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Background: EPs pose significant challenges to individual health and quality of 
life, attracting attention in public health as a risk factor for diminished quality 
of life and healthy life expectancy in middle-aged and older adult populations. 
Therefore, in the context of global aging, meticulous exploration of the factors 
behind emotional issues becomes paramount. Whether ADL can serve as 
a potential marker for EPs remains unclear. This study aims to provide new 
evidence for ADL as an early predictor of EPs through statistical analysis and 
validation using machine learning algorithms.

Methods: Data from the 2018 China Health and Retirement Longitudinal Study 
(CHARLS) national baseline survey, comprising 9,766 samples aged 45 and 
above, were utilized. ADL was assessed using the BI, while the presence of EPs 
was evaluated based on the record of “Diagnosed with Emotional Problems by 
a Doctor” in CHARLS data. Statistical analyses including independent samples t-
test, chi-square test, Pearson correlation analysis, and multiple linear regression 
were conducted using SPSS 25.0. Machine learning algorithms, including 
Support Vector Machine (SVM), Decision Tree (DT), and Logistic Regression (LR), 
were implemented using Python 3.10.2.

Results: Population demographic analysis revealed a significantly lower average 
BI score of 65.044  in the “Diagnosed with Emotional Problems by a Doctor” 
group compared to 85.128 in the “Not diagnosed with Emotional Problems by 
a Doctor” group. Pearson correlation analysis indicated a significant negative 
correlation between ADL and EPs (r =  −0.165, p  <  0.001). Iterative analysis using 
stratified multiple linear regression across three different models demonstrated 
the persistent statistical significance of the negative correlation between 
ADL and EPs (B  =  −0.002, β  =  −0.186, t  =  −16.476, 95% CI  =  −0.002, −0.001, 
p  =  0.000), confirming its stability. Machine learning algorithms validated our 
findings from statistical analysis, confirming the predictive accuracy of ADL 
for EPs. The area under the curve (AUC) for the three models were SVM-
AUC  =  0.700, DT-AUC  =  0.742, and LR-AUC  =  0.711. In experiments using other 
covariates and other covariates + BI, the overall prediction level of machine 
learning algorithms improved after adding BI, emphasizing the positive effect of 
ADL on EPs prediction.
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Conclusion: This study, employing various statistical methods, identified a 
negative correlation between ADL and EPs, with machine learning algorithms 
confirming this finding. Impaired ADL increases susceptibility to EPs.
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1 Introduction

As the world’s population continues to age, projections indicate 
that the number of individuals aged 60 and above in developing 
nations will surge from 900 million to two billion between 2015 and 
2050 (1). Among the older adult population, the activities of daily 
living (ADL) and emotional problems (EPs) have received widespread 
attention in the fields of medicine and public health research (2–6). 
EPs encompass a range of disorders such as panic disorder, generalized 
anxiety disorder, social phobia, specific phobia, obsessive-compulsive 
disorder, post-traumatic stress disorder, and depression (7). These EPs 
pose significant challenges to individual health and quality of life (8). 
Research has found that the overall prevalence of depression among 
older adults globally is 28.4% (9), and depression may accelerate the 
cellular aging process (10). Symptoms of depression, anxiety, and 
other emotional issues also manifest in the preclinical stages of 
Alzheimer’s disease (AD) (11). EPs greatly impact the health and 
lifespan of the older adult. Therefore, in the context of global aging, it 
is particularly important to meticulously explore the factors behind 
emotional issues.

EPs, characterized primarily by emotional disturbances such as 
depression, anxiety, mania, and feelings of loneliness, may also entail 
impulsive behavior, disruptions in sleep and diet, and even suicidal or 
self-harming thoughts (12). For middle-aged and older adult 
individuals, the pressures of work and family, or difficulties adjusting 
to life after retirement, coupled with disparities in social interaction 
and attention, can lead to emotional disruptions, resulting in a 
spectrum of EPs (13). In the prodromal stages of AD, which often 
coincide with gradual and insidious impairments in ADL, individuals 
may experience EPs, manifesting as depression or anxiety, yet these 
symptoms often go unnoticed, leading to exacerbation in later stages 
of AD (14, 15). During the recovery and sequelae phases of stroke, EPs 
are often present (16), with patients frequently experiencing difficulty 
in emotional regulation, thereby impacting stroke rehabilitation (17, 
18). ADL encompasses a range of pertinent issues such as personal 
self-care, proficiency in functional tasks, and the ability to perform 
activities, serving as a cornerstone of an individual’s quality of life (19). 
Age-related impairments in ADL may render middle-aged and older 
adult individuals unable to accept declines in physical function and 
personal capabilities, thereby triggering EPs (20). Encouraging 
patients to improve their ADL is a crucial measure in the rehabilitation 
of EPs, as enhancing ADL can aid patients in returning to normal life 
and stabilizing their emotions (21). In stroke rehabilitation, as patients’ 
physical abilities improve, activities such as independent eating, 
walking, and climbing stairs can alleviate EPs resulting from stroke 
sequelae (22, 23).

Previous studies have hinted at the potential correlation between 
ADL and EPs. To elucidate this correlation further, the present study 
collected data from the China Health and Retirement Longitudinal 
Survey (CHARLS) in 2018 and employed various statistical methods 
for analysis, revealing a significant correlation between ADL and EPs. 
Additionally, three machine learning algorithms—Support Vector 
Machine (SVM), Decision Tree (DT), and Logistic Regression (LR)—
were employed to validate our findings. The primary objective of this 
study is to elucidate the association between ADL and EPs, enhance 
the awareness of ADL among middle-aged and older adult individuals, 
and introduce novel avenues for non-pharmacological rehabilitation 
therapy for emotional issues in this demographic group.

2 Methods

2.1 Study population

This study collected data from the China Health and Retirement 
Longitudinal Study (CHARLS) baseline dataset, which is operated by 
the National School of Development at Peking University.1 CHARLS 
has established a high-quality open-access database encompassing 
various details regarding individuals, families, health status, and 
socio-economic aspects, including “Health Status and Functioning,” 
“Cognition,” “Work Retirement,” and “Family Information.” The study 
cohort comprised individuals aged 45 and above randomly selected 
from 150 counties or districts and 450 villages or urban areas across 
28 provinces, representing the middle-aged and older adult population 
in China (24). Utilizing the 2018 CHARLS dataset, this study 
encompassed a total of 20,813 samples. Participants under 45 years 
old were excluded from the analysis, along with those with insufficient 
demographic or health data, resulting in a final sample size of 
9,766 individuals.

2.2 Assessment of emotional problems

The assessment was conducted based on the records of emotional 
problems data “Diagnosed with Emotional Problems by a Doctor” in 
CHARLS. The samples were divided into two cohorts: those affirmed 
as “Diagnosed with Emotional Problems by a Doctor” and those 
negated as “Not diagnosed with Emotional Problems by a Doctor.”

1 http://charls.pku.edu.cn
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2.3 Assessment of ADL

The Barthel Index (BI) is a recognized method used to assess the 
level of ADL. In this study, the BI was employed to evaluate the ADL 
of all samples. The BI categorizes daily activities into 10 independent 
elements, including “Feeding,” “Bathing,” “Grooming,” “Dressing,” 
“Bowel Control,” “Bladder Control,” “Toilet Use,” “Transfers,” 
“Mobility,” and “Stairs,” each element being assessed with a score 
(Table  1), reflecting the individual’s ability and proficiency in 
completing the respective tasks. By assigning scores to each element 
and summarizing these scores, the BI is derived, ranging from 0 to 
100. A higher BI score indicates greater autonomy and proficiency in 
performing daily life activities (6, 25–27).

2.4 Assessment of covariates

The covariates in this study were derived from the CHARLS 
dataset, encompassing variables such as age, gender (male, female), 
residence (Central of City/Town, Urban–Rural Integration Zone, 
Rural, Special Zone), education (ranging from No Formal Education 
(Illiterate) to Doctoral Degree/Ph.D.), smoking status (Still Smoke, 
Quit or No, Never Smoked), drinking status (Drink more than once 
a month, Drink but less than once a month, None), as well as 
hypertension, diabetes, and dyslipidemia. For age, middle-aged 
individuals were defined as those aged 45 to below 60 years, while 
older adult individuals were defined as those aged 60 years and 
above. Regarding hypertension, as per the 2010 Chinese 
Hypertension Guidelines, hypertension was diagnosed based on an 
average systolic blood pressure ≥ 140mmHg, and/or an average 
diastolic blood pressure ≥ 90mmHg, and/or self-reported use of 
antihypertensive medications within the past 2 weeks (28). Diabetes 
diagnosis criteria included a fasting blood glucose level ≥ 7.0 
mmol/L or current treatment with antidiabetic medication. 
Dyslipidemia diagnosis criteria, following the 2016 Chinese Adult 
Dyslipidemia Guidelines, included total cholesterol level ≥ 240 mg/
dL, high-density lipoprotein cholesterol level < 40 mg/dL, 
low-density lipoprotein cholesterol level > 160 mg/dL, or 
triglyceride level ≥ 200 mg/dL (29).

2.5 Statistical analysis

In the demographic characteristics analysis, continuous variables 
such as age and BI were summarized using mean and standard 
deviation (SD), while categorical variables like gender, residence, and 
education were represented as counts and percentages. To examine 
demographic characteristics, independent sample t-tests were 
employed for continuous variables to discern differences, while 
chi-square tests were utilized for categorical variables. Correlation 
analysis involved Pearson correlation tests to assess the relationship 
between independent variables, covariates, and dependent variables. 
Subsequently, a comprehensive evaluation of the relationship between 
ADL and EPs was conducted through hierarchical multiple linear 
regression analysis. This regression underwent three iterations with 
distinct models, incorporating dummy variables as references in each 
variable. Model 1 included three variables: age, gender, and 
ADL. Model 2 extended Model 1 by adding residence, education, 
smoking status, and drinking status, resulting in a total of seven 
variables. Model 3 further expanded upon Model 2 with the inclusion 
of hypertension, diabetes, and dyslipidemia, encompassing a total of 
10 variables.

2.6 Machine learning algorithm

2.6.1 Parameter setup
The machine learning algorithms were implemented using the 

PyCharm 2023.1.2 integrated development environment and executed 
on a computer running the Windows 11 operating system. The 
software development process was conducted within the specified 
Anaconda development environment, utilizing Python version 3.10.2 
for coding and analysis. A random seed number of 42 was set and 
maintained consistently across the entire process to ensure the 
reproducibility and consistency of results. The original dataset was 
partitioned into two distinct subsets: a training set and a testing set. 
The training set comprised 70% of the original data, while the 
remaining 30% was allocated to the testing set. The data was randomly 
shuffled, and the model’s performance was evaluated by examining the 
classification results generated from the testing dataset.

TABLE 1 Activities of daily living scale.

Activities of daily 
living

Independent Partially independent Moderately 
dependent

Totally dependent

Feeding 10 5 0 0

Bathing 5 0 0 0

Grooming 5 0 0 0

Dressing 10 5 0 0

Transfers 15 10 5 0

Mobility 15 10 5 0

Stairs 10 5 0 0

Toilet Use 10 5 0 0

Bowel Control 10 5 0 0

Bladder Control 10 5 0 0

https://doi.org/10.3389/fpubh.2024.1391033
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Guo et al. 10.3389/fpubh.2024.1391033

Frontiers in Public Health 04 frontiersin.org

2.6.2 Experimental models

2.6.2.1 Support vector machine
The SVM stands out as a prominent supervised learning 

technique within the realm of machine learning, classified as a 
generalized linear classifier. Its core objective revolves around 
accurately classifying data points by discerning the maximum-
margin hyperplane, which serves as the decision boundary for the 
training dataset. One of SVM’s distinguishing features is its 
adaptability in tackling nonlinear classification tasks, facilitated by 
the utilization of kernel functions. This capability underscores 
SVM’s pivotal role in kernel-based learning methodologies. 
Notably, SVM demonstrates remarkable efficacy in addressing 
high-dimensional problems, including those characterized by 
expansive feature spaces, and exhibits prowess in navigating 
intricate relationships among nonlinear features (30, 31).

2.6.2.2 Decision tree learning
DT, a widely used supervised technique in statistics, data 

mining, and machine learning, offers versatile classification and 
regression capabilities. These trees, fashioned as predictive 
models, derive insights from observational data. In classification, 
they serve as tree-based models for discrete target variable values, 
with terminal nodes denoting class labels and branches 
delineating feature combinations leading to these labels. In 
regression, decision trees adeptly handle continuous target 
variable values, typically real numbers. Their adaptability spans 
various data types, encompassing categorical sequences, thereby 
augmenting their versatility across diverse analytical domains. 
Known for their simplicity and interpretability, decision trees are 
valuable tools for transparent decision-making processes and are 
particularly useful in decision analysis and data mining 
applications, where they provide descriptive insights and aid in 
decision-making (32–34).

2.6.2.3 Logistic regression
LR (Equation 1), a widely embraced methodology in supervised 

learning within machine learning, is distinct from linear regression as 
it primarily tackles classification problems, even in multi-classification 
scenarios. During training, the model learns from a dataset comprising 
multiple groups, known as the training set, absorbing patterns crucial 
for classification decisions. After training, the model applies this 
acquired knowledge to classify one or more datasets, referred to as the 
test set, each characterized by various indicators contributing to the 
decision-making process. Logistic regression’s adaptability renders it 
indispensable in supervised learning, playing a foundational role in 
machine learning methodologies across scientific and medical 
domains (35–37).

 
sigmoid =

+
1

1 e z−
 

(1)

Equation 1: Logistic regression.

2.6.3 Evaluating indicator
This study utilized accuracy, precision, recall, and F1-score 

as the selected evaluation metrics (38, 39). Accuracy assesses the 

proportion of correctly predicted labels to the total labels 
(Equation 2). Precision evaluates the proportion of true positive 
predictions among all positive predictions (Equation 3). Recall 
gauges the proportion of true positive predictions among all 
actual positive instances (Equation 4). F1-score reflects the 
robustness of the model, simultaneously considering precision 
and recall. A higher F1 value indicates better model performance 
(Equation 5).

 
Accuracy = TP + TN

TP + FP +TN + FN  
(2)

Equation 2: Accuracy.

 
Precision = TP

TP + FP  
(3)

Equation 3: Precision.

 
Recall = TP

TP + FN  
(4)

Equation 4: Recall.

 
F = TP

TP + FN + FP
= Precision Recall

Precision + Recall
1 2

2
2∗ ∗

 
(5)

Equation 5: F1-score (TP, True Positive; FP, False Positive; FN, 
False Negative; TN, True Negative).

3 Results

3.1 Characteristics of samples

The study rigorously excluded ineligible subjects, namely those 
aged 45 and below, as well as individuals lacking adequate 
demographic or health data. Ultimately, the cohort comprised 9,766 
participants, among whom 3,904 were male (39.98%) and 5862 were 
female (60.02%). Table  2 encapsulates the demographic 
characteristics of the study cohort, wherein 9539 individuals 
(97.68%) remained undiagnosed with EPs by medical professionals, 
while 227 individuals (2.32%) received EP diagnoses. Remarkably, 
those diagnosed with EPs demonstrated substantially lower average 
BI scores (65.044, standard deviation = 30.6421) compared to their 
undiagnosed counterparts (85.128, standard deviation = 17.6386), 
indicating a significant disparity (p < 0.001, t = 16.573) in ADL 
between the diagnosed and undiagnosed EP cohorts. Furthermore, 
significant differences (p < 0.001) were discerned between 
individuals diagnosed with EPs and those without in terms of 
gender (p = 0.015), smoking status (p = 0.005), alcohol consumption 
(p < 0.001), hypertension (p = 0.001), and dyslipidemia (p = 0.011). 
Analysis of the demographic features of the sample underscores the 
influence of ADL, gender, education, smoking and alcohol habits, 
as well as the presence of hypertension or dyslipidemia on the 
prevalence of EPs.
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3.2 The correlation between variable and 
EPs

We employed Pearson correlation analysis to explore the 
relationship between EPs and both independent and covariate 
variables (Table 3). The results reveal a significant negative correlation 
between ADL and EPs (r = −0.165, p < 0.001), indicating an increased 
susceptibility to EPs among individuals with impaired 
ADL. Additionally, a slight yet significant positive correlation was 
observed between gender and EPs (r = 0.025, p = 0.015), suggesting a 
higher likelihood of females being diagnosed with EPs. Regarding 
smoking status, a significant positive correlation with EPs was found 
(r = 0.032, p = 0.002), implying a higher susceptibility to EPs among 
non-smokers. Similarly, a significant positive correlation was observed 
between alcohol consumption and EPs (r = 0.044, p < 0.001), indicating 
that individuals with lower alcohol consumption frequency are more 
likely to be diagnosed with EPs. Furthermore, hypertension (r = 0.032, 
p = 0.001) and dyslipidemia (r = 0.026, p = 0.011) exhibited significant 
positive correlations with EPs, suggesting a greater likelihood of 
individuals with hypertension or dyslipidemia being diagnosed 
with EPs.

3.3 Associations between ADL and EPs

To delve deeper into the correlation between EPs and ADL, 
we employed hierarchical multiple linear regression to systematically 
investigate the association between the independent variables (ADL, 
age, gender, residence, smoking status, etc.) and the dependent 
variable EPs across three distinct models (Model 1, Model 2, Model 3; 
Table 4).

In Model 1, we  included ADL, age, and gender (R = 0.170, 
R2 = 0.029, F = 96.764, p < 0.001). We observed a significant negative 
correlation between ADL and EPs (B = −0.001, β = −0.175, t = −16.777, 
95% CI = −0.002, −0.001, p = 0.000), underscoring the heightened 
susceptibility to EPs among individuals with impaired daily living 
abilities. In Model 2, additional covariates were incorporated 
(residence, education, smoking, and drinking status), where ADL 
continued to exhibit a pronounced negative correlation with EPs 
(B = −0.001, β = −0.174, t = −16.528, 95% CI = −0.002, −0.001, 
p = 0.000), maintaining statistical significance. In the final iteration, 
Model 3 introduced hypertension, dyslipidemia, and diabetes, 
reaffirming the negative correlation between ADL and EPs 
(B = −0.002, β = −0.186, t = −16.476, 95% CI = −0.002, −0.001, 
p = 0.000), with an overall significant fit (R = 0.190, R2 = 0.036, 
F = 15.870, p < 0.001).

All three models demonstrated statistically significant associations 
between the independent and dependent variables (p < 0.001). The R 
value increased gradually from 0.170 in Model 1 to 0.190 in Model 3, 
indicating an enhanced ability to explain the variability of outcomes. 
Across all models, despite adjustments for covariates, our study 
consistently emphasized the significant association between declining 
ADL and increased susceptibility to EPs, while underscoring the 
robustness of this relationship.

In our investigation, hypertension emerged as a consistent factor 
exhibiting correlation with EPs across all analyses, suggesting its 
potential role as a significant confounding factor in this study. To 
mitigate this confounding effect, we partitioned the entire sample into 

two cohorts: a hypertension group (Table 5) and a non-hypertension 
group (Table 6). Through this stratification, we aimed to delve into the 
relationship between ADL and EPs in detail.

Within the hypertension group, iterative modeling across three 
iterations continued to reveal a statistically significant negative 
correlation between ADL and EPs (B = −0.001, β = −0.123, t = −4.784, 
95% CI = −0.001, −0.001, p = 0.000). Similarly, within the 
non-hypertension group, this negative correlation persisted 
(B = −0.002, β = −0.202, t = −17.450, 95% CI = −0.002, −0.002, 
p = 0.000). These findings underscore that irrespective of hypertension 
status and adjustments for covariates, ADL continues to influence 
susceptibility to EPs (p < 0.001).

3.4 Machine learning algorithm confirm the 
link between ADL and EPs

Through statistical analysis, we  have identified a significant 
negative correlation between ADL and EPs, indicating that individuals 
with impaired daily living abilities are more susceptible to EPs. 
Moreover, employing hierarchical multiple linear regression, adjusting 
for and iterating covariates, we have established the stability of the 
negative correlation between ADL and EPs. Consequently, 
we  employed three machine learning algorithms—SVM, DT, and 
LR—to validate the association between the two.

The results (see Figure 1A) demonstrate that the Area Under the 
Curve (AUC) values of SVM, DT, and LR exceeded the critical 
threshold of 0.7, reaching 0.700, 0.742, and 0.711, respectively, 
confirming the diagnostic capability of these models. Comprehensive 
evaluation of the three machine learning algorithms using Accuracy, 
Precision, Recall, and F1 Score metrics (see Figure 1B; Table 7) reveals 
that DT exhibited outstanding Accuracy (0.677) and Precision (0.735), 
while SVM demonstrated superiority in Recall (0.600) and F1 Score 
(0.637). The combined statistical analysis and machine learning 
algorithm validation affirm a substantial association between ADL 
and EPs, indicating that impaired daily living abilities increase 
susceptibility to emotional problems.

To enhance the credibility of the association between ADL and 
EPs and underscore the predictive role of ADL in EPs, we partitioned 
the dataset into two groups with distinct features. The first group 
included all covariates except for the Bath Index (BI), while the second 
group incorporated BI while retaining the same set of covariates. 
Machine learning algorithms rigorously validated these two data 
subsets. The results demonstrate that upon inclusion of BI, the AUC 
values of SVM and LR models increased from 0.825 and 0.627 to 0.903 
and 0.743, respectively, whereas in the DT model, the AUC value 
decreased from 0.966 to 0.956. Overall, the addition of BI enhanced 
the predictive AUC values and improved model performance (see 
Figures 2A,B). Further analysis using Accuracy, Precision, Recall, and 
F1 Score metrics (see Figures 2C–E; Table 8) revealed that the SVM 
model exhibited the best performance, with Accuracy increasing from 
0.749 to 0.823, Precision from 0.698 to 0.794, and F1 Score from 0.776 
to 0.830, demonstrating robust overall performance.

All three machine learning algorithms verified the association 
between ADL and EPs and affirmed the positive role of BI in overall 
prediction, enhancing model performance. The validation of machine 
learning algorithms confirms our finding that impaired daily living 
abilities increase susceptibility to EPs.
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TABLE 2 Demographic characteristics of middle-aged and older adults Chinese with and without emotional problems by doctor.

Variables Not diagnosed 
with emotional 
problems by a 

doctor

Diagnosed with 
emotional problems 

by a doctor

p-value t/χ2

No. subjects (%) 9539(97.68) 227(2.32)

Age, year 0.157 1.415

65.14267743 66.1277533

SD 10.36763582 10.15416304

Gender, n (%) 0.015 5.918

Male 3831(40.16) 73(32.16)

Female 5708(59.84) 154(67.84)

Residence, n (%) 0.105 6.150

Central of City/Town 1614(16.92) 35(15.42)

Urban–Rural Integration Zone 628(6.58) 24(10.57)

Rural 7274(76.26) 167(73.57)

Special Zone 23(0.24) 1(0.44)

Education, n (%)

No Formal Education (Illiterate) 2083(21.84) 51(22.47) <0.001 44.91

Did not Finish Primary School 1839(19.28) 39(17.18)

Sishu/Home School 18(0.19) 1(0.44)

Elementary School 2016(21.13) 50(22.03)

Middle School 2172(22.77) 53(23.35)

High School 856(8.97) 19(8.37)

Vocational School 282(2.96) 8(3.52)

Two-/Three-Year College/Associate 

Degree
157(1.65) 4(1.76)

Four-Year College/Bachelor’s Degree 105(1.10) 1(0.44)

Master’s Degree 11(0.12) 0(0)

Doctoral Degree/Ph.D. 0(0) 1(0.44)

Smoking status, n (%) 0.005 10.713

Still Smoke 2131(22.34) 30(13.22)

Quit or No 7293(76.45) 194(85.46)

Never Smoked 115(1.21) 3(1.32)

Drinking status, n (%) <0.001 21.67

Drink more than once a month 1895(19.87) 23(10.13)

Drink less than once a month 630(6.60) 6(2.64)

None 7014(73.53) 198(87.22)

Hypertension, n (%)

Yes 1799(18.86) 62(27.31) 0.001 10.272

No 7740(81.14) 165(72.69)

Diabetes, n (%)

Yes 650(6.81) 18(7.93) 0.511 0.433

No 8889(93.19) 209(92.07)

Dyslipidemia, n (%)

Yes 1256(13.17) 43(18.94) 0.011 6.414

No 8283(86.83) 184(81.06)

Activity of daily living (The Barthel 

Index)
<0.001 −16.573

85.128 65.044

SD 17.6386 30.6421
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4 Discussion

Amidst the ongoing global aging population phenomenon (40), 
the potential hazards of EPs among middle-aged and older adult 
individuals are gradually gaining attention. EPs may arise from 
psychological discrepancies associated with aging and are often 
concomitant with certain diseases (41). The exacerbation of global 
aging has led to increased feelings of loneliness among the older adult, 
coupled with the disregard for psychological well-being and emotional 
stability by individuals and families, thereby fostering the proliferation 
of EPs (42, 43). Hence, early detection and intervention for the 
complex factors contributing to EPs become particularly imperative.

In this study, we  commenced by conducting demographic 
analyses of the individuals included in the research cohort. 
We observed disparities in the mean BI scores between cohorts 
afflicted with EPs and those without EPs, with the former exhibiting 
lower mean BI scores compared to the latter. Subsequently, utilizing 
Pearson correlation analysis, we established a negative correlation 
between ADL and EPs. Subsequent to this, employing iterative 
iterations of three distinct models, we  conducted stratified 
multivariate linear regression. Even after controlling for covariates 
such as age, gender, residency, education, smoking and drinking 
status, and chronic diseases, a significant negative correlation 
between ADL and EPs persisted. Furthermore, machine learning 
algorithms validated our findings. In experiments utilizing solely BI 
data, the AUC scores of all three machine learning algorithms 
exceeded 0.7, indicating diagnostic value. In the subsequent 
experiments involving two groups—one with additional covariates 
and another with additional covariates plus BI—the inclusion of BI 
resulted in an overall enhancement of the predictive performance 
of machine learning algorithms. Particularly noteworthy was the 
notable improvement observed in the predictive performance of 
SVM when BI was added. This underscores the positive influence 
of BI on the predictive capabilities of machine learning algorithms, 
thus corroborating our findings that ADL impairment heightens 
susceptibility to EPs.

This study also conducted an analysis of other covariates. In the 
examination of demographic characteristics and Pearson correlation, 
gender, smoking and drinking status, hypertension, and dyslipidemia 
exhibited statistically significant differences between the EPs and 
non-EPs groups and were all significantly positively correlated with 
EPs. Specifically, females were more prone to EPs, while individuals 
with hypertension and dyslipidemia were also more susceptible to 
EPs, consistent with previous research findings (44–48). However, 
regarding smoking and drinking status, the results of this study 
showed that individuals who smoked less and drank less frequently 
were more susceptible to EPs, contradicting previous studies. 
We  attribute this discrepancy to the higher proportion of female 
individuals in this study, as generally, fewer Chinese females have 
habits of smoking and drinking in daily life (49, 50). Additionally, 
studies have reported that acetylcholine contributes to regulating 
brain homeostasis and shaping synaptic neuron transmission and 
neurotransmitter levels (51). Nicotine may improve mood and 
alleviate anxiety by increasing acetylcholine release and the number 
of nicotinic receptors (52). As for other covariates such as residence 
and education level in this study, their definitions cannot be simply 
delineated through basic demographic characteristics and Pearson 
correlation analysis. These factors, as potential influencers of EPs, may 
require joint analysis with various socio-economic factors such as 
offspring support, retirement pensions, family migration, childhood 
experiences, etc., to derive more scientifically sound conclusions (53).

This study identified a significant negative correlation between 
ADL and EPs, which remained stable even after adjusting for other 
covariates, a relationship confirmed by machine learning algorithms. 
Therefore, emphasizing the importance of exercise for the older adults 
in daily life activities is crucial. Encouraging the older adults to 
improve ADL in community healthcare and home care settings serves 
as a preventive measure against EPs and ensures a better quality of life, 
forming the basis for quality longevity (54, 55). In the process of 
disease rehabilitation, such as stroke, timely restoration of ADL in 
patients is conducive to their psychological well-being post-illness and 
enhances their confidence in recovery (56, 57).

TABLE 3 Correlation between variable and emotional problems.

Variables Emotional problems

r p-value

Age 0.014 0.157

Gender 0.025 0.015

Residence −0.002 0.878

Education 0.002 0.842

Smoking status 0.032 0.002

Drinking status 0.044 <0.001

Hypertension 0.032 0.001

Diabetes 0.007 0.511

Dyslipidemia 0.026 0.011

Activity of daily living(The Barthel Index) −0.165 <0.001

Emotional problems: 0 = “Not diagnosed with Emotional Problems by a Doctor,” 1 = “Diagnosed with Emotional Problems by a Doctor”; Gender:1 = “Male,”2 = “Female”;Residence:1 = “Central 
of City/Town “,2 = “Urban–Rural Integration Zone,”3 = “Rural,”4 = “Special Zone”;Education:1 = “No Formal Education (Illiterate),”2 = “Did not Finish Primary School,”3 = “Sishu/Home 
School,”4 = “Elementary School,”5 = “Middle School,”6 = “High School,”7 = “Vocational School,”8 = “Two-/Three-Year College/Associate Degree,”9 = “Four-Year College/Bachelor’s 
Degree,”10 = “Master’s Degree,”11 = “Doctoral Degree/Ph.D.”; Smoking status:1 = “Still Smoke,”2 = “Quit or No,”3 = “Never Smoked”; Drinking status:1 = “Drink More than Once a 
Month,”2 = “Drink But Less than Once a Month,” 3 = “None”; Hypertension/Diabetes/Dyslipidemia:0 = “No,”1 = “Yes.”
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TABLE 4 Associations between ADL and emotional problems in middle-aged and older adults Chinese.

Model R
R 

square
F p-value Variables B β t 95%CI p-value

Model 1 0.170 0.029 96.764 <0.001

ADL −0.001 −0.175 −16.777 −0.002 −0.001 0.000

Age −0.001 −0.036 −3.446 −0.001 0.000 0.001

Gender
Male −0.005 −0.015 −1.489 −0.011 0.001 0.137

Female(Ref.)

Model 2 0.187 0.035 17.752 <0.001

ADL −0.001 −0.174 −16.528 −0.002 −0.001 0.000

Age −0.001 −0.037 −3.553 −0.001 0.000 0.000

Gender
Male 0.000 0.000 −0.013 −0.007 0.007 0.990

Female(Ref.)

Residence

Central of City/Town −0.018 −0.044 −0.576 −0.077 0.042 0.564

Urban–Rural Integration Zone −0.004 −0.007 −0.138 −0.065 0.056 0.890

Rural −0.023 −0.065 −0.758 −0.082 0.036 0.448

Special Zone(Ref.)

Education

No Formal Education (Illiterate) −0.966 −2.648 −6.514 −1.256 −0.675 0.000

Did not Finish Primary School −0.969 −2.534 −6.536 −1.259 −0.678 0.000

Sishu/Home School −0.936 −0.274 −6.157 −1.234 −0.638 0.000

Elementary School −0.965 −2.616 −6.511 −1.256 −0.675 0.000

Middle School −0.966 −2.688 −6.515 −1.256 −0.675 0.000

High School −0.969 −1.836 −6.533 −1.259 −0.678 0.000

Vocational School −0.963 −1.085 −6.485 −1.254 −0.672 0.000

Two-/Three-Year College/Associate Degree −0.969 −0.819 −6.521 −1.261 −0.678 0.000

Four-Year College/Bachelor’s Degree −0.978 −0.672 −6.565 −1.269 −0.686 0.000

Master’s Degree −0.981 −0.218 −6.338 −1.285 −0.678 0.000

Doctoral Degree/Ph.D.(Ref.)

Smoking 

status

Still Smoke −0.006 −0.016 −0.420 −0.033 0.022 0.674

Quit or No −0.002 −0.005 −0.131 −0.029 0.025 0.895

Never Smoked(Ref.)

Drinking 

status

Drink more than once a month −0.007 −0.020 −1.759 −0.016 0.001 0.079

Drink less than once a month −0.013 −0.021 −2.033 −0.025 0.000 0.042

No(Ref.)

(Continued)
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Model R
R 

square
F p-value Variables B β t 95%CI p-value

Model 3 0.190 0.036 15.870 <0.001

ADL −0.002 −0.186 −16.476 −0.002 −0.001 0.000

Age −0.001 −0.037 −3.535 −0.001 0.000 0.000

Gender
Male 0.000 0.000 0.041 −0.007 0.008 0.968

Female(Ref.)

Residence Central of City/Town −0.017 −0.043 −0.567 −0.077 0.042 0.571

Urban–Rural Integration Zone −0.004 −0.006 −0.123 −0.064 0.057 0.902

Rural −0.023 −0.065 −0.761 −0.082 0.036 0.446

Special Zone(Ref.)

Education No Formal Education (Illiterate) −0.963 −2.641 −6.499 −1.254 −0.673 0.000

Did not Finish Primary School −0.966 −2.528 −6.521 −1.257 −0.676 0.000

Sishu/Home School −0.932 −0.273 −6.130 −1.230 −0.634 0.000

Elementary School −0.963 −2.609 −6.497 −1.253 −0.672 0.000

Middle School −0.963 −2.682 −6.501 −1.254 −0.673 0.000

High School −0.966 −1.831 −6.517 −1.257 −0.675 0.000

Vocational School −0.960 −1.082 −6.471 −1.251 −0.669 0.000

Two-/Three-Year College/Associate Degree −0.967 −0.817 −6.506 −1.258 −0.676 0.000

Four-Year College/Bachelor’s Degree −0.975 −0.671 −6.553 −1.267 −0.684 0.000

Master’s Degree −0.977 −0.217 −6.310 −1.280 −0.673 0.000

Doctoral Degree/Ph.D.(Ref.)

Smoking 

status

Still Smoke −0.007 −0.019 −0.488 −0.034 0.021 0.626

Quit or No −0.003 −0.008 −0.197 −0.030 0.024 0.844

Never Smoked(Ref.)

Drinking 

status

Drink more than once a month −0.008 −0.020 −1.813 −0.016 0.001 0.070

Drink less than once a month −0.012 −0.020 −2.016 −0.025 0.000 0.044

No(Ref.)

Hypertension Yes −0.012 −0.030 −2.781 −0.020 −0.003 0.005

No(Ref.)

Diabetes Yes −0.007 −0.011 −1.104 −0.019 0.005 0.270

No(Ref.)

Dyslipidemia Yes 0.000 0.000 0.026 −0.009 0.009 0.979

No(Ref.)

TABLE 4 (Continued)
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TABLE 5 Associations between ADL and EPs in the hypertension group.

Model R R square F p-value Variables B β t 95%CI P-value

Model 1 0.134 0.018 11.301 <0.001

ADL −0.001 −0.141 −5.750 −0.001 −0.001 0.000

Age −0.001 −0.053 −2.171 −0.002 0.000 0.030

Gender
Male −0.005 −0.014 −0.591 −0.021 0.012 0.554

Female(Ref.)

Model 2 0.156 0.024 2.430 <0.001

ADL −0.001 −0.130 −5.141 −0.001 −0.001 0.000

Age −0.001 −0.057 −2.293 −0.002 0.000 0.022

Gender
Male 0.006 0.017 0.628 −0.013 0.026 0.530

Female(Ref.)

Residence

Central of City/Town 0.027 0.055 0.297 −0.150 0.204 0.767

Urban–Rural Integration Zone 0.050 0.071 0.544 −0.129 0.228 0.586

Rural 0.032 0.075 0.353 −0.144 0.208 0.724

Special Zone(Ref.)

Education

No Formal Education (Illiterate) 0.020 0.046 0.225 −0.156 0.196 0.822

Did not Finish Primary School 0.025 0.055 0.274 −0.152 0.201 0.784

Sishu/Home School −0.004 −0.001 −0.039 −0.230 0.222 0.969

Elementary School 0.024 0.054 0.263 −0.153 0.200 0.793

Middle School 0.034 0.078 0.381 −0.142 0.210 0.703

High School 0.019 0.031 0.206 −0.159 0.196 0.837

Vocational School 0.028 0.026 0.300 −0.154 0.209 0.764

Two-/Three-Year College/Associate 

Degree
0.047 0.035 0.494 −0.139 0.232 0.622

Four-Year College/Bachelor’s Degree −0.006 −0.003 −0.061 −0.202 0.190 0.951

Doctoral Degree/Ph.D.(Ref.)

Smoking 

status

Still Smoke 0.032 0.070 0.943 −0.034 0.097 0.346

Quit or No 0.042 0.097 1.285 −0.022 0.106 0.199

Never Smoked(Ref.)

Drinking 

status

Drink more than once a month −0.022 −0.045 −1.742 −0.046 0.003 0.082

Drink less than once a month −0.031 −0.041 −1.723 −0.066 0.004 0.085

No(Ref.)

(Continued)
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Model R R square F p-value Variables B β t 95%CI P-value

Model 3 0.163 0.026 2.383 <0.001

ADL −0.001 −0.123 −4.784 −0.001 −0.001 0.000

Age −0.001 −0.052 −2.085 −0.002 0.000 0.037

Gender
Male 0.005 0.014 0.504 −0.015 0.025 0.614

Female(Ref.)

Residence Central of City/Town 0.023 0.047 0.256 −0.154 0.200 0.798

Urban–Rural Integration Zone 0.045 0.064 0.494 −0.134 0.223 0.622

Rural 0.029 0.070 0.328 −0.147 0.205 0.743

Special Zone(Ref.)

Education No Formal Education (Illiterate) 0.018 0.041 0.201 −0.158 0.194 0.841

Did not Finish Primary School 0.022 0.048 0.242 −0.154 0.198 0.808

Sishu/Home School −0.007 −0.002 −0.065 −0.233 0.219 0.948

Elementary School 0.021 0.049 0.238 −0.155 0.197 0.812

Middle School 0.032 0.072 0.352 −0.144 0.208 0.725

High School 0.016 0.027 0.178 −0.161 0.193 0.859

Vocational School 0.027 0.026 0.292 −0.154 0.208 0.770

Two-/Three-Year College/Associate 

Degree

0.043 0.032 0.460 −0.142 0.229 0.646

Four-Year College/Bachelor’s Degree −0.010 −0.005 −0.101 −0.206 0.186 0.920

Master’s Degree(Ref.)

Smoking 

status

Still Smoke 0.033 0.073 0.978 −0.033 0.099 0.328

Quit or No 0.042 0.097 1.289 −0.022 0.107 0.198

Never Smoked(Ref.)

Drinking 

status

Drink more than once a month −0.022 −0.045 −1.762 −0.046 0.002 0.078

Drink less than once a month −0.030 −0.040 −1.704 −0.065 0.005 0.089

No(Ref.)

Diabetes Yes −0.015 −0.028 −1.195 −0.040 0.010 0.232

No(Ref.)

Dyslipidemia Yes 0.017 0.043 1.766 −0.002 0.036 0.078

No(Ref.)

TABLE 5 (Continued)
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TABLE 6 Associations between ADL and EPs in the non-hypertension group.

Model R R square F p-value Variables B β t 95%CI p-value

Model 1 0.193 0.037 102.236 <0.001

ADL −0.002 −0.198 −17.273 −0.002 −0.002 0.000

Age 0.000 −0.033 −2.877 −0.001 0.000 0.004

Gender
Male −0.004 −0.014 −1.294 −0.011 0.002 0.196

Female(Ref.)

Model 2 0.202 0.041 17.672 <0.001

ADL −0.002 −0.201 −17.403 −0.002 −0.002 0.000

Age −0.001 −0.036 −3.149 −0.001 0.000 0.002

Gender
Male −0.001 −0.004 −0.278 −0.009 0.007 0.781

Female(Ref.)

Residence

Central of City/Town −0.028 −0.073 −0.875 −0.090 0.034 0.382

Urban–Rural Integration Zone −0.018 −0.031 −0.552 −0.080 0.045 0.581

Rural −0.037 −0.110 −1.176 −0.099 0.025 0.240

Special Zone(Ref.)

Education

No Formal Education (Illiterate) −0.107 −0.309 −2.148 −0.204 −0.009 0.032

Did not Finish Primary School −0.112 −0.308 −2.254 −0.209 −0.015 0.024

Sishu/Home School −0.047 −0.013 −0.751 −0.171 0.076 0.453

Elementary School −0.108 −0.307 −2.163 −0.205 −0.010 0.031

Middle School −0.111 −0.326 −2.224 −0.208 −0.013 0.026

High School −0.111 −0.219 −2.221 −0.209 −0.013 0.026

Vocational School −0.104 −0.124 −2.066 −0.203 −0.005 0.039

Two-/Three-Year College/Associate 

Degree
−0.119 −0.105 −2.330 −0.219 −0.019 0.020

Four-Year College/Bachelor’s Degree −0.117 −0.087 −2.265 −0.219 −0.016 0.024

Master’s Degree(Ref.)

Smoking 

status

Still Smoke −0.022 −0.064 −1.418 −0.052 0.008 0.156

Quit or No −0.019 −0.057 −1.261 −0.049 0.011 0.207

Never Smoked(Ref.)

Drinking 

status

Drink more than once a month −0.005 −0.015 −1.166 −0.014 0.004 0.244

Drink less than once a month −0.009 −0.016 −1.413 −0.022 0.004 0.158

No(Ref.)

(Continued)
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Model R R square F p-value Variables B β t 95%CI p-value

Model 3 0.203 0.041 16.081 <0.001

ADL −0.002 −0.202 −17.450 −0.002 −0.002 0.000

Age −0.001 −0.037 −3.219 −0.001 0.000 0.001

Gender
Male −0.001 −0.004 −0.275 −0.009 0.007 0.783

Female(Ref.)

Residence Central of City/Town −0.028 −0.073 −0.880 −0.090 0.034 0.379

Urban–Rural Integration Zone −0.018 −0.031 −0.553 −0.080 0.045 0.580

Rural −0.037 −0.111 −1.189 −0.099 0.024 0.235

Special Zone(Ref.)

Education No Formal Education (Illiterate) −0.106 −0.306 −2.132 −0.203 −0.009 0.033

Did not Finish Primary School −0.111 −0.306 −2.237 −0.209 −0.014 0.025

Sishu/Home School −0.047 −0.013 −0.748 −0.171 0.076 0.455

Elementary School −0.107 −0.305 −2.149 −0.204 −0.009 0.032

Middle School −0.110 −0.324 −2.209 −0.207 −0.012 0.027

High School −0.110 −0.218 −2.208 −0.208 −0.012 0.027

Vocational School −0.104 −0.123 −2.053 −0.202 −0.005 0.040

Two-/Three-Year College/Associate 

Degree

−0.118 −0.104 −2.312 −0.218 −0.018 0.021

Four-Year College/Bachelor’s Degree −0.116 −0.086 −2.250 −0.218 −0.015 0.024

Master’s Degree(Ref.)

Smoking 

status

Still Smoke −0.022 −0.065 −1.438 −0.052 0.008 0.151

Quit or No −0.019 −0.058 −1.278 −0.049 0.010 0.201

Never Smoked(Ref.)

Drinking 

status

Drink more than once a month −0.005 −0.015 −1.207 −0.014 0.003 0.227

Drink less than once a month −0.009 −0.016 −1.410 −0.022 0.004 0.158

No(Ref.)

Diabetes Yes −0.003 −0.005 −0.467 −0.017 0.010 0.641

No(Ref.)

Dyslipidemia Yes −0.007 −0.014 −1.255 −0.017 0.004 0.210

No(Ref.)

TABLE 6 (Continued)
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FIGURE 1

Receiver operating characteristic (ROC) curves and evaluation metrics. (A) ROC curves with AUC for the three machine learning algorithms. 
(B) Comparison of three machine learning algorithms.

TABLE 7 Evaluation of the three machine learning algorithms.

Model Accuracy Precision Recall F1 score AUC

SVM 0.658 0.678 0.600 0.637 0.700

DT 0.677 0.735 0.551 0.630 0.742

LR 0.654 0.701 0.536 0.608 0.711

FIGURE 2

Comparison of overall effects of machine learning algorithms for two distinct datasets. (A) ROC curves with AUC for omit Barthel index group. (B) ROC 
curves with AUC for enter Barthel index group. (C) Contrasting the SVM model across the two groups. (D) Contrasting the DT model across the two 
groups. (E) Contrasting the LR model across the two groups.
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Nevertheless, this study has limitations. Its cross-sectional 
design precludes longitudinal exploration, hindering causal 
relationship establishment between ADL and EPs. Declining ADL 
may signify a symptom rather than a causative factor in EPs 
progression, inferring only a significant negative correlation 
between ADL and EPs. CHARLS data, collected annually, lacks 
precise diagnosis timings, constraining causal relationship 
determination. Future longitudinal studies are vital for robust 
evidence. Relying on “Diagnosed with Emotional Problems by a 
Doctor” in CHARLS, lacking detailed emotional problem 
classification such as Posttraumatic Stress Disorder (PTSD) and 
Generalized Anxiety Disorder (GAD), is another limitation. 
Enhancing understanding requires comprehensive emotional health 
assessments. Despite significant ADL-EPs correlation, predictive 
utility of ADL alone is limited; exploring sleep quality, social 
support, socioeconomic status, and chronic stress is needed to 
enhance predictive accuracy. Additionally, the small proportion 
(2.32%) of individuals diagnosed with EPs may introduce bias. 
Despite utilizing Synthetic Minority Over-sampling 
Technique(SMOTE) to address class imbalance, future studies 
should explore advanced techniques like stratified sampling or 
ensemble learning algorithms to improve result reliability. Although 
we  examined three machine learning algorithms, further 
investigation is warranted for optimal predictive model 
identification. Nonetheless, our study’s predictive capacity remains 
significant (58, 59).. Furthermore, BI, derived from self-reported 
scales in the CHARLS dataset, differs from clinical assessments. 
However, literature supports the reliability of self-reported ADL 
assessments, validating our approach (60–62).

5 Conclusion

This study employs various statistical methods to reveal a negative 
correlation between ADL and EPs. Furthermore, the utilization of 
machine learning algorithms confirms this finding, indicating that 
impaired ADL heightens susceptibility to EPs.

5.1 Summary

Emotional Problems (EPs) have become a significant challenge 
affecting the quality of life in middle-aged and older adult 
populations, garnering increasing attention in public health. Early 
detection of potential EPs among middle-aged and older adults is 
crucial. This study explores the potential of Activities of Daily 
Living (ADL) as predictive indicators for EPs. Using data from the 
2018 China Health and Retirement Longitudinal Study (CHARLS) 
national baseline survey, which includes 9,766 individuals aged 45 

and above, we assessed ADL using the Barthel Index (BI). Statistical 
analyses were conducted to investigate the correlation between 
ADL and EPs, followed by validation using machine learning 
algorithms (Support Vector Machine, Decision Tree, and Logistic 
Regression) to elucidate the underlying relationship between ADL 
and EPs.
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