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Background: Polycyclic aromatic hydrocarbons (PAHs), as organic pollutants 
widely present in daily environments, have been shown by existing 
epidemiological studies to be significantly associated with deficits in learning 
and memory functions in children and adults. However, the association 
between exposure to PAHs and cognitive function in older adults remains 
unclear. Additionally, existing related studies have only assessed the association 
between individual PAH exposures and cognitive assessments, overlooking the 
risks posed by mixed exposures. This study aims to use three statistical models 
to investigate the individual and overall effects of mixed PAH exposures on the 
cognition of older adults in the United States.

Methods: The study cohort was obtained from the NHANES database, which 
included individuals aged 60 and older from 2011 to 2014. Weighted generalized 
linear models (GLM), weighted quantile sum (WQS) models, and Bayesian kernel 
machine regression (BKMR) models were utilized to evaluate the connections 
between urinary PAH metabolites and the standardized Z-scores of four 
cognitive tests: Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal 
Fluency Test (AFT), and Digit Symbol Substitution Test (DSST).

Results: Our analysis involved 899 individuals aged 60 and above. In the fully 
adjusted GLM, 2-hydroxynaphthalene (2-OHNa), 3-hydroxyfluorene (3-OHFlu), 
and 2-hydroxyfluorene (2-OHFlu) demonstrated negative associations with 
DSST Z-scores. In the WQS model, six urinary PAH metabolites were negatively 
linked to AFT Z-scores (β (95% confidence intervals [CI]): −0.120 (−0.208, 
−0.033), p  =  0.007) and DSST Z-scores (β (95% CI): −0.182 (−0.262, −0.103), 
p  <  0.001). In both assessments, 2-OHNa exerted the greatest influence among 
the urinary PAH metabolites. In the BKMR model, there was an overall negative 
correlation between urinary PAH metabolites and AFT and DSST Z-scores 
when the concentration was within the 25th to 75th percentile, where 2-OHNa 
dominated the main effect of the mixture. The WQS and BKMR models were 
adjusted for all covariates.

Conclusion: Increased concentrations of urinary PAH metabolites are associated 
with cognitive decline in older adults, mainly on language ability, executive 
function, sustained attention, working memory, and information processing 
speed, with 2-OHNa playing a major effect.
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1 Introduction

Polycyclic aromatic hydrocarbons (PAHs) are a type of organic 
compounds that contain multiple aromatic rings. Apart from natural 
emissions such as volcanic eruptions and forest fires, they can also 
be  generated from incomplete combustion of fossil fuels, vehicle 
emissions, food cooking, and industrial production processes (1–3). 
As widely present organic pollutants in our daily environment (4), 
they can be absorbed by the human body through various pathways 
such as respiratory, digestive, and dermal contact (5, 6), resulting in 
various impacts on human health, including malignant tumors, 
respiratory system diseases, liver diseases, kidney diseases, and 
cardiovascular diseases (7–11).

In addition to their teratogenic, mutagenic, and carcinogenic effects, 
the association between PAH exposure and neurocognitive function has 
been studied across various populations. Research has shown that in 
infants and young children, prenatal exposure to higher levels of PAHs 
significantly compromises their cognitive development and language 
ability by the age of three. This exposure also contributes to anxiety, 
depression, and attention problems by the ages of six to seven (12, 13). 
Perera et  al. (13) have shown that fetal and childhood exposure to 
environmental pollutants such as PAHs is linked to decreased 
intellectual development, increased behavioral problems, and 
abnormalities in brain structure and function. Furthermore, these 
pollutants may also contribute to neurobehavioral disorders in children, 
such as attention-deficit/hyperactivity disorder (ADHD) (14). 
Mortamais et  al. (15) observed an association between high PAH 
exposure during childhood and reduced volume of the caudate nucleus, 
suggesting possible effects on brain structure and function through 
mechanisms like oxidative stress and receptor binding. In adults, Fu 
et al. (16) discovered a negative correlation between the levels of urinary 
PAH metabolites and the total score of the Montreal Cognitive 
Assessment (MoCA) as well as the score of visual–spatial/executive 
functions in populations with high PAH exposure, such as coke oven 
workers. Wang et al. (17) found an association between occupational 
exposure to PAHs and cognitive and neurobehavioral impairments in 
coal mine workers, manifested as slowed information processing speed 
and weakened auditory–visual memory. Du et al. (18) discovered that 
specific levels of PAH metabolites in the urine of coking plant workers 
were negatively correlated with cognitive test scores, and there was a 
dose–response relationship. Cho et  al. (19, 20) also discovered a 
significant correlation between certain urinary PAH metabolites and 
reduced thickness of specific brain cortex in Korean adults. However, 

current research on the association between PAH exposure and 
cognitive function in the general old population in the United States is 
very limited. Moreover, the aforementioned studies utilized only single 
pollutant models, overlooking the substantial risks posed by the 
combined effects of mixed exposures in the environment.

This study employed general population data from the National 
Health and Nutrition Examination Survey (NHANES) in the 
United  States to determine the correlation between various PAH 
exposures and cognitive function in the old population. It has been 
reported that the urinary levels of OH-PAHs can serve as biomarkers 
for assessing environmental exposure to PAHs (21). Furthermore, 
cognitive tests in the NHANES database were only available during 
the 2011–2012 and 2013–2014 cycles. Notably, during these periods, 
clear differences were observed in the types of urinary PAH 
metabolites among the surveyed populations. Given these limitations 
and to ensure a sufficiently large sample size, our study attempted to 
reflect the general exposure levels to PAHs among the majority of 
U.S. populations across various residential and living environments by 
including six common urinary PAH metabolites found in these cycles. 
The effects on cognitive functions, both singular and combined, were 
assessed through fitting generalized linear models (GLM), weighted 
quantile sum regression (WQS), and Bayesian kernel machine 
regression (BKMR) models. The results of this cross-sectional study 
can inform further longitudinal studies to explore the correlation 
between PAH exposure and neurocognition.

2 Methods

2.1 Study subjects

The research cohort was derived from the NHANES spanning 
2011 to 2014. Conducted by the National Center for Health Statistics 
(NCHS), part of the Centers for Disease Control and Prevention, 
NHANES is a cross-sectional survey that targets the general, 
non-institutionalized population. The survey culled information 
regarding demographic profiles, socioeconomic positions, dietary 
patterns, and health histories via in-home interviews. In addition, 
physical examinations were performed on participants at specifically 
equipped centers, and biological specimens, such as blood and urine, 
were obtained for analysis. Informed consent was duly obtained from 
all subjects, and the NHANES protocol was approved by the Research 
Ethics Review Board of National Health Statistics. This investigation 
amalgamated data on demographics, clinical exam findings, laboratory 
results, and self-reported questionnaires across two NHANES cycles, 
2011–2012 and 2013–2014. Individuals 60 years and above who 
completed cognitive performance evaluations were collected. Upon 
elimination of subjects with incomplete datasets concerning exposure 
variables (notably six urinary PAH metabolites) and key covariates 
(such as age, gender, ethnicity, body mass index [BMI], alcohol use, 
tobacco use, cholesterol levels, blood pressure status, diabetes, and 

Abbreviations: PAHs, Polycyclic aromatic hydrocarbons; GLM, Weighted generalized 

linear models; WQS models, Weighted quantile sum; BKMR, Bayesian kernel 

machine regression; IRT, Immediate Recall Test; DRT, Delayed Recall Test; AFT, 

Animal Fluency Test; DSST, Digit Symbol Substitution Test; ADHD, Attention-deficit/

hyperactivity disorder; CI, Confidence intervals; PIPs, Posterior inclusion 

probabilities.
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sleep disorders), 899 participants were included for 
subsequent analysis.

2.2 Measurements of urinary PAH 
metabolites

Within the NHANES, one-third of participants aged 60 and above 
underwent assessment for urinary monohydroxy PAH metabolites 
across two successive survey periods. These metabolites are recognized 
as enduring indicators of exposure to PAHs through various routes. 
Expert personnel collected the urine specimens at mobile clinics, after 
which samples were promptly refrigerated at temperatures of −20°C 
or below before being dispatched to the National Center for 
Environmental Health for detailed examination. Gluconic acid or 
sulfated OH-PAH metabolites in urine undergo enzyme digestion, 
extraction, and derivatization. A variety of analytical techniques were 
applied in different cycles to detect PAH metabolites in urine. 
Concretely, for the 2011–2012 cycle, isotope dilution coupled with gas 
chromatography and tandem mass spectrometry (GC–MS/MS) was 
utilized. Conversely, for the cycle spanning 2013–2014, an online 
solid-phase extraction followed by high-performance liquid 
chromatography and tandem mass spectrometry (online 
SPE-HPLC-MS/MS) was utilized. It is worth noting that there are 
differences in PAH metabolites measured in urine between cycles. To 
reduce this difference, six PAH metabolites measured in all cycles were 
included in this study: 1-hydroxynaphthalene (1-OHNa), 
2-hydroxynaphthalene (2-OHNa), 3-hydroxyfluorene (3-OHFlu), 
2-hydroxyfluorene (2-OHFlu), 1-hydroxyphenanthrene (1-OHPh), 
and 1-hydroxypyrene (1-OHP).

2.3 Measurement of cognitive performance

Highly skilled medical professionals from the NCHS, a federal 
entity specializing in health data collection, administered cognitive 
evaluations at mobile examination facilities. These assessments aimed 
to gauge participants’ working memory, verbal fluency, and delayed 
recall. To ensure accuracy, participants permitted audio recording 
during the testing process, and each acknowledged their respective 
test scores.

During both the 2011–2012 and 2013–2014 NHANES cycles, 
cognitive function was evaluated using the Animal Fluency Test 
(AFT), Digit Symbol Substitution Test (DSST), and Consortium to 
Establish a Registry for Alzheimer’s Disease Word Learning (CERAD-
WL) Test. These tests are known for their reliability in assessing 
cognitive abilities (22). We used the CERAD W-L sub-test to evaluate 
participants’ immediate and delayed memory for new vocabulary (23). 
This assessment included three consecutive immediate recall tests 
(IRT) and one delayed recall trial (DRT). In each IRT, participants 
read aloud 10 unrelated words, then immediately recalled as many as 
possible. The order of the words changes with each test, and the 
maximum score for a single test is 10 points. The DRT, conducted after 
the AFT and the DSST, aimed to assess long-term memory capacity 
for new vocabulary without cues, also with scoring from zero to 10. 
The AFT evaluates language abilities and executive functions by 
asking participants to list as many animal names as possible within 1 
min, scoring one point per name (24). This test does not rely on 

formally educated experiences specific to any culture, making it 
applicable across diverse cultural backgrounds (25). Before the official 
AFT, participants were required to list three items of clothing in a 
practice test; failure in this practice disqualified participants from 
proceeding with the AFT. The DSST, derived from the Wechsler Adult 
Intelligence Scale (WAIS III), measures processing speed, sustained 
attention, and working memory (26). Participants had 2 min to match 
symbols to numbers according to a reference chart at the top of a 
paper form, filling 133 spaces with the corresponding symbols, with 
scores awarded for each correct match. A sample practice was 
conducted prior to the official test, disqualifying those who failed from 
continuing. It should be noted that there is no universally accepted 
benchmark for defining subpar cognitive performance across these 
four tests, and higher scores indicate enhanced cognitive abilities in 
all assessments.

2.4 Covariates

Apart from the aforementioned six urinary PAH metabolites, 
we  examined various potential confounding factors, such as age, 
gender, race, BMI, alcohol consumption, smoking habits, high 
cholesterol, hypertension, diabetes, and sleep disorders. Age was 
treated as a continuous variable, while gender was categorized as male 
or female. Race and ethnicity encompassed Mexican Americans, 
non-Hispanic whites, non-Hispanic blacks, other Hispanics, and 
individuals of other races, including those of multiracial backgrounds. 
BMI was computed as weight divided by height squared and was also 
considered a continuous variable. Alcohol consumption status was 
determined based on consuming at least 12 alcoholic drinks within 
the past year. Smoking status was identified based on having smoked 
at least 100 cigarettes during one’s lifetime. Histories of high 
cholesterol, hypertension, diabetes, and sleep disorders were self-
reported by participants following medical advice.

2.5 Statistical analysis

The cognitive scores were combined to obtain a total cognitive 
score, which was then grouped into quartiles for comparing 
participants’ demographic characteristics. Continuous variables were 
presented as mean and standard deviation (Mean ± SD) or median and 
interquartile range (M, IQR), while categorical variables were 
presented as counts (n) and percentages (%). Subsequently, descriptive 
statistics were performed for the six urinary polycyclic aromatic 
hydrocarbon metabolites, and Pearson correlation coefficients were 
calculated between them. Finally, three models were fitted by 
standardizing the four cognitive scores using Z-scores and 
log-transforming the six urinary polycyclic aromatic 
hydrocarbon metabolites.

2.5.1 Generalized linear models
We utilized GLM to examine the association between individual 

urinary PAH metabolites and cognitive test scores. Two models were 
implemented: Model 1, which did not adjust for any covariates, and 
Model 2, which incorporated adjustments for covariates such as age, 
gender, race, BMI, alcohol consumption, smoking habits, high 
cholesterol, hypertension, diabetes, and sleep disorders. The effects of 
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urinary PAHs were gauged through regression coefficients (Beta) 
alongside their corresponding 95% confidence intervals (CI).

2.5.2 WQS regression model
The WQS regression model was applied to assess the collective 

impact of multiple urinary PAH metabolites on diverse cognitive test 
outcomes. This approach involved constructing weighted composite 
quantiles while controlling for covariates. Additionally, the model 
permitted an evaluation of each metabolite’s relative contribution to 
the overall WQS effect by estimating the weights of individual 
metabolites on the overall effect. In this study, the dataset was 
randomly partitioned into two subsets (40% for training and 60% for 
validation). Following 3,000 bootstraps, average empirical weights for 
each exposure factor were calculated.

2.5.3 BKMR model
BKMR, a statistical method, estimates the individual and 

combined impacts of exposure mixtures by employing kernel 
functions to best represent these mixtures. This method presents a 
new approach for assessing the joint health effects of multiple 
exposures. Utilizing kernel functions enables flexible estimation of 
multivariable exposure-response functions, accommodating 
non-linear and non-additive effects while adjusting for covariates, 
including potential confounders. The method’s hierarchical variable 
selection addresses multicollinearity concerns by grouping highly 
correlated exposures and simultaneously selecting relevant exposure 
groups and individual exposures within each group. Furthermore, 
unlike the WQS model, BKMR allows for visualizing the response 
functions of individual exposures while considering other exposures 
and permits potential nonlinear relationships between exposure 
factors, as well as influences from different directions. For this study, 
the hierarchical variable selection method was iterated 10,000 times 
using the Markov chain Monte Carlo algorithm. Posterior inclusion 
probabilities (PIPs) were computed, and a threshold of 0.5 was utilized 
to determine the importance of urinary PAHs. All included covariates 
were adjusted in the BKMR model. Additionally, BKMR facilitates the 
evaluation of potential interactions between exposures. Detailed 
information regarding the estimates, visualization, and statistical 
aspects of BKMR analysis can be found in the study by Bobb et al. (27).

The data analysis was conducted utilizing R software version 4.2.2. 
The “gWQS” package was employed for WQS regression, while the 
“bkmr” package was used for BKMR. Two-sided p-values less than 
0.05 were considered statistically significant.

3 Results

3.1 Population characteristics and 
correlations of PAH metabolites

Table 1 displays the demographic profile of the participants. A 
total of 899 participants were included. The weighted median BMI was 
27.7 (24.7, 31.9), and the weighted median age was 68 (63, 74) years. 
The cohort comprised 54% females (n = 455) and 46% males (n = 444). 
T majority of participants were non-Hispanic white (80%, n = 420), 
followed by non-Hispanic black (8.3%, n = 215). Most participants 
reported mild alcohol consumption (73%, n = 619), and over half were 
current smokers (53%, n = 462). Moreover, significant differences 

(p < 0.05) were observed between various cognitive score groups in 
age, gender, race, alcohol consumption, smoking habits, high blood 
pressure, and diabetes. Additionally, Figure  1 illustrates Pearson 
correlation coefficients between the six urinary PAH metabolites, 
revealing potential significant positive correlations between 1-OHP 
and 2-OHFlu, 1-OHP and 1-OHPh, and 2-OHFlu and 3-OHFlu.

3.2 Association between PAH metabolites 
and cognitive test Z-scores using 
generalized linear model

As presented in Table  2, in the GLM without covariate 
adjustments, the levels of 1-OHNa, 2-OHNa, 3-OHFlu, and 2-OHFlu 
were significantly and negatively associated with DSST Z-scores. 
Furthermore, the level of 2-OHFlu was also negatively associated with 
IRT Z-scores. Upon adjusting for covariates only 2-OHNa, 3-OHFlu, 
and 2-OHFlu remained negatively associated with DSST Z-scores 
(Table 3).

3.3 Association between PAH metabolites 
and cognitive test Z-scores using WQS 
regression model

The fully adjusted WQS regression model revealed a negative 
association of PAHs with AFT Z-scores [β (95% CI): −0.120 (−0.208, 
−0.033), p = 0.007] and DSST Z-scores [β (95% CI): −0.182 (−0.262, 
−0.103), p < 0.001], as detailed in Table 4. Figure 2 displays the relative 
weights of different urinary PAH metabolites for the four cognitive 
tests. 2-OHNa had the most predominant influence on both AFT 
and DSST.

3.4 Association between PAH metabolites 
and cognitive test Z-scores using BKMR 
model

As shown in Figure 3C, the concentrations of all urinary PAH 
metabolites within the 25th to 75th percentile range were negatively 
correlated with AFT Z-scores compared to the 50th percentile. In this 
negative correlation, 2-OHNa played the most significant role (cond 
PIP = 0.772) (Supplementary Table S1). Similarly, we found that the 
concentrations of the urinary PAH mixture within the 25th to 75th 
percentile range were more significantly negatively correlated with 
DSST Z-scores compared to the 50th percentile (Figure 3D). Once 
again, 2-OHNa dominated the overall negative effect of the mixture 
on cognitive scores (cond PIP = 0.999). However, for the DRT and IRT 
models, no clear trends were observed as the 95% CIs of all estimated 
overall effects included 0, indicating no significant association 
between the overall mixture concentration changes and cognitive 
scores (Figures 3A,B).

Figure  4 displays the univariate exposure-response function 
trends of each urinary PAH metabolite with the four cognitive test 
scores when the other metabolites are fixed at their 50th percentile. 
We  specifically focused on the significant impact of the mixture 
concentration on cognitive test scores in AFT and DSST. In AFT, 
2-OHNa, 2-OHFlu, and 1-OHP showed a decreasing association with 
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TABLE 1 Weighted demographic characteristics of older adult Americans in different cognitive groups, NHANES, United States, 2011–2014.

Characteristic N1 Overall, N =  49,672,5722 Q1, N =  7,617,4902 Q2, N =  10,051,5582 Q3, N =  13,704,3702 Q4, N =  18,299,1532 p-value3

Alcohol drink 899 0.012

  No 280 (27%) 77 (36%) 88 (35%) 70 (27%) 45 (18%)

  Yes 619 (73%) 151 (64%) 140 (65%) 157 (73%) 171 (82%)

BMI 899 0.3

Median (IQR) 27.7 (24.7, 31.9) 27.8 (24.3, 32.0) 27.6 (24.3, 32.0) 28.9 (25.1, 33.1) 27.5 (24.8, 30.3)

High blood pressure 899 0.027

  No 347 (43%) 78 (32%) 79 (38%) 91 (43%) 99 (51%)

  Yes 552 (57%) 150 (68%) 149 (62%) 136 (57%) 117 (49%)

High cholesterol level 899 0.6

  No 384 (40%) 115 (48%) 94 (38%) 94 (41%) 81 (38%)

  Yes 515 (60%) 113 (52%) 134 (62%) 133 (59%) 135 (62%)

Gender 899 0.023

  Female 455 (54%) 90 (48%) 111 (48%) 118 (50%) 136 (62%)

  Male 444 (46%) 138 (52%) 117 (52%) 109 (50%) 80 (38%)

Age 899 <0.001

Median (IQR) 68 (63, 74) 74 (68, 80) 71 (65, 77) 69 (65, 74) 64 (62, 70)

Race/Ethnicity 899 <0.001

  Mexican American 79 (3.4%) 35 (10%) 21 (4.2%) 17 (2.9%) 6 (0.6%)

  Non-Hispanic Black 215 (8.3%) 67 (15%) 63 (13%) 53 (7.5%) 32 (3.5%)

  Non-Hispanic White 420 (80%) 70 (59%) 92 (72%) 118 (83%) 140 (90%)

  Other Hispanic 89 (3.8%) 37 (10%) 26 (5.4%) 15 (2.3%) 11 (1.3%)

Other Race - Including Multi-

Racial
96 (4.4%) 19 (4.9%) 26 (5.6%) 24 (3.8%) 27 (4.1%)

Diabetes 899 <0.001

Borderline 39 (4.5%) 9 (3.1%) 10 (4.6%) 11 (6.0%) 9 (3.8%)

  No 658 (77%) 144 (69%) 169 (70%) 163 (72%) 182 (89%)

  Yes 202 (18%) 75 (28%) 49 (25%) 53 (22%) 25 (7.4%)

Sleep disorders 899 0.13

  No 799 (88%) 202 (87%) 202 (86%) 195 (84%) 200 (92%)

  Yes 100 (12%) 26 (13%) 26 (14%) 32 (16%) 16 (8.0%)

Smoking cigarettes 899 0.043

  No 437 (47%) 100 (46%) 117 (41%) 106 (43%) 114 (55%)

  Yes 462 (53%) 128 (54%) 111 (59%) 121 (57%) 102 (45%)

1, N not Missing (unweighted). 2, n (unweighted) (%). 3, Chi-squared test with Rao & Scott’s second-order correction; Wilcoxon rank-sum test for complex survey samples. IQR, interquartile range.
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FIGURE 1

Pearson’s correlations among six urinary PAH metabolites. *p  <  0.05; **p  <  0.01; ***p  <  0.001.

TABLE 2 Association between individual urinary PAH metabolites and Z-standardized cognitive scores, crude model, NHANES, United States, 2011–
2014.

Characteristic IRT DRT AFT DSST

Beta
95% 
CI1

p-
value Beta

95% 
CI1

p-
value Beta

95% 
CI1

p-
value Beta

95% 
CI1

p-
value

1-OHNa −0.037
−0.090, 

0.017
0.171 −0.033

−0.084, 

0.019
0.207 −0.049

−0.124, 

0.027
0.199 −0.082

−0.140, 

−0.023
0.007

2-OHNa −0.058
−0.130, 

0.015
0.114 −0.023

−0.103, 

0.056
0.555 −0.095

−0.195, 

0.004
0.06 −0.139

−0.201, 

−0.078
<0.001

3-OHFlu −0.045
−0.123, 

0.033
0.245 −0.018

−0.087, 

0.051
0.597 −0.039

−0.137, 

0.059
0.418 −0.085

−0.142, 

−0.028
0.005

2-OHFlu −0.09
−0.172, 

−0.009
0.03 −0.048

−0.125, 

0.030
0.218 −0.069

−0.168, 

0.031
0.169 −0.115

−0.180, 

−0.050
0.001

1-OHPh −0.039
−0.146, 

0.068
0.46 0.005

−0.105, 

0.115
0.927 0.003

−0.116, 

0.122
0.961 −0.014

−0.114, 

0.085
0.769

1-OHP 0.008
−0.120, 

0.135
0.904 0.085

−0.040, 

0.210
0.176 −0.051

−0.170, 

0.068
0.385 −0.06

−0.159, 

0.039
0.225

1, CI = Confidence interval.

AFT Z-scores over the range from −2 to 2 on the x-axis (Figure 4C), 
with these three urinary PAH metabolites having the highest cond 
PIPs in the AFT test. Meanwhile, in DSST, only 2-OHNa and 2-OHFlu 
showed a weakening association with DSST Z-scores (Figure 4D).

Finally, we further investigated the interactions between the six 
urinary PAH metabolites in the four cognitive tests. By fixing the 
concentrations of the other metabolites at their median levels, the 

concentration of the second urinary PAH metabolites was fixed at its 
25th, 50th, and 75th percentiles, and the exposure-response functions 
of each urinary PAH metabolite under different concentrations of the 
second metabolites were determined (Supplementary Figure S1). 
We found that, among the four cognitive tests, only in AFT, 2-OHNa 
exhibited a certain interaction with 2-OHFlu, while there were no 
apparent interactions among the other exposure factors in AFT and 
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among all exposure factors across the other cognitive tests, as the 
slopes of the bivariate response functions were similar at different 
percentiles of the second urinary PAH metabolites, or the curves were 
almost parallel.

4 Discussion

In this cross-sectional study involving 899 older adults, three 
statistical models were used to further analyze the association 
between PAH exposure and cognitive function. In the GLM, after 
adjusting for all covariates, we found that 2-OHNa, 3-OHFlu, and 
2-OHFlu were negatively correlated with DSST Z-scores. In the 
fully adjusted WQS and BKMR models, we found that the overall 
effects of the six urinary PAH mixtures were negatively correlated 
with AFT Z-scores and DSST Z-scores, and in both cognitive tests, 
2-OHNa was the predominant driver of the main effect of the 
mixture. Building on this, BKMR also revealed a potential 
interaction between 2-OHNa and 2-OHFlu in the AFT cognitive 
test. In this study, scores from the AFT primarily reflected language 
capabilities and executive functions; scores from the DSST were 
indicative of sustained attention, working memory, and information 
processing speeds. Therefore, increased concentrations of urinary 
PAH metabolites are associated with cognitive decline in older 
adults, mainly on language ability, executive function, sustained 
attention, working memory, and information processing speed, 
with 2-OHNa playing a major effect.

In the independent factor analysis of PAHs, the results of Du 
et al.’s study were consistent with our findings. The team’s research 
on populations with occupational exposure, including coking plant 
workers, also revealed a negative correlation between 2-OHNa and 
specific cognitive test scores, alongside a dose–response 
relationship (18). Additionally, Jaelim Cho’s cohort study on 
Korean adults found a significant association between increased 
concentrations of 2-OHFlu and 1-OHP in urine and reduced 
thickness of the entire brain cortex, specifically increasing atrophy 
scores in Alzheimer’s disease (AD)-specific brain regions, including 
the frontal lobe, parietal lobe, temporal lobe, and cingulate gyrus 
(20). Another cross-sectional study by Jaelim Cho’s team showed a 
significant decrease in verbal learning and memory scores with 
increasing percentiles of 1-OHP concentration in adult urine (19). 
However, Jaelim Cho’s two studies only included the four common 
urinary PAH metabolites found in Asian countries, excluding 
2-OHNa and 3-OHFlu from our study, and all the aforementioned 
studies overlooked the comprehensive effects of PAH mixtures 
on neurocognition.

Although the potential mechanisms underlying the association 
between PAH exposure and cognitive decline remain unclear, several 
plausible explanations for this association have been proposed. 
Existing research has shown that PAHs are lipophilic compounds that 
tend to accumulate in neural tissues and exert neurotoxicity (28). 
Furthermore, Saunders et al.’s study found that PAH exposure may 
induce oxidative stress (29), leading to increased reactive oxygen 
species levels and decreased antioxidant enzyme levels, potentially 
damaging DNA (30–32). Therefore, the direct cause of PAHs-induced 
neurotoxic effects may be  related to oxidative stress. Cognitive 
alterations resulting from PAHs neurotoxicity may stem from 
disruptions in diverse brain neurotransmitter expression levels, with 
distinct microRNA expression also thought to be pivotal in PAHs-
induced neurotoxic mechanisms (33). Furthermore, the connection 
between PAH exposure and cognitive changes may be  closely 
associated with neurodegeneration. Several studies indicated a 
correlation between PAH exposure and cortical thinning in the brain 
(19, 20), considered indicative of neurodegenerative changes, 

TABLE 3 Association between individual urinary PAH metabolites and Z-standardized cognitive scores, adjusted for all covariates, NHANES, 
United States, 2011–2014.

IRT DRT AFT DSST

Characteristic Beta
95% 
CI1

p-
value Beta

95% 
CI1

p-
value Beta

95% 
CI1

p-
value Beta

95% 
CI1

p-
value

1-OHNa −0.01
−0.055, 

0.036
0.664 0.001

−0.045, 

0.047
0.965 −0.027

−0.090, 

0.036
0.381 −0.045

−0.096, 

0.007
0.083

2-OHNa −0.033
−0.096, 

0.030
0.28 0.01

−0.057, 

0.078
0.746 −0.079

−0.167, 

0.008
0.073 −0.065

−0.121, 

−0.008
0.028

3-OHFlu −0.041
−0.110, 

0.028
0.225 0.003

−0.063, 

0.070
0.917 −0.077

−0.177, 

0.022
0.119 −0.073

−0.122, 

−0.024
0.006

2-OHFlu −0.066
−0.143, 

0.011
0.087 −0.009

−0.090, 

0.071
0.806 −0.087

−0.186, 

0.011
0.078 −0.071

−0.125, 

−0.016
0.014

1-OHPh −0.008
−0.107, 

0.092
0.869 0.043

−0.067, 

0.153
0.422 −0.007

−0.119, 

0.105
0.897 0.012

−0.072, 

0.096
0.767

1-OHP 0.007
−0.114, 

0.128
0.902 0.094

−0.025, 

0.214
0.115 −0.106

−0.217, 

0.004
0.058 −0.067

−0.165, 

0.031
0.17

1, CI = confidence interval.

TABLE 4 Association between WQS index and cognitive function, 
NHANES, United States, 2011–2014.

Outcomes β 95% CI p-value

IRT −0.075 (−0.158, 0.007) 0.072

DRT −0.029 (−0.115, 0.058) 0.514

AFT −0.120 (−0.208, −0.033) 0.007

DSST −0.182 (−0.262, −0.103) <0.001
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particularly in critical regions such as the frontal, parietal, and 
temporal lobes that are pivotal for cognitive functions encompassing 
working memory, attention, auditory memory, language learning, and 
memory (34). Fu et al. (16) identified a positive correlation between 
urine PAH metabolite levels and plasma p-tau231 levels among 
populations with elevated PAH exposure, including coke oven 
workers. Multiple studies have considered the change in concentration 
of abnormal p-tau231 to reflect the progression of certain 
neurodegenerative diseases (35, 36). Additionally, the correlation 
between plasma p-tau231 and cerebrospinal fluid p-tau231 has been 
recognized as a diagnostic biomarker for AD (37, 38). This suggests 
that PAH exposure may accelerate or lead to the development of 
neurodegenerative changes by affecting the phosphorylation process 
of tau proteins. Partial experimental studies have also supported the 
impact of PAH exposure on neurodegenerative changes. Animal 
studies have demonstrated that PAHs affect neuropathology, including 
the down-regulation of antioxidant enzymes (29) and the 
up-regulation of neuronal apoptosis (39). A recent study indicated 
that PAHs (contained in particulate matter) via nasal exposure can 
upregulate inflammatory molecules (cytochrome P450 1A1, tumor 
necrosis factor-alpha, and cyclooxygenase-2) in the mouse brain 
through binding to aromatic receptors (40). This implied that 
neurodegenerative changes in the human body may also be related to 
oxidative stress and chronic neuroinflammation induced by PAH 

exposure. In summary, PAH exposure may lead to neurotoxicity and 
neurodegenerative changes through the induction of systemic 
inflammation and oxidative stress. The interplay of neurotoxicity and 
neurodegenerative changes may also have complex interactions, 
potentially impacting neurocognitive function. These processes 
involve various biological and molecular mechanisms, demonstrating 
the complexity of the impact of PAHs on human health.

In this study, 2-OHNa was the major contributor to the association 
of urinary PAH metabolites with cognitive decline in older Americans. 
In previous studies, 2-OHNa was one of the most frequently detected 
urinary PAH metabolites other than 1-OHP, and its urinary 
concentration was much higher than that of 1-OHP, reflecting PAH 
exposure in almost all settings (41). Among occupational exposures, 
research evidence suggests that occupationally exposed populations, 
such as coke oven workers, have significantly elevated urinary 
2-OHNa concentrations relative to non-occupationally exposed 
populations (16, 42). In addition, urinary 2-OHNa concentrations 
appear to be higher in populations frequently exposed to combustion 
by agricultural burning or indoor solid fuels such as coal and wood 
(43, 44) relative to public emissions in the general community from 
automobile exhaust. Finally, chronic exposure to environmental 
tobacco and smoke such as smokers may also lead to a significant 
increase in urinary 2-OHNa concentrations (45). Based on studies of 
PAH metabolites such as 2-OHNa, there is a need to implement 

FIGURE 2

WQS model regression index weights for the IRT (A), DRT (B), AFT (C), DSST (D). Models were adjusted for all covariates. IRT, Immediate Recall test; 
DRT, Delayed Recall test; AFT, Animal Fluency test; DSST, Digit Symbol Substitution test.
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long-term and real-time PAH monitoring for these high-risk 
environments and populations. On the other hand, strict emission 
standards should be formulated to limit various activities that may 
release PAHs, such as industrial production, transportation, and 
agricultural incineration, and new technologies and clean energy 
sources should be promoted and applied, especially in high-risk areas, 
to reduce the generation and emission of PAHs.

The strengths and limitations of this study are worth noting. To 
the best of our knowledge, this is the first attempt to explore the 
association between urinary PAH metabolites and cognitive risk in 
the older adult population through a large-scale epidemiological 
study conducted in the general population of the United States. The 
results of this study are quite representative. Furthermore, the study 
conducted an in-depth analysis of the association between PAH 
exposure and cognitive changes, overcoming the traditional 
limitation of epidemiological research focusing solely on exposure 
to a single chemical substance. We employed diverse methodologies 
to evaluate and examine the individual and collective impacts of 
PAH exposure, complementing one another and enhancing the 
clarity and comprehensibility in explaining both the singular and 
combined effects of PAH exposure, as well as the contribution of 
each component. Nevertheless, this study has limitations. As a 
cross-sectional study, it is unable to establish the causal relationship 
between urinary PAH metabolites and changes in cognitive 

function. Secondly, owing to the limitations of the survey period 
and data processing, the inclusion of related types of urine PAHs is 
not comprehensive enough. In actual environments, PAHs can 
involve more than six different types. Lastly, some included 
covariates, such as self-reported medical history of diabetes, 
hypertension, and hypercholesterolemia, may not be  accurate 
enough and could be  subject to recall bias. Consequently, 
we  strongly recommend that subsequent research should 
be  longitudinal, prospective cohort studies, incorporating a 
sufficient variety of urinary PAH metabolites for long-term tracking 
to observe the dynamic effects of PAHs mixture exposures on 
neurocognitive functions over time. This approach could 
substantially reduce recall and confounding biases, clarifying 
causality to a greater extent.

5 Conclusion

Our study concludes that increased concentrations of urinary 
PAH metabolites in older Americans aged 60 years and older are 
associated with cognitive decline, mainly on language ability, 
executive function, sustained attention, working memory, and 
information processing speed, with the metabolite 2-OHNa 
playing a major effect. Given the potential additional health 

FIGURE 3

Joint effect of the mixture on z-scores of IRT (A), DRT (B), AFT (C), DSST (D). Models were adjusted for all covariates. Y-axis represents the estimated 
difference in z-scores when all urinary PAH metabolites were fixed at specific quantiles (ranging from 0.25 to 0.75), as compared to when urinary PAH 
metabolites were at the 50th percentile. Dots indicate the estimate, and black vertical lines represent 95% CIs. IRT, Immediate Recall test; DRT, Delayed 
Recall test; AFT, Animal Fluency test; DSST, Digit Symbol Substitution test.
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implications of PAHs, further comprehensive research and real-
world monitoring of PAHs could aid in better mitigating the risks 
associated with PAH exposure. Additionally, more longitudinal 
epidemiological studies are warranted to confirm the correlation 
between PAHs and neurocognition.
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