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Introduction: Although wastewater-based epidemiology (WBE) successfully 
functioned as a tool for monitoring the coronavirus disease 2019 (COVID-19) 
pandemic globally, relatively little is known about its utility in low-income countries. 
This study aimed to quantify severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) RNA in wastewater, estimate the number of infected individuals in 
the catchment areas, and correlate the results with the clinically reported COVID-19 
cases in Addis Ababa, Ethiopia.

Methods: A total of 323 influent and 33 effluent wastewater samples were 
collected from three Wastewater Treatment Plants (WWTPs) using a 24-h 
composite Moore swab sampling method from February to November 2023. 
The virus was captured using Ceres Nanotrap® Enhancement Reagent 2 and 
Nanotrap® Microbiome A Particles, and then nucleic acids were extracted 
using the Qiagen QIAamp Viral RNA Mini Kit. The ThermoFisher TaqPath™ 
COVID-19 kit was applied to perform real-time reverse transcriptase polymerase 
chain reaction (qRT-PCR) to quantify the SARS-CoV-2 RNA. Wastewater viral 
concentrations were normalized using flow rate and number of people served. 
In the sampling period, spearman correlation was used to compare the SARS-
CoV-2 target gene concentration to the reported COVID-19 cases. The numbers 
of infected individuals under each treatment plant were calculated considering 
the target genes’ concentration, the flow rate of treatment plants, a gram of 
feces per person-day, and RNA copies per gram of feces.

Results: SARS-CoV-2 was detected in 94% of untreated wastewater samples. All 
effluent wastewater samples (n  =  22) from the upflow anaerobic sludge blanket 
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(UASB) reactor and membrane bioreactor (MBR) technology were SARS-COV-2 
RNA negative. In contrast, two out of 11 effluents from Waste Stabilization Pond 
were found positive. Positive correlations were observed between the weekly 
average SARS-CoV-2 concentration and the cumulative weekly reported 
COVID-19 cases in Addis Ababa. The estimated number of infected people in 
the Kality Treatment catchment area was 330 times the number of COVID-19 
cases reported during the study period in Addis Ababa.

Discussion: This study revealed that SARS-CoV-2 was circulating in the 
community and confirmed previous reports of more asymptomatic COVID-19 
cases in Ethiopia. Additionally, this study provides further evidence of the 
importance of wastewater-based surveillance in general to monitor infectious 
diseases in low-income settings.

Conclusion: Wastewater-based surveillance of SARS-CoV-2 can be a useful 
method for tracking the increment of COVID-19 cases before it spreads widely 
throughout the community.

KEYWORDS

COVID-19, SARS-CoV-2, qRT-qPCR, wastewater treatment plants, wastewater-based 
epidemiology

Background

Economic stability and human health are considerably affected 
by infectious diseases as they cause one-fourth of the mortalities 
around the world (1). The recent outbreak of COVID-19 caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

escalated into a global pandemic since it first appeared in Wuhan, 
China, in December 2019 (2). In January 2020, it led to a declaration 
of a Public Health Emergency of International Concern by the 
World Health Organization (WHO) (3). Since then, SARS-CoV-2 
has been responsible for more than 773 million confirmed cases and 
around 7 million deaths worldwide as of December 2023 (4). In this 
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regard, Africa reported only around 1.2% of confirmed cases and 
2.5% of deaths. The first COVID-19 case in the African continent 
was reported from Egypt on the 14th of February 2020 (5). On 
February 25, Nigeria became the second country to report a first 
case, and on February 27, Algeria became the third country to do 
so (6). The first cases in other African countries, including Ethiopia, 
were only detected in March 2020 (7). Most index cases originated 
in Europe, where the epidemic’s epicenter had moved by March 13. 
As a result, the pandemic spread quickly to Africa (8). Consequently, 
this led to long-lasting collateral damage on the continent from 
interruptions in the initiatives for TB, HIV/AIDS, malaria, and 
vaccine-preventable illnesses (9). Ethiopia reported around 5 and 
4.3% of the African total confirmed cases and deaths, 
respectively (4).

Surveillance focused on clinical and laboratory testing which has 
drawbacks such as excessive costs, failure to detect asymptomatic 
patients, and underestimating of infection prevalence (10). Current data 
suggest that worldwide 35–45% of all SARS-CoV-2 infections account 
for asymptomatic infected persons (11–13). However, the percentage of 
asymptomatic cases in Africa and Ethiopia is 67 and 74%, respectively 
(14–16). Recent study findings in Ethiopia indicated that high 
asymptomatic cases are associated with persistently activated immune 
system (17, 18). This will affect the clinical COVID-19 case detection 
and reporting as testing of samples was prompted mainly by symptoms 
(19). Hence, the community may not be prepared in terms of infection 
prevention and control, and management of COVID-19 infection (20).

SARS-CoV-2 RNA can be  detected in feces and urine from 
asymptomatic and symptomatic individuals. Fecal shedding can 
persist for several weeks, typically longer than positivity in 
oropharyngeal swabs (21, 22). The extended presence of viral RNA 
in feces and fecal viral RNA shedding with gastrointestinal (GI) 
symptoms implies that SARS-CoV-2 infects the GI tract (23–25). 
Anyhow, virus shedding in the feces of symptomatic and 
asymptomatic infected individuals enables the detection of viral 
RNA in influent sewage or wastewater (26, 27). Wastewater-based 
epidemiology (WBE) for COVID-19 surveillance can be used as an 
alternative for early warning of COVID-19 outbreaks or as a control 
mechanism for potential virus transmission independent of 
individual healthcare-seeking behaviors. In addition, WBE can 
be  scaled relatively easily, is less expensive than human subject 
testing, and, if collected at strategic points, can represent local 
populations (28, 29). Monitoring SARS-CoV-2 circulation in the 
community will remain important for reinforcing preparedness and 
identifying hotspots for further classical surveillance interventions, 
particularly in regions with inadequate health system infrastructure, 
human resources, and testing capacity.

Previously, numerous human infectious illnesses (such as polio 
and typhoid) have been the focus of research in this WBE (30, 31). In 
high-income countries, wastewater-based surveillance is well utilized 
for the monitoring of SARS-CoV-2 (32). However, few African 
countries have conducted wastewater-based SARS-CoV-2 surveillance 
(33–35). This may be partly attributable to low sewage coverage with 
deficient testing coverage, which limits COVID-19 surveillance 
through sewage monitoring (36). In Ethiopia, there is only one study 
in wastewater-based SARS-CoV-2 using a small sample size, and it is 
focused only on the qualitative test (37). This study aimed to quantify 
SARS-CoV-2 RNA in wastewater, estimate the number of infected 
individuals in the catchment area, and correlate results with clinically 
reported COVID-19 cases in Addis Ababa, Ethiopia.

Materials and methods

Study setting and sampling sites

Addis Ababa is Ethiopia’s capital city, with an estimated 5,460,591 
population in 2023 (38). Administratively, it is divided into 11 subcities. 
Based on the information obtained from Addis Ababa Water and 
Sewerage Authority (AAWSA), the wastewater treatment capacity in 
Addis Ababa is nearly 86%, out of which 34% are currently connected to 
sewer lines, and 52% rely on vacuum trucks, the remaining could 
be considered as illegal connection or disposal. Currently, Addis Ababa 
city has 4 centralized and 35 decentralized wastewater treatment plants 
(WWTPs). The centralized WWTPs are Kality, Kality old, Kotebe old, and 
Chefe (unpublished Strategic Environmental and Social Assessment 
[SESA] of Addis Ababa City Sanitation Master Plan, 2024).

Influent wastewater samples were collected 3 times a week from three 
sampling sites (Kality, Bulbula, and Mikililand) using the Moore swab 
method (39) (Figure  1). Kality treatment plant (KTP) is the oldest 
centralized system, mainly serving residents in the central, southern, and 
eastern parts of the city (40) with an estimated population coverage of 
nearly 2,000,000 (unpublished data from AAWSA). The upflow anaerobic 
sludge blanket reactor (UASB) technology is applied at this site. A 
membrane Bioreactor (MBR) wastewater treatment technology, which 
combines a biological-activated sludge process and membrane filtration 
domestic wastewater treatment, is used at the Bulbula wastewater 
treatment site (41). The third wastewater treatment plant included in this 
study was Mikililand Waste Stabilization Pond (WSP). Mikililand WSP 
systems comprise 7 series of different types of ponds (42). It is situated in 
the northwestern part of the capital city. Technical details of the 
wastewater treatment process at the three wastewater treatment plants are 
presented in Table 1.

Study design and sample collection

A longitudinal study design was conducted between February and 
November 2023 at three wastewater treatment plants in Addis Ababa. The 
Moore swab, or cotton gauze of size (120 × 15 cm), was folded to achieve 
an 8-ply pad and tied with a string that was long enough to immerse the 
swab into the influent discharge (39, 43). The prepared Moore swab was 
then autoclaved and sealed in Ziploc® bag. The string was attached to a 
solid structure and fully submersed into the wastewater. On all three 
wastewater collecting sites, the swab installation period was between 
9:30 a.m. and 11:30 a.m. on Sundays, Tuesdays, and Wednesdays of each 
week. Following a 24-h period for the installation of the swab, the 
wastewater from the submersion was collected and placed in a Ziploc® 
bag. Finally, the exterior of Ziploc® bag was decontaminated with 70% 
ethanol and then transported using an ice-cold box to the Ethiopian 
Public Health Institute’s laboratory. Accordingly, 323 influent and 33 
effluent wastewater samples were collected. The influent samples were 
composed of 110 from Kality, 108 from Bulbula, and 105 from Mikililand 
treatment plants Whereas, 11 effluent samples were collected from each 
of the three treatment plants with the same installation time of influent 
samples in October 2023 and November 2023.

Furthermore, to evaluate the effectiveness of the Moore swab 
sampling method in capturing virus particles from wastewater, influent 
samples were collected in parallel, covering the same 24-h period for 
3 weeks from February 2023 to March 2023 using an on-site autosampler 
placed at KTP (n = 8).
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RNA capture and extraction

Each Moore swab was squeezed of all liquid into a sterile container 
from which a 10 ml wastewater aliquot was taken using a 15 ml tube for 
RNA capture and extraction. For RNA concentration, 100 μl of 
Nanotrap® Enhancement Reagent 2 (ER2; SKU# 10112, Ceres 
Nanoscience, Inc., Manassas, VA) and 150 μl of Nanotrap® Microbiome 
A Particles (SKU#44202, Ceres Nanosciences, Inc., Manassas, VA, USA) 
were added into the 15-ml tube containing 10-ml wastewater and mixed 
well. After samples were incubated at room temperature for 10 min, 
Nanotrap® Microbiome A Particles pellet was separated using a 

DynaMag™-15 Magnet (Thermo Fisher Scientific, Waltham, MA, 
USA). After washing the pellet, 150 μl of 1× phosphate-buffered saline 
(PBS) for suspension and 5 μl of MS2 phage control were added to each 
pellet, and negative control (RNAse free water); then RNA extraction 
was executed using QIAamp Viral RNA Mini Kit (QIAGEN, Hilden, 
Germany) following the manufacturer’s instruction (44). MS2 spike-in 
to each sample can minimize false negatives. Briefly, 560 μl QIAGEN 
Virus Lysis Buffer was added to PBS suspended pellet to lyse the cells. 
Following a 10-min incubation at room temperature of the solution, the 
Nanotrap® Microbiome A Particles and the lysate solution sample were 
separated using the DynaMag™-2 magnet (Thermo Fisher Scientific, 

FIGURE 1

Sites of wastewater treatment plants. Map of wastewater treatment plant units in Addis Ababa, where all sites with diamonds were preliminary assessed. 
Blue diamonds represent selected sites, whereas green diamonds represent unselected sites due to different criteria.

TABLE 1 Description of the selected WWTPs.

WWTP name Sub-city/location Design 
capacity m3 

per day

Average daily 
flow rate in m3 

per day

Served 
population

Type of treatment 
technology in 

place

1 Kality treatment plant (KTP) Akaki Kality Sub-City/ 

Southern Addis Ababa

100,000a 65,000 2,000,000 USAB

2 Bulbula Treatment Plant Bole Sub-City/ Central Addis 

Ababa

20,000b 325 34,000 MBR

3 Mikililand Wastewater 

Stabilization Pond (WSP)

Kolfe-Keranio Sub-City/ 

Northwest Addis Ababa

3,000c NA 24,000 WSP

Description of the selected WWTPs for this surveillance of SARS-CoV-2 in Addis Ababa, Ethiopia. aInformation was collected from the AAWSA authority. b,cInformation was from the 
literature that is cited (37) and (42). NA = Not available (we did not know the average flow rate due to lack of measuring instruments at the WSP).
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Waltham, MA, USA). The lysate supernatants were collected in a new 
1.5-ml microcentrifuge tube, and the pellet was discarded. For high 
nucleic acid concentration, 560 μl of 100% ethanol was added to the 
concentrate, and the lysate was added to the QIAamp Mini column. 
After washing using wash buffer, the QIAamp Mini column was placed 
in a clean 1.5-ml microcentrifuge tube, elution was performed using 
80-μl Buffer AVE, and the eluted viral RNA was stored at −80°C.

Real-time reverse transcriptase polymerase chain 
reaction (qRT-PCR)

The TaqPath™ COVID-19 control was used as a quantification 
standard RNA control (1 × 104 copies/μl stock). A 104 copies/μl was 
diluted to 2 × 103 copies/μl using dilution buffer and then used as 
stock. The stock solution was then serially diluted 5-fold in 
low-binding 1.5-ml tubes. The limit of detection of the TaqPath™ 
COVID-19 is 10 genomic copy equivalents (GCE)/reaction (45), but 
we did not do the limit of detection in our setting.

TaqPath™ COVID-19 qRT-PCR reaction master mix was prepared 
according to the manufacturer’s instructions (45). A total of 15-μl 
master mix was added to each well of the plate. Approximately 10 μl of 
extracted nucleic acid, quantification standard RNA, and nuclease-free 
water for no template control (NTC) were added to the assay wells 
containing the master mix. In the Plate Setup window of QuantStudio™ 
5 (Thermo Fisher Scientific, Waltham, MA), FAM, VIC, ABY, and JUN 
dyes were used as reporter dyes for the viral targets of the primers and 
probes: ORF1ab, Nucleocapsid (N) gene, Spike (S) gene, and MS2 phage 
control, respectively (45). Thermal cycling conditions included 2-min 
of uracil-N-glycosylase (UNG) incubation at 25°C, 10-minu of reverse 
transcription at 53°C, 2-min at 95°C for reverse transcription 
deactivation, and initial activation of Speed Star HS DNA polymerase, 
followed by 40 cycles of 3 s denaturation at 95°C and 30 s annealing/
extension at 60°C. All samples with cycle threshold (Ct) values of 
ORF1ab, N gene, and S gene <37; MS2 < 32 were considered positive 
according to the manufacturer (45).

Determination of viral concentration in 
wastewater

The PCR test results were interpreted as follows: when any two or 
more of the viral targets were reported, the sample was considered 
positive for SARS-CoV-2; when only one viral target was detected 
within repeated tests, the result was considered inconclusive; whereas 
when all the viral targets were not detected but the internal control 
(MS2) detected, the sample was considered as negative for SARS-
CoV-2. Preliminary reverse transcriptase qPCR data analysis and 
quality control were performed using the QuantStudio Flex 5 reverse 
transcriptase qPCR software v1.5.1 (Applied Biosystems, Inc., USA). 
Viral concentrations were expressed as genome copies of RNA extract 
per liter (gc/L). Using Excel and the following formula, viral 
concentrations (gc/L) in the concentrated samples were determined:

 

( )
( )

( ) ss

copies
Concentration of viral genome in wastewater

Copies in RT qPCR reaction copies
1, 000

Volume of nucleic acid extracted used for RT qPCR ml Concentration factor∗

=

−
×

− ×

L

 If 10 of the nucleic acid extract is used in RT qPCR assay the value in mlis0.01.lµ −∗

 
( )
( )

Wastewater sample volume used ml
Concentration factor

Volume of nucleic acid extracted ml

ss
=

Virus concentration levels (genome copies per L) were normalized 
by multiplying with the daily WWTP flow rate of specific WWTP and 
then dividing by the number of people served to get daily load/persons 
in sewershed [million gene copies (MGC)/person/day]. However, viral 
concentration levels in all samples from Mikililand WSP were only 
expressed as genome copies/L of RNA due to a lack of daily flow rate data.

Estimating the number of infectious 
individuals

The number of daily reported COVID-19 cases in Addis Ababa 
during the study (February to November 2023) was obtained from the 
Public Health Emergency Management Center at the Ethiopian Public 
Health Institute. The number of residents served by the WWTP was 
obtained from the respective Woreda offices and the Addis Ababa 
Water and Sewerage Authority (AAWSA) (Table 1). Using two different 
approaches that have been previously published, the number of infected 
individuals within each WWTP’s service area was calculated (27, 46).

The equations used for calculation are indicated below:
Method 1 (Equation 1) (27):

 

Predicted Infected person
RNA copies Liter of wastewater

Liter wastewater day
g of feces RNA copies

person day g of feces

  ×   
   =

  
×   −     

(1)

A positive individual is thought to excrete 128 g of feces per 
person per day and shed 107 RNA copies per g of feces (27).

Method 2 (Equation 2) (46):

 

Predicted infected person
Number of RNA copies per liter of wastewater

Contribution of RNA copies per person to total wastewater
=

 
(2)

107 RNA copies/g of feces was multiplied by 120 ml of the volume 
of feces excreted by humans (considering the density of feces as 1.07 g/
ml), and total wastewater (L) received at WWTP (46).

Statistical analysis

According to the Kolmogorov–Smirnov test, the viral 
concentration data were not normally distributed. We  tested for 
significant differences in viral concentration (gc/ml) across sites using 
a Kruskal–Wallis rank sum and pairwise Wilcoxon tests. Spearman 
correlation was used to assess the correlation between reported cases 
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and viral data. All data analysis was performed using Inter cooled 
STATA version 14.0 (College Station, TX, USA). The graphs are 
presented using Power BI.

Ethical statement

Informed consent is not applicable for environmental wastewater 
samples as no human subject is involved. However, for the use of reported 
COVID-19 cases data from Addis Ababa, permission was granted from 
the Ministry of Health, which owns the data. For COVID-19 protection, 
care was taken during sample collection and analysis using personal 
protection equipment and a standardized method. All respective bodies 
(government and non-government) participated in this study adhered to 
the  sample collection and laboratory testing protocols. In addition, this 
study obtained ethical clearance from the Ethiopian Public Health 
Institute Scientific and Ethical Review Office (Ref. EPHI 6.13/577). 
Official approval was obtained from AAWSA, the government body that 
administers Addis Ababa city’s water supply and sewerage services. Access 
to the treatment plant and site-level information was obtained from 
this authority.

Results

Method optimization for wastewater-based 
SARS-CoV-2 detection

SARS-CoV-2 detection and quantification from wastewater samples 
using the Moore swab method is a relatively new method in Ethiopia, 
apart from its use in polio surveillance. The comparison of the on-site 
autosampler method in place at KTP and the Moore swab sampling 
technique for SARS-CoV-2 detection in wastewater is presented in 
Table 2.

As shown in the table, there is no significant difference in the Ct 
values of the target genes (ORF1ab, N, and S genes) between the 
autosampler and Moore swab sampling techniques. Moreover, viral 
concentrations (gc/L) of the target genes were not significantly 
different using the autosampler and Moore swab sampling technique 
(p > 0.05; Figure 2). Although the autosampler method of wastewater 
sampling is reliable, it has limitations that impede effective 

surveillance, especially from small catchments with limited 
accessibility. Since Moore swab sampling is more cost-effective and 
requires fewer resources to process, we  decided to continue our 
monitoring of wastewater for SARS-CoV-2 using this technique.

Wastewater-based SARS-CoV-2 qualitative 
test result

Wastewater samples collected from 21 February 2023 to 9 
November 2023  in Addis Ababa at KTP, Bulbula WWTP, and 
Mikililand WSP were tested for SARS-CoV-2 by qRT-PCR. A total of 
323 wastewater Moore swab samples were tested. Each run had 
negative controls and produced all negative results. Of these, 304 
(94%) tested positive for SARS-CoV-2 by qRT-PCR, defined as a Ct 
value of <37 for two or more SARS-CoV-2 target genes. In addition, 
14/323 (4%) of the samples tested were inconclusive for SARS-CoV-2 
by qRT-PCR, defined as a Ct value of <37 for one SARS-CoV-2 target 
gene only in duplicate testing, and only 5/323 (2%) were negative, 
defined as a Ct value of ≥37 for three SARS-CoV-2 target genes and a 
Ct value of <32 for MS2 (internal control). Around 95% of samples 
from KTP were positive, whereas 2% were negative and 3% were 
inconclusive. Approximately 90% of the Bulbula samples were 
positive, with the remaining 3% negative and 7% inconclusive. Finally, 
97% of the Mikililand samples were positive, 3% were inconclusive, 
and no negative results were found.

To determine the presence of SARS-CoV-2 RNA, 33 treated 
effluent water samples were taken from these three wastewater 
treatment plants. From each wastewater treatment plant, 11 treated 
wastewater samples were collected. All treated samples were collected 
in the morning from 8:00 a.m. to 12:00 p.m. by collecting 
500–1,000 ml of water in sterile plastic containers. The collected 
samples were transported using ice and concentrated within 24 h, 
using the same process as influent wastewater. The SARS-CoV-2 
extraction and detection procedure for treated wastewater samples 
was the same as for influent wastewater. Of the total 33 samples, 22 
treated wastewater samples from Kality and Bulbula WWTP were 
negative, whereas two of the total treated samples from the Mikililand 
stabilized pond were positive. Five treated samples from the 
Mikililand stabilized pond were inconclusive, and the remaining four 
samples were negative.

TABLE 2 Comparison of Moore swab sampling technique and autosampler.

Date ORF1ab of swab ORF1ab of auto N gene of 
swab

N gene of 
auto

S gene of 
swab

S gene of 
auto

23 February 2023 32.001 32.543 32.719 33.390 31.571 30.163

27 February 2023 33.361 32.085 33.638 34.101 33.663 30.564

2 March 2023 32.753 32.111 36.441 33.578 31.223 31.115

6 March 2023 30.408 29.154 28.942 28.352 30.082 29.475

9 March 2023 30.848 31.617 29.348 29.414 31.593 31.449

13 March 2023 30.443 29.882 28.884 28.241 31.170 30.266

15 March 2023 31.665 29.841 30.119 28.559 31.348 29.577

16 March 2023 31.606 31.185 30.579 29.571 30.761 31.431

The Ct-value of the target genes detected using autosampler and Moore swab sampling technique. The Ct values of the target genes between autosampler and swab sampling technique were not 
significantly different (ORF1ab, p = 0.1386; N gene, p = 0.0858; S gene, p = 0.1386).
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Quantification RNA of SARS-CoV-2 in 
wastewater

The wastewater samples that tested positive for SARS-CoV-2 RNA 
by qualitative methods were subjected to quantitative PCR for three 
targets (ORF1ab, N gene, and S gene). The performance efficiency 
range of the ORF1ab, N, and S genes among the test runs was 91.8 to 
105.7, 93.0 to 109.8, and 88.0 to 104.6, respectively, and the detailed 
results are summarized in Supplementary Table S1.

The concentration of these three viral targets in the influent 
wastewater samples across the three wastewater treatment plants 
(WWTPs) is presented using a Box–Whisker plot (Figure 3A). The 
median viral concentration (gc/L) and (interquartile range [IQR]) 
obtained for ORF1ab, N gene, and S gene in positive samples from 
KTP was 60,388 (21544–430,339), 26,355 (7,748–125,372) and 
6,2,573 (12,221–24,9,039), respectively. Similarly, the median viral 
concentration (gc/L) and IQR for ORF1ab, N gene, and S gene from 
Bulbula-positive samples was 52,780 (19,078–375,512), 38,301 
(12,273–186,201), and 43,549 (10476–240,648), respectively. 
Whereas the median viral concentration (gc/L) and IQR for 
ORF1ab, N gene, and S gene in Mikililand-positive samples was 
64,762 (18087–309,415), 45,580 (15,681–158,475), and 51,454 
(11,318–184,333), respectively. Hence, there was no significant 
difference among the study sites in viral concentration: ORF1ab 
(p = 0.7341), N gene (p = 0.2087), and S gene (p = 0.8721). The 
detailed viral load of each positive sample is presented in 
Supplementary Table S2_sheet 1.

After normalization of virus concentration levels (gc/L) using 
daily flow rate and number of people served by each WWTP, the 

median viral concentration of daily load per person in sewershed 
(million genome copies [MGC/person-day]) and IQR was generated. 
Accordingly, the values for ORF1ab, N gene, and S gene in positive 
samples from KTP were 2055 (725–13,400), 861 (268–4,016), and 
2,221 (436–7,607), respectively. Whereas, for Bulbula-positive 
samples, the results for ORF1ab, N gene, and S gene were 477 (136–
2,387), 295 (871854), and 383 (69–1786), respectively. Therefore, there 
was a significant difference among the study sites in viral concentration 
of daily load per person in sewershed: ORF1ab (p < 0.0001), N gene 
(p = 0.0008), and S gene (p < 0.0001). The viral concentration of daily 
load per person in the sewershed of three viral targets in KTP and 
Bulbula WWTPs is presented using a Box–Whisker plot (Figure 3B).

Trend of viral concentration in wastewater and 
correlational analysis against COVID-19 daily 
cases

Figure  4 demonstrates the dynamics of SARS-CoV-2 tests 
performed and the number of reported COVID-19 clinical cases for 
the year 2023. Daily reported COVID-19 cases of Addis Ababa were 
presented in Supplementary Table S2_sheet 2. A significant decrease 
of daily cases during the months of April and May 2023 presented in 
line with the decrease in frequency of COVID-19 testing.

Positivity rates were in line with viral concentrations predicted by 
the three WWTPs (Figures 5A–D).

Virus concentration levels, as determined through WWTP 
testing, were normalized for the flow rate and number of people 
served. KTP is the oldest centralized system, mostly serving 
residents in the central, southern, and eastern parts of Addis Ababa. 
Figure 5A demonstrates the wastewater concentration of the target 

FIGURE 2

Viral concentration of autosampler and Moore swab sampling technique. Comparison of viral target genes concentration level using autosampler vs. 
Moore swab sampling technique. ORF1ab, N gene, and S gene were the target genes. Target genes with “C” represent the concentration of viral target 
genes using the autosampler, whereas target genes without “C” represent the viral target concentration using the Moore swab sampling technique. 
The level of concentration of the target genes predicted by the autosampler vs. swab sampling technique was not significant (p  >  0.05).
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genes in samples obtained from KTP increasing sharply starting 2 
March (ORF1ab = 1,123 MGC/person/day, N-gene = 1,234 MGC/
person/day, and S gene = 742 MGC/person/day) to 13 March 
(ORF1ab = 60,066 MGC/person/day, N-gene = 17,707 MGC/person/
day, and S gene = 14,773 MGC/person/day; Figure 5A). Then the 
wastewater concentration of the target genes fluctuated up to 27 
April within the range of ORF1ab = 12,453–65,424 MGC/person/
day, N-gene = 2,622–17,707 MGC/person/day, and S gene = 8,815–
38,031 MGC/person/day. Then the concentration decreased sharply 
from 1 May up to 10 May and sustained less than 1,000 MGC/

person/day of each target genes up to 5 July. Subsequently, the 
concentration in KTP increased by 3 October and decreased again 
by 24 October (Figure 5A). The trend of concentration of the target 
genes in wastewater samples of Bulbula and Mikililand WSP was 
almost similar to that of the concentration trend of KTP and with a 
bit of difference in time of increments or decrements (Figures 5B,C).

The case-based surveillance unit in EPHI does not have a daily 
active cases report for the exact residents that are served by each 
WWTP. However, considering the large population coverage of the KTP 
(i.e., serving more than one-third of the population and wide geographic 

FIGURE 3

(A) Genome copies per L of SARS-CoV-2 gene targets in three wastewater treatment plants using Box–Whiskers plot. The data represents the average 
number of SARS-CoV-2 gene copies for ORF-1ab gene, N gene, and S gene per L of wastewater sample obtained in the influent wastewater samples 
from the Three WWTPs. (B) The viral concentration of daily load per person in sewershed (MGC per Person-day) of SARS-CoV-2 gene targets in two 
wastewater treatment plants using Box–Whiskers plot.
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coverage), it was found important to make a trend analysis of Addis 
Ababa daily cases against the trend of concentration for the target genes 
in wastewater samples collected from KTP and Bulbula WWTP.

As indicated in Figure 5D, active clinical case counts doubled from 
23 February to 23 March (in 9–21 active cases). This was reflected in 
a 15-fold increase in the average concentration of target genes in the 
wastewater (ORF1ab increased by a factor of 27; the N gene increased 
by a factor of 7, and the S gene increased by a factor of 13). Moreover, 
the increase in viral target positivity in the wastewater occurred 
approximately 10 days ahead of the increase in reported clinical cases. 
Again, at a later moment in the year, a more limited increase of active 
case counts from 17 July to 26 July (from zero to three active cases) 
was preceded by a wastewater increase starting from 5 July 
(ORF1ab = 356 MGC/person/day, N gene = 165 MGC/person/day, and 
S gene = 142 MGC/person/day), 12 days earlier. This increase lasted 
until 16 August (ORF1ab = 33,318 MGC/person/day, N gene = 5,285 
MGC/person/day, and S gene = 10,790 MGC/person/day).

The finding indicates a positive correlation between the trend of 
weekly average SARS-CoV-2 MGC number in wastewater samples of 
WWTPs and the cumulative weekly reported COVID-19 cases in 
Addis Ababa. These were statistically significant for all three sites: KTP 
(0.5648, p = 0.0002), Bulbula (0.4052, p = 0.0116), and Mikililand 
(0.4247, p = 0.0098; Supplementary Table S3).

Estimated numbers of COVID-19-infected 
individuals and correlation with reported cases in 
Addis Ababa

Two methods were used to estimate the number of daily infected 
individuals among the population served by KTP and Bulbula WWTP 
based on the SARS-CoV-2 gene copy number obtained from the 
wastewater samples (27, 46). The numbers of daily predicted infected 
persons using method 1 and method 2  in KTP were similar and 
ranged from 102 to 104, as represented in Figure  6A. At Bulbula 
WWTP, these numbers were in the range of 100–104. The daily 
predicted infected individuals from KTP were 330 times the median 

value higher than the weekly cumulative reported COVID-19 cases 
(Table  3). The median predicted SARS-CoV-2 infected people of 
method 1 and method 2 from Kality was 3,303 and 3,523, respectively, 
whereas the median of weekly cumulative reported COVID-19 cases 
was 10. Correlational analyses of reported cases trend with the 
estimated number of infected individuals trend are shown in 
Figure 6A and Supplementary Table S3. Similarly, the two methods 
resulted in higher mean values of daily predicted infected individuals 
from WWTPs compared to weekly cumulative reported COVID-19 
cases (Figure 6B). The predicted number of infected individuals using 
the two methods followed a decreasing trend similar to the reported 
COVID-19 cases in Addis Ababa, and a statistically significant 
correlation was observed with data from KTP WWTP using Spearman 
correlation (r = 0.5307; p = 0.0006) and Bulbula WWPT (r = 0.4816; 
p = 0.0022). However, there is a significant difference between the 
number of predicted cases and reported cases for each surveillance 
week (p < 0.0001 for KTP and p = 0.0029) for Bulbula WWPT.

Discussion

Numerous studies conducted since the beginning of the 
COVID-19 pandemic have shown that WBE is a useful tool for 
tracking the evolution of the pandemic and providing early warning 
signs for the emergence or reemergence of public health threats (47, 
48). The SARS-CoV-2 limit of detection in wastewater is principally 
determined by three laboratory procedures: virus concentration, RNA 
extraction, and qRT-PCR. The concentration method used here is 
known to preferentially bind intact virus particles but not cell-free 
nucleic acid. Thus, using other crude concentration methods or 
laboratory procedures without concentration may overestimate the 
intact viral burden. Using a technology that binds intact virus particles 
also provides greater evidence of active infection vs. cleared viral 
nucleic acid. Grab and autosampler sampling are the two most 
common wastewater sampling methods, but grab sampling has 

FIGURE 4

The trend of daily COVID-19 cases and tested individuals in Addis Ababa. The y-axis on the left represented the number of tested cases, whereas the 
y-axis on the right represented the number of reported cases.
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FIGURE 5 (Continued)
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drawbacks in terms of missing viral shedding discharges to sewers, 
and autosampler has limited accessibility (49). Our result showed that 
the concentration of target genes was a bit higher in the autosampler 
compared to the Moore swab sampler (Figure 2). The primary cause 
of this discrepancy may be the Moore swab or gauze sampling 
methods’ uptake rates, which could have been affected by inhibitors 
or virus losses after 8 hours of contact to the wastewater samples (50), 
which in the current study was installed for 24 h. However, no 
significant difference in the Ct value and viral concentration was 
observed between autosampler and Moore swab samples for SARS-
CoV-2 target genes (ORF1ab, N, and S genes), which is consistent with 
other studies (51). We conclude that Moore swab sampling is a more 
economical and resource-efficient sampling technique for the 
monitoring of SARS-CoV-2 in wastewater in our low-resource setting 
and may be extended to other pathogens of interest.

In our study, SARS-CoV-2 RNA was detected in a majority of 
influent wastewater samples (94%). This high rate revealed a much 
higher COVID-19 prevalence than actually clinically detected. A prior 
study using an antibody prevalence analysis showed that there was a 
significant underreporting of COVID-19 cases in Ethiopia (52). This 
can be explained by the fact that the far majority of actual COVID-19 
cases in Addis Ababa are either mild or asymptomatic, with patients 
not seeking healthcare and testing services (19).

The positive SARS-CoV-2 detection rate in Addis Ababa was 
approximately identical to that of Kenya (81%) using the same 
technique of collection and testing (53), but higher than that of 
Malawi (8%) using samples taken from rivers and defunct WWTPs 
(33). In Malawi, samples from the defunct WWTP were found to have 
higher SARS-CoV-2 positive rates (21%) than river water samples 
(7%). Thus, the discrepancy in positive rate between our findings and 
Malawi might be  attributed to the variance in viral shedding 
discharges into sewer lines of WWTP, rivers, and defunct WWTP 
(54). Furthermore, the variation in results may be  attributed to 

differences in flow rate, methodology, data collection, and actual virus 
concentration differences since Malawi used grab sampling and 
polyethylene glycol (PEG) with no internal control (MS2) and 
potentially generated false negatives (55). The intensity of community 
transmission of SARS-CoV-2, the timing of the study, and the 
population served might also be  important variables that make a 
difference observed for the positivity rates. The SARS-CoV-2 viral 
copy numbers (GC/L) of the amplification target genes were similar 
over the year 2023 (ORF1ab =103–106, N and S genes =102–106 gc/L) 
in all three WWTP influent wastewater samples. This result shows the 
genome copies per 10 ml were not different at each treatment plant.

However, we observed a significant difference in terms of daily 
load per person for all target genes between KTP and Bulbula 
WWTPs; this is attributable to the difference in the prevalence of 
infected individuals that are served by each plant and the flow rate of 
the treatment plants.

For treated wastewater samples, the SARS-CoV-2 RNA was absent 
in all (n = 11 each) of the treated wastewater samples from two wastewater 
treatment plants (KTP and Bulbula). This result suggests that the UASB 
used in KTP and MBR technology used in Bulbula can successfully 
remove SARS-CoV-2 from wastewater to levels that are under the limit 
of detection of qPCR. However, at Mikililand WWTP (using a 
stabilization pond) SARS-CoV-2 RNA was still detected in 2 treated 

FIGURE 5

Trends in the viral target genes concentration of wastewater over time for three WWTPs in Addis Ababa (February 22, 2023–November 9, 2023): 
(A) Trends in the viral target genes concentration of wastewater over time for KTP, (B) Trends in the viral target genes concentration of wastewater over 
time for Bulbula WWTP, (C) Trends in the viral concentration of wastewater over time for Mikililand WSP, and (D) A comparison between the COVID-19 
cases illustrated in purple color line that were reported in Addis Ababa and the SARS-CoV-2 target genes concentrations in KTP. The y-axis on the left 
represented the MGC/person-day of the target genes, whereas the y-axis on the right represented the number of reported cases. The correlation 
between the trend of daily reported cases and RNA concentration was significant (p  <  0.05) in Kality. The number of cases and average SARS-CoV-2 
concentration is based on the 7-day rolling average.

TABLE 3 The median Reported COVID-19 cases and predicated infectious 
cases.

Name Median 
COVID-19 
reported 

cases from 
Addis Ababa

Median predicated 
COVID-19 cases

Method 1 
(27)

Method 2 
(46)

Kality WWTP 10 3,303 3,523

Bulbula WWTP 10 17 18
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FIGURE 6

Reported and predicted COVID-19 infected cases across 2 WWTPs, (A) Trends in the COVID-19 reported cases and daily average predicted infected 
individuals using Ahmed et al. (27) and Hemalatha et al. (46) methods in Kality and Bulbula WWTP. The y-axis on the left represented the number of 
predicted cases using two methods, whereas the y-axis on the right represented the number of reported cases. The correlation between the trend of 
cumulative weekly reported and daily predicted COVID-19 cases was significant (p  <  0.05) among the two WWTPs. (B) The figure represents the mean 
of COVID-19 reported cases of each WWTP during the study period and the predicted infected individuals using the Ahmed et al. (27) and Hemalatha 
et al. (46) methods for each WWTP for the study period.
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wastewater samples (n = 11), 5 being inconclusive. This demonstrates the 
limitations of the applied treatment method for viral eradication. Similar 
results were found in research conducted in Spain (56), where 2/18 of 
treated samples still tested positive for SARS-CoV-2.

In general, it is important to emphasize that the models used in 
this study may be  crude compared to some of the more recently 
developed models generated. The Pepper Mild Mottle Virus 
(PMMoV), which is the most abundant RNA virus in human feces 
and occurs naturally in wastewater, has been used in recent studies 
(57, 58) to normalize qRT-PCR data. This approach may be more 
reliable in estimating the depth of infection in a community and could 
be used in an Ethiopian setting as well in the future.

Generally, we found fluctuating viral concentrations (MGC per 
person-day) over the study period. The overall change in the SARS-
CoV-2 viral load in wastewater is positively correlated with reported 
COVID-19 clinical cases though the clinical testing frequency was low.

Thus, our result shows a significant positive correlation between 
trend viral loads in wastewater and reported COVID-19 clinical cases. 
This finding is consistent with previous studies in New York (59), 
India (60), and Hong Kong (61). In our setting, the increase in viral 
concentration started in the wastewater approximately 7–14 days 
ahead of the increase in COVID-19 clinical cases, as reported 
elsewhere (21). Furthermore, the amount of virus in wastewater did 
not drop off when the number of COVID-19 clinical cases significantly 
declined, which is consistent with a prior study that showed viral RNA 
might remain in fecal samples for up to 10 days (62).

The higher daily predicted infected persons from KTP, which 
was 330 times greater than the weekly cumulative recorded 
COVID-19 cases, revealed the high prevalence of asymptomatic 
individuals shedding SARS-CoV-2 to the sewage system in the 
catchment area. This is in line with previous studies in Ethiopia that 
have shown a significant inverse correlation between parasite 
infection prevalence and lack of COVID-19 symptoms due to shifts 
in activation status of the immune system (63, 64). Most people 
infected with SARS-CoV-2 in Ethiopia do not get sick (15), partly 
due to widespread parasitic infections (65, 66) and they may not seek 
medical care. Alternatively, the difference may be a result of the delay 
in active case reporting because qRT-PCR testing is biased as many 
tested individuals are not randomly undergoing diagnostic 
procedures, but their participation is motivated by the onset of 
symptoms either in themselves or in the person sharing their work 
or living environment, the prevalence of asymptomatic infection 
within the community as measured by rapid antigen tests might 
be underestimated due to sensitivity issues (67). On the other hand, 
the daily predicted infected individuals from Bulbula WWTP were 
merely 1.8 times the median value of the weekly cumulative reported 
cases in Addis Ababa (Table 3). The difference in predicted infected 
people in KTP and Bulbula is primarily attributable to the difference 
in flow rate at the treatment plants (Supplementary Table S3), which 
may further depend on the number of people served. Accordingly, 
the more the population served, the more viral shading is in 
the wastewater.

Conclusion

In conclusion, this study was undertaken to assess the presence of 
SARS-CoV-2 in the wastewater samples in three WWTPs in Addis 

Ababa and evaluate its predictive value for clinical COVID-19 case 
reporting. Nanotrap® Microbiome A particles, Nanotrap® 
Enhancement Reagent 2 method, and Moore swab collection methods 
appeared to be effective in concentrating the virus from wastewater 
and can, therefore, be  used in resource-limited settings. The 
significantly higher rate of SARS-CoV-2 detection from wastewater 
samples suggests a hidden high prevalence of COVID-19 disease in 
the population that remains overtly asymptomatic and/or 
underreported. Effluent wastewater treatment was only partly 
successful in making SARS-CoV-2 RNA undetectable at the KTP and 
Bulbula WWTP but not at Mikililand, indicating cautiousness is 
recommended. The peak in SARS-CoV-2 positivity rates in wastewater 
typically indicated a rise in clinical COVID-19 cases within 1–2 weeks 
later. The wastewater surveillance experience developed through this 
project can be applied to other national priority diseases in the future.
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