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Metal-based nanoparticles have garnered significant usage across industries, 
spanning catalysis, optoelectronics, and drug delivery, owing to their diverse 
applications. However, their potential ecological toxicity remains a crucial 
area of research interest. This paper offers a comprehensive review of recent 
advancements in studying the ecotoxicity of these nanoparticles, encompassing 
exposure pathways, toxic effects, and toxicity mechanisms. Furthermore, it 
delves into the challenges and future prospects in this research domain. While 
some progress has been made in addressing this issue, there is still a need for 
more comprehensive assessments to fully understand the implications of metal-
based nanoparticles on the environment and human well-being.
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1 Introduction

Metal-based nanoparticles (NPs) are metal-based particles with nanometric dimensions. 
Due to their exceptionally large specific surface area, these particles possess exceptional 
physicochemical properties, including catalysis, light absorption and magnetic properties 
(1–3). Metal-based NPs have diverse applications in electronic devices, energy storage, and 
conversion (4–6). For example, FeN4 graphite nanosheets show promise for improving oxygen 
electrocatalytic activity and durability in zinc-air batteries (7); and gold NPs (AuNPs), for the 
photothermal enhancement of tumor vascular destruction (8). Copper sulfide NPs are an 
inexpensive and widely available plasma material that exhibits high photothermal conversion 
efficiency, making it suitable for solar evaporation and water purification applications (9). 
Fe7Se8 NPs supported on nitrogen-doped carbon nanofibers are utilized as a high-rate anode 
material for sodium ion batteries (10).

However, there are also potential risks to the environment and human well-being 
associated with the widespread use of metal-based NPs. Metal-based NPs can be released into 
the environment during manufacture, use and disposal and then cause ecotoxicity through 
various exposure pathways (11). The ecotoxicity of metal-based NPs refers to their adverse 
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effects on the survival, growth, and reproduction of organisms in the 
environment, including microorganisms, plants, and animals. The 
mechanisms of ecotoxicity include physical and chemical effects such 
as oxidative stress, DNA damage, and Cell membrane damage (12, 
13). Research on the ecotoxicity of metal-based NPs is still in its 
infancy, and there are many challenges in the research process. The 
first challenge is how to measure the exposure of metal-based NPs to 
organisms. Metal-based NPs are difficult to measure due to their small 
size and aggregation properties. The second challenge is how to 
accurately assess the toxicity of metal-based NPs. Metal-based NPs 
have different toxicities in different organisms and under different 
conditions. Therefore, it is necessary to conduct toxicological 
experiments under controlled conditions to obtain accurate 
toxicity data.

In this review, we  summarize recent advances in ecotoxicity 
studies of metal-based NPs, including their exposure pathways, 
ecotoxicological effects and toxicity mechanisms. For metal-based 
NPs of natural origin, their toxicity may differ from that of synthetic 
NPs. Naturally occurring NPs are often encapsulated or stabilized by 
other substances found in nature, which may affect their biological 
activity and toxicity. In addition, natural NPs are often less 
concentrated and have evolved and dispersed in the environment over 
a long period of time, which may have reduced their potential toxicity. 
Since there are relatively few toxicity studies on natural metal-based 
NPs, we  focus on the ecotoxicity of engineered metal-based NPs. 
We also discuss the challenges and prospects for ecotoxicity studies of 
metal-based NPs and how to comprehensively assess the impact of 
metal-based NPs on the environment and human health (Figure 1).

2 Exposure pathways to metal-based 
NPs

Due to the distinctive characteristics of NPs, their impact on 
organisms is expected to manifest through various exposure pathways 
(14). NPs are small in size and can thus pass through the cell 
membrane, cytoplasm, and nucleus, entering directly into the cell 
interior, making its mode of exposure significantly different from that 
of other particles (15–17). Generally, NPs enter the organism through 
absorption, diffusion, contact, and binding. This exposure mode can 
largely reflect the direct effects of NPs on organisms.

2.1 Exposure pathways of aquatic 
organisms enrichment

The enrichment exposure pathway of metal-based NPs in aquatic 
ecosystems is a matter of great concern. These NPs may have 
far-reaching effects on aquatic organisms and the entire ecosystem due 
to their unique physical and chemical properties.

First, metal-based NPs can enter aquatic organisms through 
direct contact. Metal-based NPs enter freshwater ecosystems through 
wastewater discharges and agricultural runoff. These NPs, such as 
copper and gold, can be taken up by tissues within aquatic organisms 
and accumulate, leading to the transfer of metals from aquatic to 
terrestrial ecosystems (Figure 2) (18). In addition, the presence of 
organic matter can influence the behavior and toxicity of metal-
based NPs, for example, it can reduce the toxicity of AgNPs to 

bacteria and protozoa (19). This suggests that the bioaccumulation 
process of metal-based NPs is influenced by organic matter in 
the environment.

Metal-based NPs can also spread in aquatic ecosystems 
through biotransfer mechanisms. Biotransfer is the process by 
which one organism transfers substances from the environment to 
another organism (20). For example, AgNPs can be transferred 
and biomagnified to Tetrahymena thermophila through the food 
chain (19). In addition, the transformation, bioavailability, and 
toxic effects of metal-oxide-based NPs in fresh water on 
invertebrates suggest a potential risk of their delivery in the food 
chain (21).

Finally, the ability of metal-based NPs to bioaccumulate and 
biomagnify depends on a variety of factors, including the 
physicochemical properties of the NPs, the physiological properties of 
the organism, and environmental conditions. For example, studies of 
the accumulation dynamics of silver NPs with different coatings in 
simple freshwater food chains have shown that diet is the main uptake 
pathway for silver NPs (22). The ability of marine invertebrates to 
bioaccumulate heavy metals is also influenced by their physiological 
and biochemical processes.

2.2 Exposure pathways of plant enrichment

The pathways of plant uptake of metal-based NPs mainly include 
roots, leaves and other ways, which are affected by various factors such 
as the physicochemical properties of metal-based NPs, environmental 
conditions, and plant species and size.

2.2.1 Absorption of metal-based NPs by leaves
Metal-based NPs can enter the plant through adsorption and 

penetration on the leaf surface. For example, studies on gold NPs 
(AuNPs) have shown that smaller-sized AuNPs (3, 10 nm) adhere 
more readily to leaf surfaces and are able to penetrate more efficiently 
through the epidermal layer into the plant compared to 
polyvinylpyrrolidone (PVP) coatings (23). In addition, the 
physicochemical properties of the NPs, such as size, surface charge, 
and chemical composition, affect their uptake and transport in the leaf 
(Figure 3) (24).

2.2.2 Uptake of metal-based NPs by plant roots
Plant roots are another important pathway for metal-based NPs 

to enter the plant. The Fe(II) transporter protein encoded by the iron-
regulated transporter (IRT1) gene was found in Arabidopsis thaliana, 
suggesting that plants can take up divalent Fe ions from roots via 
specific transporter proteins (24). In addition, some metal-based NPs, 
such as AgNPs, can also enter the plant via root uptake and may affect 
the physiological activity of the plant (25).

2.2.3 Translocation of metal-based NPs in the 
plant vascular system

Once metal-based NPs enter the plant, they can be translocated 
through the plant’s vascular system. Studies have shown that metal-
based NPs can be efficiently translocated from leaves to other parts of 
the plant, such as shoots and roots (23). This process may involve 
complex mechanisms within the plant, including metal transport 
involving organic molecules (26).
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2.3 Exposure pathways of human and 
animal enrichment

Animals are exposed to metal-based NPs in a variety of ways, 
including inhalation, oral and dermal contact. These exposure modes 
reflect the behavior of NPs in the environment and their migration 
pathways within the organism, as well as their potential impact on the 
health of the organism. Therefore, these different exposure pathways 
need to be  considered when assessing the effects of NPs on 
animal health.

2.3.1 Inhalation exposure to metal-based NPs
Inhalation is a primary means of exposure to metal-based NPs, 

particularly in occupational settings or laboratories, where individuals 
may inhale them through respiration (27). Inhalation toxicity is 
mainly dependent on the physical and chemical properties of NPs, 
such as particle size, shape, surface chemistry, and biological activity 
(28, 29). The inhalation toxicity of metal-based NPs is closely related 
to their particle size, as demonstrated by inhalation toxicity studies. 
Generally, NPs with smaller particle sizes are more likely to penetrate 
the cell membrane and enter the cell interior, thus causing greater 

harm to the human body. Here, we summarize the inhalation exposure 
to some metal-based NPs (Table 1).

For instance, Zhu et al. (37) compared the toxic effects of iron 
oxide NPs of different sizes on the lungs and found that nanosized 
Fe2O3 particles increased the microvascular permeability and cell lysis 
in the lung epithelium and significantly interfered with coagulation 
parameters compared with submicron Fe2O3 particles. Another study 
found that the deposition distribution of AuNPs in the lungs was age 
independent, that AuNPs was mainly deposited in the lung bases and 
cleared by mucus, and that in the long term, the clearance of AuNPs 
in the lungs and secondary organs was mainly mediated by 
macrophages (38).

The production of industrially manufactured TiO2 NPs is on the 
rise, posing a growing threat of inhalation exposure to professionals 
and consumers. Kreyling et al. (39) investigated the 28-day biokinetic 
pattern of the inhaled nanoparticulate material TiO2 NPs and found 
that NPs are redistributed within the alveoli over a long period 
through alveolar macrophage-mediated scavenging and reentry into 
alveolar epithelial cells. In addition, significant time-dependent 
differences were found in the accumulation and clearance process of 
TiO2 NPs in vivo compared with aerosol particles of the same size. 

FIGURE 1

The schematic shows the ecotoxicity induced by metal-based NPs from the exposure pathways (grey), ecotoxicological effects (pink) to toxicity 
mechanisms (blue).
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In addition, Kim et al. (40) conducted research on inhaled nanomixes 
and found that the removal of Silver NPs (AgNPs) followed a 
two-phase model with rapid and slow dissolution rates, while the 
removal of AuNPs could be described by a single-phase model with a 
longer half-life. When exposed to both AuNPs and AgNPs, it was 
observed that the removal of AgNPs was affected by the presence of 
AuNPs. This change may be  due to various interactions between 
AgNPs and AuNPs that influenced the solubilization and/or 
mechanical removal of AgNPs in vivo. After inhalation exposure, a 

minor proportion of the inhaled AgNPs dose that reaches the lungs is 
rapidly eliminated within the initial 72 h. The remaining portion of the 
dose is then slowly excreted. It appears that the inhaled dose cleared 
from the lungs is transferred to the body’s circulation between 48 and 
72 h after inhalation (41).

2.3.2 Oral ingestion exposure to metal-based NPs
Metal-based NPs may be ingested during production and use, 

especially in food and pharmaceuticals. After oral ingestion of 

FIGURE 2

Schematic representation of the transfer of metal-based NPs from aquatic to terrestrial ecosystems (18). Copyright 2023, American chemical society.

FIGURE 3

A schematic diagram of the uptake and translocation of NPs in plants through foliar application or root exposure treatment (24). Copyright 2023, 
Molecular Diversity Preservation International (MDPI).
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metal-based NPs, they may adhere to the gastrointestinal tract 
mucosa, causing local inflammation, ulcers, and other adverse 
reactions, and enter the blood system, causing damage to other organs 
and tissues (42–44). For example, some studies have shown that oral 
administration of TiO2 NPs, which are commonly used as food 
additives in candies, chocolates, and beverages, can affect the course 
of acute colitis and exacerbate the onset, prolong the course, and 
inhibit the recovery of ulcerative colitis (Figure 4) (45).

By contrast, Jones et  al. (46) examined the gastrointestinal 
absorption of NPs in humans and in vitro using titanium dioxide as a 
model compound. They compared the behavior of NPs with larger 
particles and found no evidence that TiO2 NPs were more easily 
absorbed into the gut than micron-sized particles. Tang et al. (47) 
compared the detailed toxicity of copper NPs with CuCl2∙2H2O 
(copper ions) in vivo. They also examined the oral toxicity of four sizes 
of copper particles (30 n, 50 nm, 80 nm, and 1 μm) in rats. The 
researchers compared acute LD50 values of CuCl2∙2H2O and other 
copper materials under acute exposure. After administering a single 
equivalent dose (200 mg/kg) of five copper materials, researchers 
evaluated the kinetics of copper and found that the acute toxic effects 
produced by Cu NPs were strongly associated with particle size. 
Furthermore, repeated exposure to copper NPs produced toxic effects 
that differed from those observed with single exposure. The size of the 
NPs may be responsible for the organ-targeting effects. This could 
explain the observed differences in organ-specific accumulation. Here, 
we summarize the Oral ingestion exposure to some metal-based NPs 
(Table 2).

2.4 Dermal exposure to metal-based NPs

Metal-based NPs may have irritating effects on the skin and cause 
skin inflammation and allergic reactions. Some studies have shown 
that these NPs may adhere to the skin surface, have toxic effects on 
skin cells, and induce skin inflammation and allergic reactions. In 
addition, metal-based NPs may enter the body through broken skin 
and cause damage and irritation to deeper skin cells and tissues (52, 
53). AuNPs are used for many applications, but available data are 
lacking on their dermal absorption. Filon et  al. (54) conducted 
experiments utilizing the Franz diffusion cell technique to examine the 
penetration of intact and compromised human skin by AuNPs. Their 
findings revealed that AuNPs are capable of permeating human skin 
in an in vitro diffusion cell system. The growing utilization of palladium 
NPs (PdNPs) in various chemical processes, jewelry production, 
electronic gadgets, automotive catalytic converters, and medical uses 

has resulted in a notable rise in palladium exposure. Exposure of the 
skin to palladium can lead to allergic contact dermatitis. For example, 
Filon et al. (55) found that PdNPs can significantly penetrate the skin.

3 Toxic effects of metal-based NPs

The widespread use of metal-based NPs has also led to their 
potential toxic effects on organisms. Such ecotoxicity effects are closely 
related to factors such as the type, size, surface properties, and 
concentration and exposure duration of NPs. Herein, we summarize 
various ecotoxicity effects such as toxicity to aquatic organisms, plants, 
animals and human.

3.1 Toxicity of metal-based NPs to aquatic 
organisms

In recent years, scholars have begun to focus on the toxic effects 
of metal-based NPs on aquatic organisms, and have achieved certain 
results. Current studies have mainly concentrated on the toxic effects 
of metal-based NPs on aquatic animals. However, research has shown 
that these NPs have various effects on aquatic organisms (56–58). The 
toxic effects of metal-based NPs on aquatic organisms are complex 
and diverse. The degree of toxicity varies depending on the type of 
metal-based NPs, with each type possessing unique physical, chemical, 
morphological, and biological characteristics that influence their 
impact on aquatic organisms.

3.1.1 Toxicity to fish
Studies have shown that the amount of NPs in the water column 

and the form in which they are present in the water column can have 
an effect on fish. Marinho et al. (59) conducted an analysis on the 
impact of exposure to various AgNPs concentrations on zebrafish 
tissues, discovering a substantial reduction in acetylcholinesterase 
(AChE) activities in both the brain and muscle. Another study 
observed that exposure to AgNPs decreased levels of l-histidine, 
l-isoleucine, and l-phenylalanine, crucial amino acids in fish gills. 
This suggests that AgNPs may disrupt amino acid metabolism, 
potentially affecting fish health and function. Furthermore, AgNPs 
altered citric acid levels, possibly disrupting the citrate cycle, essential 
for energy production. This disruption could lead to decreased 
energy production and metabolic dysfunction in fish gills. The 
present findings stress the potential consequences of AgNPs on fish 
metabolism, emphasizing the requirement for more research on the 

TABLE 1 Inhalation exposure to some metal-based NPs.

Materials Dose (mg) Model Typical effects Ref.

In2O3 0.05–0.6 Rats Lung damage (30)

ZnO 0–1 Monkeys Pulmonary inflammatory (31)

La2O3 0.5–10 Rats Alveolar proteinosis (32)

NiO 0.1, 0.2 Rats Alveolar macrophages damage (33)

WC 10 Rats Pulmonary toxicity (34)

MnO2 15, 30 Rats Altered spontaneous cortical activity (35)

Fe2O3 0.014–0.128 Mice DNA strand breaks (36)
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effects of NP exposure on aquatic lifeforms (Figure 5) (60). Another 
study on TiO2 NPs revealed that the treatment dose of these NPs was 
directly linked to increased motility and bacterial population in 
water. Notably, the zebrafish exhibited a significant rise in the 
bacterial load in its gills and caudal fins (61).

3.1.2 Toxicity to shellfish
As an important component of aquatic animals, the health status 

of shellfish is of great significance in maintaining the stability of the 
entire ecosystem. Shellfish have a strong bioconcentration effect on 
heavy metals and other pollutants and show different degrees of 
enrichment patterns in different sea areas. Elevated levels of ZnO NPs 
had a significant impact on various physiological parameters in the 

thick-shelled mussel, Mytilus coruscus. These effects included a 
decrease in total hematocrit, phagocytosis, esterase, and lysosomal 
contents, as well as an increase in hematocrit and ROS levels. 
Furthermore, the combination of high ZnO NPs concentrations and 
low pH had a negative synergistic effect on the mussels (62). AgNPs 
are frequently used in consumer products due to their antimicrobial 
and exceptional properties, leading to increasing concerns about 
their potential impact on aquatic ecosystems. Duroudier et al. (62) 
found that PVP/PEI-coated AgNPs ingested through the food web 
accumulated significantly in mussel tissues and adversely affected cell 
and tissue levels in autumn and spring. Furthermore, the total 
hematocrit, phagocytosis, esterase, and lysosomal contents of mussels 
were found to decrease at low pH and elevated concentrations of TiO2 
NPs. Conversely, the hematocrit and ROS levels were observed to 
increase with increasing TiO2 NPs concentration under low pH 
conditions (63). The majority of recent studies have primarily 
concentrated on the toxic effects of individual metal NPs on mussels. 
However, further research is required to comprehensively examine 
the toxic impact of metal NPs on mussels as a whole.

3.2 Toxicity of metal-based NPs to plants

In recent years, the ecotoxicological response of plants to NPs has 
gradually become a research topic. The toxicity of metal-based NPs to 

FIGURE 4

Short-term intake of TiO2 NPs induces mild colitis and exacerbates the development of ulcerative colitis (45). Copyright 2023, Springer Nature.

TABLE 2 Oral ingestion exposure to some metal-based NPs.

Materials Dose 
(mg)

Model Typical effects Ref.

TiO2 0–300 Mice
Prolonging the UC 

course
(45)

Cu 60–180 Rats Fetal development (48)

MgO 250–1,000 Rats Genotoxicity (49)

Y2O3 30–480 Rats Apparent genotoxicity (50)

NiO 500–1,000 Rats Metabolic abnormality (51)
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plants is mainly manifested in two aspects: plant growth inhibition 
and the influence of plant metabolic processes.

3.2.1 Plant growth inhibition
Plant growth is affected by several factors, including soil, 

temperature, moisture, and light. Although soil is the most 
significant factor impacting plant growth, certain NPs can also 
exhibit inhibitory effects on plants. During the early growth stage, 
the inhibitory effect of NPs on plants is primarily manifest as a 
suppression of germination and seedling development (64, 65). For 
example, Zhang et al. (66) carried out research into the influence 
of ZnO NPs on the germination of seeds and the growth of roots 
in maize and cucumber. Their findings indicated that the inhibitory 
effect of ZnO NPs on root growth in maize was predominantly 
attributed to the NPs, as opposed to the Zn2+ ions. Conversely, the 
Zn ions released from ZnO only inhibited root elongation in 
cucumber. The toxicity level of ZnO NPs was found to be dependent 
on its concentration (67). The phytotoxicity ranking shows that 
CuO NPs have the highest toxicity, followed by the binary mixture 
(CuO + ZnO) NPs, and then ZnO NPs. This significant toxicity and 
uptake in germinating seedlings is observed when exposure 
concentrations exceed 10 mg/L (Figure 6) (68).

3.2.2 Influence on plant metabolic processes
When metal-based NPs are introduced into plants, they enter 

the cell and affect plant metabolic processes by altering the 
intracellular environment. Chloroplasts, mitochondria, and 
peroxisomes, which have high oxidative metabolic activity and 
electron flow rates, are the primary sources of ROS in plant cells. 
The production of ROS by these organelles can lead to lipid 
peroxidation, membrane fluidity and permeability changes, and 
nutrient acquisition difficulties, ultimately impeding overall plant 
growth and development. NPs can also affect these processes, 
causing further damage to plant cells (69). In addition, metal-
based NPs can affect the metabolites of secondary metabolites 
such as amino acids (Figure 7) (70). NPs have the potential to 
induce DNA damage, including DNA mismatch damage, DNA 
strand breaks, and chromosome damage. TiO2 NPs are known to 
be especially detrimental in this regard (70).

3.3 Toxicity of metal-based NPs to animals

The toxicity of NPs can be attributed to their physicochemical 
properties, such as size, surface chemistry, and redox potential, and is 
associated with the dissolution and release of toxic metals. Metal-
based NPs are significantly toxic to human, including to the immune 
system (48, 71, 72).

For example, metal-based NPs can cause structural and functional 
damages to the ovary and testis. One research study discovered that 
Cu NPs induced both intrinsic and extrinsic apoptotic pathways in 
oxidative stress-induced ovarian dysfunction and controlled important 
ovarian genes, leading to harm to ovarian tissue (73). Subsequent 
study has shown that Cu NPs are a greater threat to reproduction than 
copper particles. This is due to the direct damage caused by Cu NPs to 
the ovary and their impact on ovarian hormone metabolism (74). Yang 
et al. (75) discovered that exposure to CdSe/ZnS quantum dots impairs 
the repair of double-strand breaks in spermatocytes, disrupts meiotic 
progression, and causes apoptosis and reduced sperm production.

Indeed, the potential for NPs to cross the alveolar-capillary barrier 
and enter the bloodstream, thereby reaching other organs, is a legitimate 
concern. For example, Nemmar et al. (76) discovered that mice exposed 
to CeO2 NPs exhibited a dose-dependent infiltration of inflammatory 
cells, including macrophages and neutrophils, in their lung sections. 
These findings suggest that acute lung exposure to CeO2 NPs triggers 
pulmonary and systemic inflammation, oxidative stress, and promotes 
in vivo thrombus formation. Similarly, TiO2 NPs exhibit size-dependent 
genotoxicity, with smaller particles being more significantly toxic (77). 
Kim et  al. (30) found that a single inhalation exposure to anosized 
indium oxide (In3O2) resulted in worsening of lung damage such as 
chronic active inflammation, foamy macrophage infiltration, and 
granulomas. Early-onset and persistent pulmonary alveolar proteosis, 
even at very low doses, indicates an urgent need to reassess occupationally 
recommended exposure limits for In3O2 NPs to protect workers.

Compared with ordinary metal ions, metal-based NPs are more 
likely to penetrate into cell membranes or cells, causing excessive 
generation of intracellular superoxide anions, damaging membrane 
integrity and thus causing oxidative damage leading to cell death, and 
resulting in toxic effects on the digestive and nervous systems, among 
others (78, 79).

FIGURE 5

Schematic diagram of nano-silver toxicity in carp gills (60). Copyright 2021, Elsevier.
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3.4 Toxicity of metal-based NPs to human

These metal-based NPs, particularly noble metals such as gold, 
silver and platinum, have shown significant potential in the treatment 
of various diseases, including cancer, pneumonia and Parkinson’s 
disease, due to their unique optoelectronic properties and ease of 
surface functionalisation (80, 81).

However, metal-based NPs can enter the human body through 
multiple pathways and affect different tissues and systems. Its toxic 

effects are multifaceted and include effects on the immune system, 
cytotoxicity and genotoxicity. For example, copper oxide NPs are able 
to activate the production of reactive oxygen species and 
pro-inflammatory cytokines in human lung epithelial cells (82), 
whereas silver, gold, and platinum NPs can enter the human body 
through therapeutic applications and cause damage to erythrocytes, 
including hemolysis, agglutination, and membrane damage (83). In 
addition, metal-based NPs can affect the systemic system by being 
deposited through the respiratory tract and taken up by phagocytes in 

FIGURE 6

Images showing radish seedlings exposed to varying concentrations of different NPs (68). Copyright 2019, Springer Nature.

FIGURE 7

Diagram of the uptake of PbS NPs in plants (70). Copyright 2020, Elsevier.
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the lung (84). It can enter the human body through skin exposure, and 
although the skin barrier prevent the penetration of NPs to some 
extent, it has been shown that NPs are able to cross the skin barrier 
under certain conditions (85, 86).

Notably, the morphology of metal-based nanoparticles has a 
significant effect on the toxicity of skin pathogens and HaCaT 
keratinocytes. It was shown that the toxicity of different shapes of 
AgNPs to bacteria and HaCaT cells varied, with truncated plate-
shaped AgNPs showing the highest cytotoxicity (87). The 
biodistribution and metabolic consequences of metal-based NPs have 
also been the focus of research. Several studies have shown that metal-
based NPs can migrate in vivo to locations far from the site of 
administration, requiring careful monitoring of their migration 
pathways and potential toxic effects (88). For example, inhaled 
ultrafine manganese oxide NPs can migrate to the central nervous 
system via the olfactory nerve pathway, causing inflammatory 
changes (89).

For human exposure assessment of metal-based NPs, a 
comprehensive approach is needed to consider their safety. For 
example, a study of Italian nanomaterials workers developed a human 
biomonitoring method based on single-particle inductively coupled 
plasma mass spectrometry to assess the level of NPs exposure in the 
workplace (Figure 8) (90).

4 Toxicity mechanisms of metal-based 
NPs

The mechanism of toxicity for metal-based NPs is multifaceted 
and intricate. In terms of the interaction between NPs and living 
organisms, the size and shape of metal-based NPs have a 
significant impact on their interactions with cells. For instance, 
smaller NPs tend to accumulate more easily in cells, potentially 
causing damage to cellular structures and disrupting normal cell 
function. Furthermore, the surface properties of metal-based NPs 
can influence their interactions with proteins and other 

biomolecules, leading to adverse effects on cell health. Therefore, 
a better understanding of the mechanisms underlying the toxicity 
of metal-based NPs is essential for the development of effective 
safety measures and the design of more biocompatible materials 
(91, 92).

4.1 Cell membrane damage

The cell membrane is a barrier for the exchange of substances 
inside and outside the cell, preventing harmful substances from 
entering the cell and protecting the internal structure of the cell. 
Studies have shown that metal-based NPs may cause direct damage to 
the cell membrane, resulting in altered cell membrane permeability 
(93), the disruption of cell membrane integrity (94), and the alteration 
of cell membrane structure (95), among others. For example, zinc 
oxide NPs induce toxicity by affecting cell wall integrity pathways, 
mitochondrial function, and lipid homeostasis in Saccharomyces 
cerevisiae (96). Chen et al. (12) studied the biological effects of TiO2 
NPs on the unicellular green alga Chlamydomonas reinhardtii. The cell 
surface morphology of Chlamydomonas reinhardtii was found to 
be  altered on scanning electron microscopy, indicating that 
photocatalytic TiO2 NPs disrupted the cell surface.

4.2 Intracellular oxidative stress

In a normal environment, intracellular ROS are generated at a low 
production rate and rapidly eliminated by antioxidant defense systems 
such as glutathione and antioxidant enzymes, thus maintaining cellular 
redox balance. However, when ROS are overproduced, the redox 
reaction becomes unbalanced, triggering a series of biochemical 
reactions that lead to cellular damage (97, 98). The mechanism of action 
of metal-based NPs is, on the one hand, to increase the production of 
ROS, and the generation of excess ROS is the precursor to oxidative 
damage effects. Direct contact of NPs with the mitochondria or storage 

FIGURE 8

A human biomonitoring method based on single particle inductively coupled plasma mass spectrometry (90). Copyright 2023, Molecular Diversity 
Preservation International (MDPI).
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in the acidic environment of lysosomes allows for the direct cellular 
production of ROS (99, 100). On the other hand, metal-based NPs 
cause the intracellular antioxidant enzyme system to be underproduced. 
The antioxidant enzyme system includes superoxide dismutase, 
catalase, and glutathione peroxidase (101, 102). For example, when Ag 
NPs are used as a stressor, Cryptobacterium hidradii nematodes can 
regulate oxidative stress through the p38 MAPK pathway (103).

4.3 Cellular inflammation

NF-κB-regulated inflammatory response plays an important role 
in the differentiation, value addition, and expression of biological 
proteins and biological enzymes. When mouse hearts were exposed 
to TiO2 NPs, cardiomyocyte swelling and inflammatory cell infiltration 
were observed, as a significant increase in NF-κB promoted the 
expression of IL-1β and TNF-α (104). Another study revealed that 
ZnO NPs play an important role in regulating the inflammatory 
response of vascular endothelial cells through NF-κB signaling, which 
may be important for the treatment of vascular diseases (105). The 
inflammatory response of ZnO NPs was also confirmed in another 
study (106). In addition, metal oxide NPs can activate human lung 
epithelial cells to produce ROS and pro-inflammatory cytokines such 
as interleukin 8 and granulocyte-macrophage colony-stimulating 
factor, which activate and recruit immune cells (82).

4.4 Regulation of gene expression

Abnormalities in gene expression levels can be  caused by 
mutations, environmental factors, or dysregulation of intracellular 
regulatory mechanisms (107, 108). For example, metal-based NPs may 
interfere with gene transcription, affecting the binding of DNA to 
RNA polymerase, leading to abnormal gene transcription, which in 
turn affects protein expression and function (109). Alternatively, they 
may affect the DNA methylation status, which in turn affects the 
regulation of gene expression. Methylation is an important mode of 
gene expression regulation, and metal-based NPs may affect gene 
expression and function by altering the DNA methylation state (13).

5 Challenges and prospects for the 
ecotoxicity of metal-based NPs

Some progress has been made in the research on the ecotoxicity of 
metal-based NPs, but there are still many challenges and problems to 
be solved. First, the ecotoxicity assessment of metal-based NPs requires 
an integrated assessment approach. Integrated biomarker response has 
been shown to be an effective tool for assessing the toxic effects of 
metal-based NPs on environmental biomass. In addition, computational 
toxicology applications such as quantitative structure–activity 
relationships and read across techniques are important for predicting 
nanotoxicity and filling data gaps. Second, it is necessary to strengthen 
the research on the interactions and mechanisms between metal-based 
NPs and living organisms, including their direct effects on living 
organisms and potential risks. In addition, experimental studies and 
field investigations should be actively conducted to assess the potential 
impacts of metal-based NPs on the environment and human health.

In order to manage the ecotoxicity risks of metal-based NPs, 
appropriate regulatory measures need to be developed. This includes 
the classification and labelling of nanomaterials and the setting of 
hazard threshold levels for human health and the environment. 
Furthermore, research should focus on increasing the body’s resistance 
to the harmful effects of metal-based nanoparticles in order to 
mitigate their potential toxic effects.

To achieve this goal, interdisciplinary collaboration is essential, 
involving researchers from a wide range of fields, including chemistry, 
physics, biology, and environmental sciences, to promote the in-depth 
development of ecotoxicity research on metal-based NPs. Looking 
ahead, with continuous progress and innovation in science and 
technology, we are confident that the impacts of metal-based NPs on 
the environment and human health can be better understood and 
controlled. At the same time, there is a need to strengthen public 
education on scientific literacy, improve public awareness and 
understanding of nanotechnology, and promote the sustainable 
development and application of nanotechnology.
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