model strategies

The participants were divided into training and testing sets
in a ratio of 7:3. IS caused by heavy metal exposure was
identified using the ML models, which included decision tree
(DT), logistic regression (LR), LightGBM, random forest (RF),
XGBoost, k nearest neighbors (kNN), and support vector machine
(SVM). A brief overview of each technique is provided as
follows: DT: A model that splits the data into branches to make
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TABLE 1 Characteristics of the study participants.

Name Non-IS IS p

(N = 14,953) (N = 622)

Age Mean± SD 48.6± 17.6 65.0± 13.5 <0.001

Marital Divorced 1,597 (10.7%) 105 (16.9%) <0.001

Living with partner 1,334 (8.9%) 27 (4.3%)

Married 7,554 (50.5%) 309 (49.7%)

Never married 2,816 (18.8%) 50 (8%)

Separated 534 (3.6%) 20 (3.2%)

Widowed 1,118 (7.5%) 111 (17.8%)

Eth Mexican American 2,311 (15.5%) 56 (9%) <0.001

Non-Hispanic Black 3,277 (21.9%) 180 (28.9%)

Non-Hispanic White 6,419 (42.9%) 304 (48.9%)

Other Hispanic 1,344 (9%) 35 (5.6%)

Other race—including multi-racial 1,602 (10.7%) 47 (7.6%)

Sex Female 7,517 (50.3%) 296 (47.6%) 0.204

Male 7,436 (49.7%) 326 (52.4%)

BMI Mean± SD 28.9± 6.9 29.5± 6.7 0.031

Education 9–11th Grade (Includes 12th grade with no diploma) 2,223 (14.9%) 125 (20.1%) 0<.001

College Graduate or above 3,100 (20.7%) 75 (12.1%)

High school graduate/GED or equivalent 3,546 (23.7%) 166 (26.7%)

Less than 9th grade 1,624 (10.9%) 102 (16.4%)

Some college or AA degree 4,460 (29.8%) 154 (24.8%)

PIR Mean± SD 2.4± 1.6 2.0± 1.4 <0.001

predictions and is known for its simplicity and interpretability
but is prone to overfitting (13). LR: A linear model that is
used for binary classification that estimates probabilities and
is known for its simplicity and efficiency but assumes linear
relationships (13). LightGBM: A gradient boosting framework
that uses tree-based learning algorithms and is known for its
high efficiency and scalability but can be sensitive to overfitting
(14). RF: An ensemble method that builds multiple decision trees
and merges them to improve accuracy and is known for its
robustness but can be computationally intensive (13). XGBoost:
An optimized gradient boosting algorithm known for its high
predictive performance but requires careful parameter tuning (13).
kNN: A simple, instance-based learning algorithm that classifies
data points based on their proximity to neighbors and is known
for its simplicity but can be computationally expensive with large
datasets (13). SVM: A model that identifies the hyperplane that
best separates the classes and is known for its effectiveness in
high-dimensional spaces but can be less interpretable (13). The
discrimination of the ML models was shown by the area under
the curve (AUC), F1 scores, decision curve analysis (DCA) curves,
Matthews correlation coefficient (MCC), precision-recall curves,
and Brier scores.

2.4 Statistical analysis

The categorical variables were presented as numbers (%),
while the continuous variables were presented as medians (quartile
ranges) or geometric means ± standard deviations. The chi-
squared test or Wilcoxon two-sample test was performed to
compare the characteristics of the different groups. All analyses
were performed using R software (version 4.0.2), and a p < 0.05
was considered statistically significant.

3 Results

3.1 Demographic characteristics

The characteristics of the study participants are shown in
Table 1. A total of 15,575 participants were included in this
research. The patients were divided into IS and non-IS groups
based on whether IS occurred during their hospital stay. Among
them, 622 cases were diagnosed with IS. The average age of the IS
patients was 65 years, and 52.4% of them were male patients. The
participants with IS were more likely to be older, married, non-
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TABLE 2 Geometric means and geometric standard deviations of heavy metals by each cycle.

2003–2004
(N = 1,540)

2005–2006
(N = 1,516)

2007–2008
(N = 1,854)

2009–2010
(N = 2,018)

2011–2012
(N = 2,271)

2013–2014
(N = 2,391)

2015–2016
(N = 2,282)

2017–2018
(N = 1,703)

p

Blood

Cadmium 0.6± 0.6 0.6± 0.6 0.6± 0.6 0.5± 0.6 0.7± 0.8 0.6± 0.6 0.6± 0.7 0.5± 0.6 <0.001

Lead 2.1± 1.7 1.9± 1.5 1.9± 1.8 1.7± 1.7 1.7± 2.0 1.4± 1.5 1.4± 1.3 1.3± 1.2 <0.001

Total mercury 1.5± 1.9 1.6± 2.0 1.5± 2.2 1.7± 2.6 1.6± 2.8 1.5± 2.7 1.5± 2.4 1.5± 3.2 0.038

Urine

Antimony 0.1± 0.1 0.1± 0.2 0.1± 0.2 0.1± 0.1 0.1± 0.1 0.1± 0.2 0.1± 0.4 0.1± 0.2 <0.001

Barium 2.1± 3.5 2.3± 3.9 2.1± 4.0 2.3± 9.9 1.9± 4.0 1.7± 2.8 1.9± 3.0 1.6± 2.3 <0.001

Cadmium 0.5± 0.5 0.4± 0.5 0.4± 0.5 0.4± 0.5 0.4± 0.6 0.4± 0.4 0.4± 0.5 0.4± 0.5 <0.001

Cobalt 0.5± 3.3 0.6± 1.6 0.5± 0.6 0.5± 1.2 0.5± 1.0 0.6± 1.1 0.6± 1.1 0.6± 1.4 0.019

Cesium 6.5± 17.4 5.8± 4.3 5.4± 4.2 5.0± 3.2 4.8± 3.3 4.9± 3.3 5.1± 4.2 5.2± 3.5 <0.001

Lead 1.0± 1.0 1.0± 1.2 0.9± 1.6 0.8± 1.6 0.7± 1.2 0.5± 0.9 0.6± 0.7 0.5± 0.7 <0.001

Molybdenum 55.1± 56.8 59.4± 51.9 60.6± 55.9 57.4± 55.4 52.7± 49.8 47.7± 51.8 50.2± 45.4 48.2± 47.0 <0.001

Thallium 0.2± 0.1 0.2± 0.1 0.2± 0.1 0.2± 0.1 0.2± 0.1 0.2± 0.1 0.2± 0.2 0.2± 0.1 <0.001

Tungsten 0.1± 0.2 0.1± 0.3 0.2± 0.3 0.1± 0.2 0.2± 0.8 0.1± 0.3 0.1± 0.2 0.1± 0.5 <0.001

Uranium 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.333

Total; Arsenic 20.4± 52.2 24.4± 69.5 18.8± 51.5 24.5± 62.0 20.7± 55.8 15.0± 38.7 16.2± 35.0 19.9± 79.3 <0.001

Arsenobetaine 9.9± 41.4 13.5± 56.0 8.6± 37.5 12.0± 42.0 12.0± 49.4 8.7± 35.4 9.4± 30.0 11.6± 68.7 0.004

Monomethylarsonicacid 1.0± 0.8 1.0± 1.2 1.0± 1.4 1.1± 4.2 0.9± 1.6 0.6± 0.7 0.6± 0.6 0.5± 0.6 <0.001

Dimethylarsinicacid 5.5± 6.2 5.9± 9.5 5.6± 8.6 6.1± 9.2 6.3± 8.6 4.9± 5.9 5.1± 7.0 5.3± 8.4 <0.001

Mercury 1.0± 2.9 0.9± 1.4 0.8± 1.3 0.7± 1.0 0.7± 1.8 0.6± 2.7 0.4± 0.9 0.4± 0.9 <0.001
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FIGURE 1

The area under the curve (AUC) and sensitivity-1-specificity curve for the seven ML models, including RF, XGBoost, LightGBM, DT, LR, kNN, and DT.

TABLE 3 Comparison of discrimination characteristics among seven ML

models.

ML model F1 score Sensitivity Specificity

Logistic 0.141754 0.871508 0.58478

DT 0.152344 0.653631 0.724077

KNN 0.124906 0.463687 0.762572

Lightgbm 0.16739 0.75419 0.710948

RF 0.141935 0.184358 0.943703

Xgboost 0.155074 0.759777 0.679795

SVM 0.104306 0.480447 0.692034

Hispanic white, with higher BMI, high school graduate/GED or
equivalent, and with a lower PIR (all p < 0.05).

3.2 Concentrations of heavy metals

The concentrations of heavy metals in urine and blood for
each data release cycle are shown in Table 2. The results revealed
that cadmium, lead, and total mercury in blood and antimony,
barium, cadmium, cobalt, cesium, lead, molybdenum, thallium,
tungsten, total arsenic acid, arsenobetaine, monomethyl arsenic
acid, dimethylarsenic acid, andmercury in urine showed significant
tendencies (all p < 0.05).

3.3 Construction and validation of ML
models

Seven ML models, which included RF, XGBoost, LightGBM,
DT, LR, kNN, and DT, were constructed. The AUC measures the
ability of a model to distinguish between classes. An AUC of 1
indicates perfect discrimination, while an AUC of 0.5 suggests no
discrimination (equivalent to random guessing) (15). As shown
in Figure 1, the ROC analysis revealed that the LR model had
the best AUC performance (AUC: 0.796), followed by XGBoost
(AUC: 0.789), LightGBM (AUC: 0.787), and RF (AUC: 0.773),
while DT (AUC: 0.695), SVM (AUC: 0.624), and kNN (AUC:
0.620) performed relatively poorer. However, given the imbalance
between the positive and negative events in the dataset, the
AUC alone was insufficient in fully assessing the performance of
the models. To address the limitations of the ROC curve, we
also generated a precision-recall (PR) curve, which provided a
more informative evaluation under these conditions. As shown
in Supplementary Figure 1, the PR curve clearly demonstrates
that the logistic regression and XGBoost models achieved higher
average precision compared to the other models. The F1 scores,
Brier scores, and MCC of the XGBoost model were then assessed
using a confusion matrix. The F1 score is the harmonic mean
of precision and recall, providing a balance between the two. It
is particularly useful when the class distribution is imbalanced.
A higher F1 score indicates better model performance (16). As
shown in Table 3, LightGBM (F1 score: 0.167) and XGBoost
(F1 score: 0.155) demonstrate better predictive performance. The
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FIGURE 2

The event rate and window midpoint for the seven ML models, including RF, XGBoost, LightGBM, DT, LR, kNN, and DT.

MCC is a robust metric that evaluates model performance by
considering all four confusion matrix categories (true positives,
true negatives, false positives, and false negatives), which makes
it particularly useful for imbalanced datasets (17). As shown in
Table 3, LightGBM (MCC: 0.193) and XGBoost (MCC: 0.178)
had better predictive performance. The Brier score measures
the accuracy of probabilistic predictions. It is calculated as the
mean squared difference between predicted probabilities and actual
outcomes. A lower Brier score indicates better model calibration
(18). The Brier scores are shown in Figure 2, and the results
revealed that the LR (Brier: 0.035), LightGBM (Brier: 0.035),
and XGBoost (Brier: 0.035) models exhibit better predictive
performance when compared with RF (Brier: 0.036), SVM(Brier:
0.037), DT (Brier: 0.038), and kNN (Brier: 0.04) models. DCA
is used to evaluate the clinical utility of prediction models. It
shows the net benefit of using a model across different threshold

probabilities, aiding in determining a model’s value in a clinical
setting (19). The DCA curves show that the net benefits of the seven
machine learning models were not much different. However, the
accuracy of the logistic regression and XGBoost models was higher
(Figure 3). Based on the 10-fold cross-validation test, the XGBoost
and LR models performed better in predicting stroke associated
with heavy metal exposure (Figure 4).

3.4 Visualization of feature importance

We calculated feature importance using the DALEX package,
which provides an interpretable and reliable framework for
understandingmodel predictions. The top 19 clinical variables were
identified and ranked based on their importance in predicting the
risk of ischemic stroke. As for LR, age was the most important
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FIGURE 3

The DCA of the test data for the seven ML models, including RF, XGBoost, LightGBM, DT, LR, kNN, and DT.

factor, followed by total mercury in blood, PIR, cadmium in urine,
and BMI (Figure 5A). In XGBoost, the first five key variables
were age, thallium, cadmium, PIR, and total mercury in blood
(Figure 5B).

A single-sample predictive decomposition diagram of the LR
model showed that an age of 37 years, a blood lead level of
0.6 ng/mL, and a BMI score of 20.01 were the factors considered in
the model. A urinary cadmium level of 0.25 ng/mL was identified
as a protective factor for IS, indicating that it is associated with a
lower risk of IS. Conversely, a urinary thallium level of 0.04 ng/mL
and a dimethylarsenic acid level of 1.2 ng/mL were identified as
risk factors for IS, indicating that they are associated with a higher
risk of IS (Figure 6A). For the XGBoost model, an age of 37 years,
a blood lead level of 0.6 ng/mL, and a BMI score of 20.01 were
also considered. In this model, these factors were identified as
protective against IS, while a blood thallium level of 0.04 ng/mL,
a blood cadmium level of 1 ng/mL, and a dimethylarsenic acid level
of 1.2 ng/mL were identified as risk factors for IS (Figure 6B). In
summary, a specific combination of an age of 37 years, a blood
lead level of 0.6 ng/mL, a BMI score of 20.01, and a urinary
cadmium level of 0.25 ng/mL suggested that these factors were
protective according to the LR model. However, other factors such
as urinary thallium and dimethylarsenic acid levels still posed a risk.
Similarly, for the XGBoost model, while age, blood lead, and BMI
were the protective factors, the presence of blood thallium, blood
cadmium, and dimethylarsenic acid levels were the risk factors.
Therefore, while some factors (age, blood lead, BMI, and urinary

cadmium) suggested a lower risk, the presence of other factors
(urinary thallium and dimethylarsenic acid) indicated an increased
risk. The overall risk for IS depends on the combined effect of all
these factors.

4 Discussion

This large retrospective study explored the potential
relationship between IS risk and exposure to 18 types of heavy
metals by combining and analyzing the NHANES data from 2013
to 2018. Based on the ML models, we found that mercury in blood,
PIR, and cadmium were significantly related to IS. In addition,
using the DALEX package could illustrate the importance of the
features in the model.

The data indicate that, annually, over 1,40,000 individuals
succumb to stroke, making it the third leading cause of mortality
in the United States (20, 21). Stroke represents the predominant
type of cerebrovascular incident, with ischemic stroke (IS) being
the most frequent, comprising approximately 85% of all stroke
cases. The risk factors for IS can be divided into modifiable factors
(diabetes, poor diet, hyperlipidemia, and high blood pressure)
and immutable factors (genetics, age, and sex) (22, 23). Clinical
strategies to manage modifiable risk factors can reduce the risk
of IS.

The Agency for Toxic Substances and Disease Registry
(ATSDR) has released a list of heavy metals that pose a considerable
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FIGURE 4

Demonstration of the 10-fold cross-validation tests.

FIGURE 5

Analysis and visualization of the feature importance created for the logistic regression model (A) and XGBoost model (B).

risk to human health (24). Arsenic, lead, cadmium, and mercury
have been found to be associated with IS (7, 25). Studies have
found that exposure to cadmium and lead increases the risk of
IS by altering the endothelial function, increasing oxidative stress,

downregulating nitric oxide production, promoting inflammation,
and increasing the risk of peripheral artery diseases (26). As a
trace element, mercury may be toxic to humans upon contact,
and this exposure has been significantly associated with IS (23,
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FIGURE 6

The single sample predictive decomposition diagram of the logistic regression model (A) and XGBoost model (B).

27). Humans do not possess the capability to efficiently eliminate
mercury from their bodies (28). Prolonged exposure to mercury is
known to lead to endothelial dysfunction, thereby elevating the risk
of cardiovascular and cerebrovascular diseases (29). Consuming
fish rich in Omega-3 oils can help reduce cardiovascular harm,
including the risk of stroke, which is caused by exposure to
mercury (30). Studies from the USA, Finland, and the UK
have demonstrated a notable correlation between the levels of
arsenic in drinking water and the incidence of cerebrovascular
diseases, indicating a significant dose–response relationship (31).
Furthermore, it has been found that blood lead is a positive risk
factor for IS (32). However, the mechanism of lead in IS is still
unclear (33). Barium and lead are known to penetrate the blood–
brain barrier and impact brain tissue (34) and have been identified
as significant risk factors for IS (6). A cigarette contains various
heavymetals, including cadmium, arsenic, and lead (35). Therefore,
smoking is also a risk factor for IS. The half-life of cadmium ranges
from 1 to 30 years (36). An epidemiological investigation revealed
that cadmium is a risk factor for atherosclerosis (37). Furthermore,
an analysis of the data from the National Health and Nutrition
Examination Survey revealed a positive correlation between the
occurrence of stroke and the levels of cadmium (38, 39).

Recently, ML algorithms have played an important role
in predicting diseases (40). ML models, a branch of artificial
intelligence, utilize mathematical algorithms to identify and classify
patterns in diverse datasets for decision-making. While these
models exhibit high performance, their lack of transparency is a
significant drawback. This opacity, often described as a “black-
box” issue, becomes particularly problematic in clinical settings.
Despite their high accuracy, the inability to comprehend the
rationale behind the model’s predictions causes apprehension
among clinicians relying on these predictions for treatment or

prevention, thereby impeding the broader application of ML
models (41, 42). In this research, we developed explainable ML
models and combined with the DALEX package to improve the
user’s understanding of how decisions are made within an ML
model, thereby increasing its transparency and reliability. Our
model is adept at identifying patients with a high risk of IS,
enabling the strategic prioritization of scarce medical resources for
those in critical need and thus streamlining the distribution of
these resources.

This study has several limitations. First, the duration of
heavy metal exposure is unknown, limiting our ability to
assess long-term effects. We also did not disaggregate race,
age, or other characteristics due to computational constraints,
potentially affecting the specifics of our subgroup analyses.
Being a retrospective study, it inevitably carries bias. Specifically,
the NHANES data include self-reported information, which
may introduce recall bias and inaccuracies. In addition,
while the NHANES strives for representativeness, there is
still a possibility of selection bias. Regarding the ML models,
there is a risk of overfitting despite using a cross-validation
technique. The absence of certain confounding variables in
the NHANES dataset may also introduce bias. Future research
should consider these factors and aim for validation across
different populations.

5 Conclusion

In this study, we suggest that LR and XGBoost models can be
reliable tools for identifying patients at a high risk of IS. Factors
such as age, total mercury in blood, PIR, and cadmium levels were
significantly related to IS.
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