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Objective: This study focuses on enhancing the precision of epidemic time series 
data prediction by integrating Gated Recurrent Unit (GRU) into a Graph Neural 
Network (GNN), forming the GRGNN. The accuracy of the GNN (Graph Neural 
Network) network with introduced GRU (Gated Recurrent Units) is validated by 
comparing it with seven commonly used prediction methods.

Method: The GRGNN methodology involves multivariate time series prediction 
using a GNN (Graph Neural Network) network improved by the integration of 
GRU (Gated Recurrent Units). Additionally, Graphical Fourier Transform (GFT) 
and Discrete Fourier Transform (DFT) are introduced. GFT captures inter-
sequence correlations in the spectral domain, while DFT transforms data 
from the time domain to the frequency domain, revealing temporal node 
correlations. Following GFT and DFT, outbreak data are predicted through one-
dimensional convolution and gated linear regression in the frequency domain, 
graph convolution in the spectral domain, and GRU (Gated Recurrent Units) 
in the time domain. The inverse transformation of GFT and DFT is employed, 
and final predictions are obtained after passing through a fully connected layer. 
Evaluation is conducted on three datasets: the COVID-19 datasets of 38 African 
countries and 42 European countries from worldometers, and the chickenpox 
dataset of 20 Hungarian regions from Kaggle. Metrics include Average Root 
Mean Square Error (ARMSE) and Average Mean Absolute Error (AMAE).

Result: For African COVID-19 dataset and Hungarian Chickenpox dataset, 
GRGNN consistently outperforms other methods in ARMSE and AMAE across 
various prediction step lengths. Optimal results are achieved even at extended 
prediction steps, highlighting the model’s robustness.

Conclusion: GRGNN proves effective in predicting epidemic time series data 
with high accuracy, demonstrating its potential in epidemic surveillance and early 
warning applications. However, further discussions and studies are warranted to 
refine its application and judgment methods, emphasizing the ongoing need for 
exploration and research in this domain.
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1 Introduction

Multivariate time series forecasting plays a crucial role in various 
real-world scenarios such as transportation forecasting (1, 2), supply 
chain management (3), energy allocation (4, 5) and financial 
investment (6). The time series prediction is involves forecasting 
future values based on historical data points in a sequential order. This 
makes the statical method and supervised learning method, 
comparing with reinforcement learning (7, 8) or unsupervised 
learning methods, are more suitable for this task. In the field of public 
health, the problem of acute epidemic forecasting is of great relevance 
as a typical multivariate time series forecasting: if the future evolution 
of acute epidemic data can be estimated quickly and accurately for 
each geographic region, the forecasting results can be  used as a 
reference to help governmental agencies make decisions on policy 
formulation and material deployment, and thus prevent the 
development and spread of epidemics.

The field of epidemiology and public health research has witnessed 
a large number of studies on time series prediction of infectious 
diseases which revealed the requirement of prediction method in the 
field of epidemiology and public health research. A selection of 
notable works has contributed to this progress, showcasing innovative 
approaches and methodologies for forecasting and managing disease 
outbreaks. For instance, Pinto et al. (9) applied a regressive model to 
estimate intervention effects over time by comparing rates of 
congenital syphilis. Cori et al. (10) presents a novel tool for tracking 
the spread of diseases by estimating time-varying reproduction 
numbers. Du et al. (11) focus on the research of serial interval of 
COVID-19 which contribute to the foundation of transmission 
dynamics of COVID-19 and is essential for effective prediction and 
control measures. However, when facing the outbreak of acute 
epidemic, the traditional transmission dynamics may be uncapable to 
prediction task. For example, in 2020, Ioannidis et al. (12) found that 
traditional transmission models failed in forecasting of COVID-19. 
And many research attempt to apply machine learning method to 
handle the problem. Dairi et  al. (13) compared 7 kinds of neural 
network in the prediction of the number of COVID-19 cases. In fact, 
the neural networks were also applied to the prediction problem of 
other epidemics. Sanchez-Gendriz et al. (14) applied Long Short-Term 
Memory (LSTM) network in the prediction of dengue outbreak in 
Natal, demonstrates the potential of neural network in disease 
surveillance at a local scale. And It is worthwhile to research the 
potential of neural network in epidemic time series data prediction.

Early time series forecasting research mainly relied on traditional 
statistical models, including historical average (HA), autoregressive 
(AR), autoregressive integrated moving average (ARIMA) (15), VAR 
(16), and fuzzy methods (17). All of these statistical models rely on 
inherent a priori assumptions and require an artificial analysis of the 
characteristics of the study population to determine the applicability 
of the forecasting method.

Accurate prediction of multivariate time series data is a 
challenging type of time series forecasting problem, because both the 
correlation between the time nodes within each single time series and 
the correlation between the time series need to be  considered 
comprehensively. During the outbreak of an infectious disease in a 
certain area, the changes in the number of active cases, on one hand, 
is related to the number of existing active cases in the locality or 
previous epidemic data. For instance, the outbreak of some infectious 

diseases has obvious seasonality, and by referring to the changes in 
active cases in previous years, one can roughly predict the current 
trend of active case changes. The data from a certain point or period 
in the time series is related to the data from the current or future time 
points, which reflects the correlation between the time nodes within 
each single time series. On the other hand, the number of active cases 
in a certain area may be related to the case numbers in neighboring 
areas or areas with frequent personnel movement. These time series 
may exhibit leading, lagging, or even synchronous trends, which 
demonstrates the correlation between different points within the time 
series. Deep learning models provide new ideas for this problem: on 
the one hand, Temporal Convolutional Network (TCN) (18) has 
excellent results in single time series prediction. Recurrent Neural 
Network (RNN) based methods (19–21) such as LSTM (Long Short-
Term Memory) (22), Gated Recurrent Unit (23), Gated Linear Unit 
(GLU) (24) have good results in single time series prediction. GLU can 
effectively capture and learn the correlation and nonlinear features 
among time nodes within a time series (24). Han et al. (25) compared 
the prediction effects of ARIMA, deep neural network (DNN), and 
LSTM (Long Short-Term Memory) network for occupational 
pneumoconiosis data in Tianjin, China, and proved that LSTM (Long 
Short-Term Memory) can effectively predict occupational 
pneumoconiosis data, and at the same time has an advantage in 
prediction accuracy comparing to DNN and ARIMA. There is an 
advantage in prediction accuracy. However, most of these models 
ignore the dependencies between multiple variables and can only 
capture and learn the features within a single time series in isolation, 
which makes them perform poorly in practical multivariate time 
series prediction problems.

Meanwhile, in the problem of mining relationships between 
sequences, Yu et  al. used matrix decomposition to model the 
relationship between multiple time series (26). Discrete Fourier 
Transform (DFT) is also useful in time series analysis by introducing 
it. For example, State Frequency Memory Network (27) combines the 
advantages of DFT and LSTM (Long Short-Term Memory) for stock 
price prediction; Spectral Residual model (28) utilized DFT to achieve 
desirable results in time series anomaly detection. Another important 
aspect of multivariate time series forecasting is modeling the 
correlation between multiple time series. For example, in traffic 
prediction tasks, neighboring roads naturally interact with each other. 
The state-of-the-art models rely heavily on graph convolution 
networks (GCNs) derived from graph Fourier transform (GFT) 
theory (29). These models (1, 2) directly stack GCNs and temporal 
modules (e.g., LSTM (Long Short-Term Memory), GRU (Gated 
Recurrent Unit)), which require predefined graph-structured 
relationships between sequences. By simultaneously capturing the 
dependencies between time nodes within each single sequence and 
between different time series to improve the learning of features of the 
time series and thus improve the prediction accuracy. Convolutional 
Neural Network (CNN) has a good performance in learning local 
features (30). There have been several methods to model spatial 
features using CNNs (31–35). Ma et al. (34) used deep CNN for traffic 
speed prediction. Huang et al. (36) tried to use transformer to predict 
multiple time series variables and obtained good prediction results.

The introduction of GRU (Gated Recurrent Unit) units provides 
better learning and fitting capabilities in the time domain compared 
to the linear units used in general GNN (Graph Neural Network) 
research methods. In addition, the above processes are modularized 
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when implemented. Individual modules can be connected in series 
by shortcut connection to further improve the prediction accuracy of 
the neural network by constructing a deep network. Due to the 
advantages of RNN methods, such as LSTM (Long Short-Term 
Memory) and GRU (Gated Recurrent Unit), comparing with normal 
feed-forward neural networks, exist clear advantages in time series 
prediction, there have been a large number of attempts to use RNNs 
combined with GNNs (Graph Neural Networks), CNNs, or other 
neural network architectures to predict multivariate time series: Lv 
et al. (33) combined RNN with CNN, where the RNN are responsible 
for mining and learning intra-sequence time series within single 
sequence features, and CNN captures the relationships between 
sequences. Luo et al. (37) introduced GRU (Gated Recurrent Unit) 
into GCN to predict the change of gas composition in transformer oil 
during transformer operation. Zhang et al. (38) proposed ST-ResNet 
based on residual convolutional network for crowd flow prediction. 
Shi et al. (20) combines convolutional network with LSTM (Long 
Short-Term Memory) network to extract spatio-temporal 
information separately.

Graph neural networks have also yielded many results in 
capturing dependencies among unstructured data (1, 2, 7, 29, 39–43). 
DCRNN (1) and STGCN (2) are two of the first studies to introduce 
graph convolutional networks into spatio-temporal data prediction for 
better modeling of spatial dependencies. ASTGCN (40) adds an 
additional attention layer to capture the dynamic change of spatio-
temporal dependencies. Adaptive learning of adjacency matrices can 
also be introduced to solve problems that require predefined graphs 
for adjacency matrices (35, 39, 41, 42).

However, the previous studies have never processed the time 
series data from three domains and they have hardly ever been applied 
in dealing with epidemic time series data predicting problems. But 
they provide the fundamental framework of the GNN (Graph Neural 
Network) and GRU (Gated Recurrent Unit) methods and prove the 
effectiveness of the methods so that we can reform the methods to 
cater the requirement that introducing GRU (Gated Recurrent Unit) 
units into GNN (Graph Neural Network) to achieve better results in 
time series data prediction problems.

The goal of this study is to try to introduce a GRU (Gated 
Recurrent Unit) layer in the graph neural network to enable the 
network to better capture and learn the relationship of each single 
time node within a sequence and the correlation between 
individual time series. Specifically, after this change, the neural 
network is able to learn features and make predictions from 
multivariate time series data in the frequency, spectral, and time 
domains: after GFT and DFT, it is easier to perform convolution 
and graphical convolution operations on the time series in the 
frequency and spectral domains respectively, which in turn allows 
for more effective predictions. The introduction of GRU (Gated 
Recurrent Unit) units provides better learning in the time domain 
compared to linear units used in the general GNN (Graph Neural 
Network) research methods.

2 Methods

The overall structure of the improved GNN (Graph Neural 
Network) network (later referred to as GRGNN) with the introduction 
of GRU (Gated Recurrent Unit) consists of three parts: the 

preprocessing layer, the GRGNN module layer, and the output layer, 
and the overall structure is shown in Figure 1.

The input is a multivariate time series data X xit N T= { }Î ´  
containing T  time nodes in N  columns, and before being processed 
layer by layer by the deep neural network, a graph structure 
G X W= { },  describing the relationship between the input data is first 
obtained through the smoothing module and the graph building 
module, where X  is the data of each node in the input, and WN N´  is 
the connection weight matrix between each node. G X W= { },  is fed 
into the GRGNN module layer and the output layer after several 
rounds of training and learning to obtain the final prediction result 
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nodes of the input time series data and H  is the prediction step size. 
A mathematical description of the above process can be expressed in 
Equations 1, 2:
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2.1 Preprocessing layer

2.1.1 Smoothing processing module
The input data received by the smoothing module are multivariate 

time series data  X x i tit
N T= { } Î Î, ,  . Due to the different 

statistical rules of the health statistics departments in each country, 
some countries will postpone the epidemic data from the weekend to 
Monday of the following week, which is reflected in the data as a line 
graph with a weekly cycle showing an obvious “sawtooth waveform.” 
In order to eliminate the negative impact of this problem on the neural 
network prediction, but also to a certain extent to eliminate some of 
the noise of the input data, the neural network will be used after the 
input of a moving window average smoothing processing for a 
data preprocessing.

The principle of sliding window average smoothing processing is 
shown in Equation 3, Finally, we will get the smoothed data X  after 
processing the data on day t  of the time series will be equal to the 
average of its data on that day and the data on the n days before it and 
the n days after it, and 2 1n +( ) is called the window size. Considering 
the characteristics of the data in this experiment, n is set to 3, that is, 
the window size is 7.
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2.1.2 Graph building blocks
GNN (Graph Neural Network)-based methods need to construct 

a graph structure G N E= { },  before forecasting multivariate time 
series. In this study, the number of active cases in a certain 
geographical area is taken as the object of the study, and the data of 
each subregion in the geographical area is taken as the node N  of the 
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graph, and the edges E of the graph denote the correlation and the 
magnitude of the influence of each node on each other. In this study, 
E is represented by the weight matrix W N NÎ ´ . The element 
w i N j Nij , ,Î -[ ] Î -[ ]0 1 0 1, ,  in W  represents the magnitude of the 
influence weight of the ith node on the j th node. The graph structure 
in this study is denoted by G X W= { }, .

Part of the graph structure can be  constructed by humans for 
observation or through experience or knowledge (e.g., road networks in 
traffic forecasting, grid systems in electrical energy forecasting). However, 
in general, there is usually no worthwhile sufficient a priori experience to 
accomplish graph construction artificially. For example, in this study, 
when dealing with data related to epidemics, there may be a situation 
where the transmission pathways and characteristics of the epidemics 
under study have yet to be  studied, and the existing research and 
knowledge about them cannot support the construction of the graph. In 
order to cope with this situation, the correlation between multiple time 
series is captured in the preprocessing stage through the self-attention 
mechanism with the GRU (Gated Recurrent Unit) layer before the data 
is input into the neural network, and the correlation of each time series 
is determined in a data-driven manner, which then completes the 
construction of the required graph structure for the neural network (42).

A specific description of the self-attention mechanism approach 
for the composition layer is given below:

First of all, the multivariate time series X N NÎ ´  will be fed into 
the GRU (Gated Recurrent Unit) layer, which calculates the hidden 
state corresponding to each time node sequentially. The hidden states 
corresponding to each time nodes are computed sequentially. Then, 
we use the last hidden state to calculate the weight matrix through the 
self-attention mechanism. The mathematical description is as 
Equation 4–6:

 W xaviernormal HQ = ( ) (4)

 W xaviernormal HK = ( ) (5)
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where Q and K  denote the query and key hiding matrices, 
respectively, and the magnitude of their values are computed by two 
learnable parameter matrices WQ and WK , respectively, whose initial 
values are obtained by xavier initialization of the input H  (44); d is the 
size of the dimensions of the two matrices Q and K . The final output 
adjacency weight square matrix W N NÎ ´  will be used with the input 
multidimensional time series X N TÎ ´ , which forms the final graph 
structure G X W= { }, .

2.2 GRGNN layer

The GRGNN layer consists of multiple GRGNN modules 
stacked in a shortcut connection manner, and the data will 
be captured and extracted features in the GRGNN modules from the 
three dimensions of the spectral domain, the frequency domain, and 
the time domain, respectively. The specific structure of the GRGNN 
block module, as shown in Figure  2. The features in data will 
be captured and extracted in three domains of the spectral domain, 
the frequency domain, and the time domain respectively, in the 
GRGNN modules. The following is a description of each part of 
GRGNN block and its functions:

FIGURE 1

The overall structure of the improved GRGNN network.
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Spectral domain graph convolution is a method that has been 
widely used in time series forecasting problems. The method has been 
widely used in time series forecasting problems due to its excellent 
results in learning potential representations of multiple time series in 
the spectral domain. The key to the method is the application of the 
Graph Fourier Transform (GFT) to capture the relationships between 
time series in the spectral domain. Its output is also a multivariate time 
series, and the GFT does not explicitly learn the relationship between 
the data at each time node within a given time series. Therefore, it is 
necessary to introduce the Discrete Fourier Transform (DFT) to learn 
the characterization of the input time series in the frequency domain, 
for example, to capture repetitive features in periodic data.

2.2.1 Frequency domain convolution part
The function of the frequency domain convolution part aims to 

transfer each individual time series into the frequency domain 
representation after processing it by DFT, and to learn its features by 
1DConv layer in the frequency domain. It consists of four sub-parts 
in order: discrete Fourier transform (DFT), one-dimensional 
convolution (1DConv), gated linear unit (GLU), and inverse discrete 
Fourier transform (IDFT), where DFT and IDFT are used to 
transform the time series data between time and frequency domains, 
and 1DConv and GLU are used to learn the features of the time series 
in the frequency domain. The DFT processing of time sequence 
usually results in a complex sequence, and the frequency domain 
convolution is performed on the real part (X u

r


) and imaginary part 
(X u
i


) respectively, and the processing can be  expressed by 
Equation 7 as:

 

M GLUu u
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(7)

Where qt* denotes the size of the convolution kernel for 1D 
convolution,  denotes the Hadamard product operation, and s* 
denotes the sigmoid  activation function. The final result 
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 is converted back to the time domain after 

IDFT processing to participate in the subsequent part of 
the processing.

2.2.2 Spectral domain graph convolution part
Graph Convolution (29) consists of three parts.
First, Transformation of multivariate time series inputs to the 

spectral domain via GFT. Second, performing a graph 
convolution operation on the spectral domain graph structure 
using a graph convolution operator with a convolution kernel to 
learn. Third, performing the inverse graph Fourier transform 
(IGFT) on the spectral domain convolution result to generate the 
final output.

The graph Fourier transform (GFT) (22) is the basic operator for 
the convolution of spectral domain graphs. It projects the input graph 
into a standard orthogonal space where the basis is constructed from 
the eigenvectors of the normalized graph Laplacian. The normalized 
graph Laplacian matrix (15) can be  computed as follows: 

L I D WD IN N
N N= - Î

- - ´
1

2

1

2 ,   where IN
N NÎ ´  is the unit 

matrix and D is the degree matrix with diagonal element D Wii
j
ij=å . 

Then, the eigenvalue decomposition of the Laplace matrix is performed 
to obtain L U UT= L , where U N NÎ ´  is the matrix of eigenvectors 
and L is the diagonal matrix of eigenvalues. After, the GFT, time series 
will be transformed into complex numbers, for example, three datasets 
after DFT are shown in Figure 3. For a detailed introduction to the 
dataset, see section 2.4.1. Given a multivariate time series X N TÎ ´ , 
the GFT and IGFT operators and specific operations are, respectively, 

denoted as GF X U X XT( ) = =


 and 
GF - æ

è
ç

ö

ø
÷ =1 X U X

 

. The graph 

convolution operator is realized as a function gQ L( ) of the eigenvalue 
matrix L, where Q is the convolution kernel parameter.

FIGURE 2

The overall structure of GRGNN module.
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FIGURE 3

The overview plot of time series after discrete Fourier transform. (A1) The overview plot of real parts in time series for African dataset after discrete 
Fourier transform. (A2) The overview plot of image parts in time series for African dataset after discrete Fourier transform. (B1) The overview plot of real 
parts in time series for European dataset after discrete Fourier transform. (B2) The overview plot of image parts in time series for European dataset after 
discrete Fourier transform. (C1) The overview plot of real parts in time series for Hungarian dataset after discrete Fourier transform. (C2) The overview 
plot of image parts in time series for Hungarian dataset after discrete Fourier transform.
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2.2.3 Time domain GRU (gated recurrent units) 
layer

Recurrent Neural Networks (RNN) are a type of neural networks 
with an inner recurrent loop structure (23). The reformed GRGNN 
with its introduction and GRGNN’s application on the epidemic field 
is an important innovation in this study. GRU (Gated Recurrent Unit) 
processes sequences by traversing the sequence elements and 
generating a hidden state that contains pattern information related to 
the historical data, which contains the before-and-after relationships 
of the sequences. GRUs (Gated Recurrent Units) (23) are a type of 
recurrent neural networks in which each loop unit adaptively captures 
dependencies at different time scales. Similar to LSTM (Long Short-
Term Memory) units, GRUs (Gated Recurrent Units) have a gating 
unit that regulates the information within the unit, but do not have a 
separate storage unit like LSTM (Long Short-Term Memory).

 
z W h xt z t t= [ ]( )-s · 1,  (8)

 
r W h xt r t t= [ ]( )-s · 1,  (9)

 
h W r h xt t t t= [ ]( )-tanh · 1,  (10)

 
h z h z ht t t t t= -( ) +-1 1· ·

 (11)

The specific mathematical description of GRU (Gated Recurrent 
Unit) is shown in Equation 8–11, there are only two gate units in 
GRU (Gated Recurrent Unit), one is reset gate and the other is 
update gate, and the role of reset gate is similar to that of input gate 
and forgetting gate in LSTM (Long Short-Term Memory), 1-( )z  is 
equivalent to the input gate, and z is equivalent to the forgetting gate. 
The GRU (Gated Recurrent Unit) method uses fewer threshold units 
to accomplish a similar task as the LSTM (Long Short-Term 
Memory) method, so the GRU (Gated Recurrent Unit) method is 
usually considered when there is a lack of computational power or a 
desire to improve the training speed and efficiency of neural network 
learning. The GRU (Gated Recurrent Unit) method uses fewer gate 
units than the LSTM (Long Short-Term Memory) method and 
accomplishes a similar task.

2.3 Implementation and parameter design

The GRGNN method was developed using the Python language 
based on Pytorch and MATLAB language, the experiments of 
GRGNN were performed on a deep-learning server with NVIDIA 
Quadro GV100L GPU *1, Intel Xeon Gold 6,138 CPU *1 and DDR4 
32G RAM *8, the operation system of Ubuntu 18.04.6 LTS. The 
baseline methods were all implemented using MATLAB language. on 
clearance version.

Hyperparameters such as input length, learning rate, batch size, 
training time and number of hidden units needed to be set in the 
GRGNN. Empirically, normalization method was set to z-score, input 
length to 15, learning rate to 4.7e-4, batch size to 15 and training 

epoch to 150 and the number of layers to 7. Additionally, the ADAM 
optimizer was used in the training process.

2.4 Dataset, baseline methods and 
evaluation indicators

2.4.1 Datasets
In this study, the prediction effect of GRGNN was tested using 

the 42 European countries’ COVID-19 dataset, the 38 African 
countries’ COVID-19 dataset and the 20 Hungarian regions’ 
chickenpox dataset, the overview plots of the datasets are shown in 
Figure 4 both COVID-19 datasets in this study were collected from 
publicly available data provided by the Worldometers website (45). 
Worldometer is run by an international team of developers, 
researchers, and volunteers with the goal of making world statistics 
available in a thought-provoking and time relevant format to a wide 
audience around the world Government’s communication channels 
which makes the data from it more reliable and realistic. The 42 
European countries’ COVID-19 dataset contains 42 time series, and 
the length of each time series in the dataset is 776. The 38 African 
countries’ COVID-19 dataset contains 38 time series, and the length 
of each time series in the dataset is 776. The 20 Hungarian regions’ 
chickenpox dataset contains 20 time series, and the length of each 
time series in the dataset is 523. Two COVID-19 datasets analyzed 
during the current study are available in the [Worldometers] 
repository.1 The daily active case count data of each country were 
collected for a total of 776 days from February 15, 2020 to April 1, 
2022, and the data were cleaned to exclude from the data that existed 
for more than 20 days without updating the data, and the data that 
had a negative number of active cases or other statistical errors, 
finally we classify the data that met the above requirements to obtain 
the continental active case dataset. The 20 Hungarian regions’ 
chickenpox dataset was chosen to collect weekly chickenpox 
diagnosis data from 20 regions in Hungary for 523 weeks from 
January 3, 2005 to December 29, 2014. The 20 Hungarian regions’ 
chickenpox dataset are available,2 the dataset was downloaded from 
Kaggle (46), a website that focuses on providing developers and data 
scientists with a platform to hold machine learning competitions, 
host databases, and write and share code. The Hungarian chickenpox 
dataset, as a typical multivariate time series prediction problem 
dataset was consisted by the time series collected from the Hungarian 
Epidemiological Info, a weekly bulletin of morbidity and mortality of 
infectious disease in Hungary. This dataset was tested on the Kaggle 
platform with many time series prediction methods and data 
visualization methods.

2.4.2 Baseline methods
Three widely used neural network architectures; LSTM (Long 

Short-Term Memory), GRU (Gated Recurrent Unit), CNN-LSTM and 
a statistical method, were chosen as the control group in this study, the 
statistical methods include, weighted moving average method(WMA) 

1 https://www.worldometers.info/coronavirus

2 https://www.kaggle.com/datasets/die9origephit/

chickenpox-cases-hungary
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FIGURE 4

The overview plot of the datasets. (A) The overview plot of ARMSE of the 38 African countries’ COVID-19 dataset. (B) The overview plot of the 42 
European countries’ COVID-19 dataset. (C) The overview plot of 20 Hungarian regions’ chickenpox dataset.
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(47), Gaussian function method (48) and polynomial functions 
method (48):

The following 7 baseline methods were used to compare the 
performance with the GRGNN:

ARIMA (15): ARIMA (Autoregressive Integrated Moving Average 
Model) is a widely applied time series forecasting method, extensively 
used across various fields. This paper adopts it as a classical statistical 
prediction method to compare with machine learning approaches for 
forecasting COVID-19 data in Africa. Its specific definition is given in 
Equation 12.
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Herein, L represents the lag operator, with d d Z> Î0, . The main 
steps of this method are as follows:

The prediction will finish in 4 steps: step  1, Time series 
preprocessing. The primary purpose here is to make the input to the 
ARIMA model a stationary time series. If the data series is 
non-stationary and exhibits certain growth or decline trends, it is 
necessary to differentiate the data. Step 2, Establishing the model 
based on identification rules for time series models. If the partial 
autocorrelation function of the stationary series is truncated while the 
autocorrelation function is tailed, the series is suitable for an AR 
model; if the partial autocorrelation function is tailed while the 
autocorrelation function is truncated, the series is suitable for an MA 
model; if both the partial autocorrelation and autocorrelation 
functions are tailed, the series fits an ARIMA model. Step  3, 
Determining the order of AR and MA. Utilize the Akaike Information 
Criterion (AIC) and Bayesian Information Criterion (BIC) to 
determine the orders p and q  of AR and MA, respectively. Step 4, 
ARIMA fitting and forecasting. Fit the ARIMA model, then use the 
fitted results to forecast the test set. It’s worth mentioning that these 
results are after one differentiation, and the forecasted values need to 
be restored through inverse differentiation.

weighted moving average method (WMA) (47): the weighted 
moving average (WMA) method is a time series analysis technique 
that assigns different weights to historical observations based on their 
relative importance. Unlike the simple moving average (SMA) 
method, which assigns equal weight to all observations, the WMA 
method seeks to accentuate the impact of more recent data and reduce 
the impact of older data points. The WMA method calculates the 
weighted average of a sequence of observations, with the most recent 
values carrying the highest weightings. The weightings assigned to 
each observation are typically determined by a predefined set of 
coefficients or by subjective judgment based on the characteristics of 
the data being analyzed. The WMA method is frequently used in 
financial market analysis to identify trends and forecast future prices. 
The specific definition of WMA is given in Equation 13.

 X X X Xt t t N t N
� �+ - - += + + +1 0 1 1 1w w w  (13)

Where X t


+1  denotes the prediction for the time point t +1, 
X* stands for the observation value, and w* stands for the weight of X*.

Gaussian function fitting method (48): one of the most popular 
curve fitting algorithms for fitting the time series with a n-order 

Gaussian function G x( ), which has been widely applied in prediction. 
The specific definition of Gaussian function fitting method is given in 
Equation 14. In this research we applied 3-order Gaussian function to 
fitting each time series.
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Polynomial function fitting method (48): one of the most popular 
curve fitting algorithms for fitting the time series with a n-order 
polynomial function, which has been widely applied in prediction. 
The specific definition of polynomial function fitting method is given 
in Equation 15. in this research we  applied 5-order polynomial 
function G x( ) to fitting each time series.

 G x p x p x p x p x p x p( ) = + + + + +1
5

2
4

3
3

4
2

5 6· · · · ·  (15)

LSTM (Long Short-Term Memory): Long Short-Term Memory 
networks were first introduced by Hochreiter in 1997 (22). They are a 
specific form of RNN (Recurrent Neural Network), which is a general 
term for a series of neural networks that can process sequential data.

Generally, RNNs possess three characteristics: first, they can generate 
an output at each time step, with connections between hidden units being 
cyclic; second, they produce an output at each time step, where the output 
at a given time step is only cyclically connected to the hidden unit of the 
next time step; third, RNNs contain hidden units with cyclic connections 
and can process sequential data to produce a single prediction.

LSTM (Long Short-Term Memory) is such a gated RNN. The 
ingenuity of LSTM (Long Short-Term Memory) lies in the addition of 
input, forget, and output gates, allowing the self-recurrent weights to 
vary. Thus, the integration scale at different moments can dynamically 
change even when the model parameters are fixed, thereby avoiding 
problems of gradient vanishing or exploding.

Each LSTM (Long Short-Term Memory) unit is composed of a 
memory cell and three gating units: the input gate, the output gate, 
and the forget gate. Within this architecture, LSTM (Long Short-Term 
Memory) attempts to create a controlled flow of information by 
deciding what information to “forget” and what to “remember,” 
thereby learning long-term dependencies.

 z W h xt z t t= [ ]( )-s · 1,  (16)

 f U x W h bt g t g t g= + +( )-s 1  (17)

 c U x W h bt c t c t c= + +( )-tanh 1  (18)

 1−= + t t t t tc g c i c   (19)

 o U x W h bt o t o t o= + +( )-s 1  (20)

 h o ct t t= ( ) tanh  (21)
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More specifically, the input gate it alongside the second gate ct  
control the new information stored in the memory state ct at a certain 
time t . The forget gate ft  controls the disappearance or retention of 
information from time t -1 in the storage unit, while the output gate 
ot controls which information can be outputted by the storage unit. 
Equations 16–21 succinctly describe the operations performed by an 
LSTM (Long Short-Term Memory) unit.

Herein, xt  represents the input at a certain moment, W* and U* 
represent weight matrices, b* denotes the bias vector, s  is the sigmoid 
function, and the operator  represents element-wise multiplication. 
Finally, the hidden state unit ht, which forms part of the memory cell’s 
output, is calculated as shown in Equation 21.

It is noteworthy that if multiple LSTM (Long Short-Term 
Memory) layers are stacked together, the memory state ct and hidden 
state ht of each LSTM (Long Short-Term Memory) layer will serve as 
inputs to the next LSTM (Long Short-Term Memory) layer.

In this paper, the main hyperparameters for the LSTM (Long 
Short-Term Memory) method are set as follows: the number of 
iterations is 150, the number of hidden units is 400, the initial learning 
rate is 0.001, and the optimizer used is ADAM.

GRU (Gated Recurrent Unit): The GRU (Gated Recurrent Unit) 
is also a type of recurrent neural network. Like LSTM (Long Short-
Term Memory), it was developed to address issues related to long-
term memory and gradients in backpropagation. Compared to 
LSTM (Long Short-Term Memory), using GRU (Gated Recurrent 
Unit) can achieve comparable results and is easier to train, 
significantly enhancing training efficiency. Therefore, GRU (Gated 
Recurrent Unit) is often preferred, especially in scenarios with 
limited computational power or when there is a need to conserve 
computational resources.

GRU (Gated Recurrent Unit) has only two gating units: a reset 
gate and an update gate, as shown in Equations 8–11, where xt  
represents the input at a given time, W* represents a weight matrix, s  
denotes the tanh function, zt is the state of the update gate, and rt  is 
the reset gate. The function of the reset gate is similar to the input and 
forget gates in LSTM (Long Short-Term Memory), where 1- zt  acts 
like the input gate, and zt functions as the forget gate. Given that GRU 
(Gated Recurrent Unit) uses fewer gating units to accomplish tasks 
similar to those of LSTM (Long Short-Term Memory), GRU (Gated 
Recurrent Unit) is typically considered in situations where 
computational capacity is limited.

In this paper, the hyper parameters for the GRU (Gated Recurrent 
Unit) method are set as follows: the number of maximum training 
epoch is 150, the batch size is 12, the number of hidden units is 400, 
the initial learning rate is 0.001, and the optimizer used is ADAM.

CNN-LSTM: CNN-LSTM is an advanced neural network 
architecture that combines Convolutional Neural Networks (CNNs) 
and LSTMs (Long Short-Term Memory networks) to harness the 
strengths of both in processing sequential data. This hybrid model is 
particularly effective for tasks where the input data involves both 
spatial and temporal dimensions, making it popular in areas such as 
video analysis, natural language processing, and time 
series forecasting.

Crucially, to adapt the time series data for the CNN-LSTM 
architecture, we employ lag features transformation. This involves 
creating new datasets where each feature corresponds to the original 
data shifted by values within a specified lag range, effectively capturing 
temporal dependencies across multiple time steps. These transformed 

datasets are then organized into matrices, with each column 
representing a different lagged version of the data, making it suitable 
for sequential processing by the model.

For the LSTM (Long Short-Term Memory) component, it is the 
same like the LSTM (Long Short-Term Memory) methods 
we  introduced above. And for the CNN component, the data is 
initially processed through a sequence folding layer, transforming the 
sequential input into a format amenable to convolutional operations. 
This step is pivotal for extracting spatial features from the lagged 
inputs, which are then unfolded and flattened to preserve the temporal 
sequence structure, allowing the subsequent LSTM (Long Short-Term 
Memory) layers to learn long-term dependencies from these extracted 
features effectively. By meticulously mapping our datasets through 
these preparatory stages, we ensure that the CNN-LSTM architecture 
leverages both spatial and temporal dimensions of the data, thereby 
enhancing the model’s forecasting accuracy.

In this paper, the hyper parameters for the CNN-LSTM method 
are set as follows: the number of maximum training epoch is 150, the 
batch size is 12, the lag is 8, the number of hidden units [LSTM (Long 
Short-Term Memory) component] is 150, the initial learning rate is 
0.001, and the optimizer used is ADAM.

2.4.3 Evaluation indicators
Average RMSE and average MAE are used as evaluation metrics 

to measure the magnitude of error in the prediction results:
The average RMSE is calculated by sequentially calculating the 

RMSE for each of the N  countries in the prediction result of the 
sequence prediction step H . The specific mathematical description is 
as following Equation 22:
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The average MAE is calculated by sequentially calculating the 
MAE for each of the N countries in the prediction result of the 
sequence prediction step H , and then calculating the average value, 
which is mathematically described as following Equation 23:
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3 Results

Predictions were made using GRGNN, LSTM (Long Short-Term 
Memory), GRU (Gated Recurrent Unit), CNN-LSTM, and ARIMA 
for 42 countries in Europe, 38 countries in Africa, two continents’ 
COVID-19 active case datasets, and Hungary’s 20 regions’ varicella 
datasets, respectively. The last 2 weeks (14 days), 3 weeks (21 days), 
4 weeks (28 days), 5 weeks (35 days), and 6 weeks (42 days) data were 
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taken as the test set in the prediction, and after dividing the test set, all 
the data prior to the test set data were divided into the training set and 
validation set in the ratio of 10:1.

The prediction results of each method for each dataset at different 
step sizes are shown in Tables 1–5.

As can be seen from Table 1, with a prediction step of 2 weeks 
(14 days), GRGNN achieves optimal results for both the African and 
Hungarian datasets, and slightly underperforms the CNN-LSTM 
method and the ARIMA method for the European dataset. The LSTM 
(Long Short-Term Memory) method and the GRU (Gated Recurrent 
Unit) method underperform in all datasets. The CNN-LSTM method 
performs best in the prediction of the European dataset, and 
underperforms GRGNN and ARIMA in the African dataset, and 
performs worse in the Hungarian dataset. The ARIMA method has 
the best prediction accuracy of the eight methods. The CNN-LSTM 
method performs best in the prediction of the European dataset, while 
it does not perform as well as GRGNN and ARIMA on the African 
dataset, and performs even worse on the Hungarian dataset. The 
prediction accuracy of the ARIMA method is in the middle of the 
range of the eight methods. The WMA method can achieve predictions 
with an accuracy approximately equal to that of ARIMA. Conversely, 
the Gaussian function method and the polynomial function method 
produce predictions significantly deviating from the real data, 
obtaining the lowest accuracies among all eight methods across all 
three datasets.

As can be  seen from Table  2, the comparison of the overall 
prediction results when extending the prediction step to 3 weeks 
(21 days) is not much different from that of the prediction step of 
2 weeks. The GRGNN method still achieves the best results in the 
prediction of both the African and Hungarian datasets, and is slightly 
less accurate in the prediction of the European dataset than the 
CNN-LSTM and the ARIMA methods. The prediction accuracy of the 
LSTM (Long Short-Term Memory) method and the GRU (Gated 
Recurrent Unit) method is the worst two of the eight methods in the 
African and European datasets. The prediction errors of LSTM (Long 
Short-Term Memory) and GRU (Gated Recurrent Unit) methods in 
the African and European datasets are the worst two out of the eight 
methods. The CNN-LSTM method still performs the best in the 
prediction of the European dataset. The ARIMA method does not 
achieve the optimal prediction accuracy but outperforms LSTM (Long 
Short-Term Memory) and GRU (Gated Recurrent Unit) in the African 
and European datasets, and outperforms CNN-LSTM in the 
Hungarian dataset in terms of prediction error. The WMA method 
still yields slightly inferior results compared to ARIMA and marginally 
better outcomes than the LSTM (Long Short-Term Memory) method. 
However, the Gaussian function method and the polynomial function 
method continue to exhibit the poorest two results.

As can be seen from Table 3, with a prediction step of 4 weeks 
(28 days), GRGNN still maintains the optimal prediction in the 
prediction of the African and Hungarian datasets, and the prediction 

TABLE 1 Prediction results for each prediction method for each dataset for 2  weeks (14  days).

African dataset European dataset Hungarian dataset

ARMSE AMAE ARMSE AMAE ARMSE AMAE

GRGNN 683.27 621.38 54568.57 49345.78 28.82 23.64

LSTM 1288.20 1071.58 78093.59 64940.05 29.69 24.57

CNN-LSTM 812.45 790.14 38421.52 31634.68 32.85 26.29

GRU 1115.73 907.52 56406.04 47197.14 32.21 27.66

ARIMA 783.04 657.50 40086.60 42310.69 29.61 23.83

Poly 4620.15 4480.89 301141.17 298245.73 44.11 36.52

Gauss 2289.51 2214.87 109168.62 103422.19 41.55 34.48

WMA 820.68 691.10 70424.89 62469.22 35.13 29.24

TABLE 2 Prediction results for each prediction method for each dataset for 3  weeks (21  days).

African dataset European dataset Hungarian dataset

ARMSE AMAE ARMSE AMAE ARMSE AMAE

GRGNN 836.26 770.61 75623.18 83044.94 31.47 28.47

LSTM 1375.33 1116.70 113619.62 135365.11 33.62 28.75

CNN-LSTM 915.06 892.35 48978.62 55363.46 35.65 31.46

GRU 1608.06 1260.72 115653.55 144957.77 34.41 28.90

ARIMA 997.03 848.51 68989.77 82938.58 35.22 29.77

Poly 5428.18 5195.21 409270.15 401718.39 29.61 28.93

Gauss 2641.67 2531.15 188754.28 181754.93 36.31 28.60

WMA 1007.55 831.20 119667.10 104058.45 29.70 24.21
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TABLE 3 Prediction results for each prediction method for each dataset for 4  weeks (28  days).

African dataset European dataset Hungarian dataset

ARMSE AMAE ARMSE AMAE ARMSE AMAE

GRGNN 748.42 858.05 111743.17 123580.61 27.48 21.75

LSTM 2296.05 2775.97 125159.58 151888.46 28.02 22.36

CNN-LSTM 882.52 921.98 88773.80 97859.95 29.10 22.21

GRU 1718.08 2188.22 188863.87 161955.56 28.88 23.04

ARIMA 921.32 1082.60 136034.82 112387.49 27.55 20.98

Poly 6628.94 6351.37 534460.56 520915.42 35.01 26.59

Gauss 3254.86 3078.51 214257.05 194298.74 33.07 25.51

WMA 1437.04 1228.77 152546.44 132098.87 28.13 22.02

results in the European dataset are only slightly inferior to those of the 
CNN-LSTM method. The prediction errors of the LSTM (Long Short-
Term Memory) method and the GRU (Gated Recurrent Unit) method 
are still poor in the African and European datasets. The CNN-LSTM 
method still performs optimally in the prediction of the European 
dataset, but poorly in the European dataset. The ARIMA method is 
still in the mid-range of the eight prediction mid-range levels. Still 
performs the best in prediction, but has poor prediction in the 
Hungarian dataset. The prediction accuracy of the ARIMA method is 
still in the middle of the range of the 5 prediction mid-range. The 
performance of the WMA method is slightly inferior to the ARIMA 
method but slightly superior to the GRU (Gated Recurrent Unit) and 
LSTM (Long Short-Term Memory) methods. However, the Gaussian 
method and the polynomial method remain the least effective, 
exhibiting significant errors in their prediction results.

As can be seen from Table 4, when the prediction step size is set to 
5 weeks (35 days), the ranking of the prediction results of each method 
is not much different from that of the case with a step size of 4 weeks, 
and it is worth noting that: the main change occurs in the prediction 
results for European data, and the average index of GRGNN exceeds 
that of CNN-LSTM as the smallest among the prediction methods. The 
performance of the WMA method deteriorates rapidly, reaching a 
point where it only outperforms two other methods. The Gaussian 
function method and the polynomial function method still remain the 
poorest performers, with their accuracy indices worsening even 
further as the prediction steps increase.

As can be seen from Table 5, when the prediction step size is 
6 weeks (42 days), the average of the prediction results of GRGNN in 
the prediction of the European dataset exceeds that of the CNN-LSTM 
(Long Short-Term Memory) method to become the smallest among 
the results of each prediction method, and realizes the prediction 
accuracy of the prediction of each data to be the highest among all 
eight prediction methods. The prediction error of WMA only slightly 
exceeds that of LSTM (Long Short-Term Memory) and GRU (Gated 
Recurrent Unit), placing its results ahead of both LSTM (Long Short-
Term Memory) and GRU (Gated Recurrent Unit). However, it falls 
short compared to GRGNN, CNN-LSTM, and ARIMA methods. The 
polynomial method and Gaussian function method persist as the least 
effective, exhibiting the highest ARMSE and AMAE values.

The average indictors of the prediction results of each method in 
each dataset are plotted at different step sizes, as shown in Figure 5.

To enhance the clarity and simplicity of conveying the prediction 
results, we have selected 5 time series from each dataset, focusing on 
a prediction step set to 6 weeks (42 days) for visualization. Specifically, 
we depict the time series data of 5 countries from the 38 African 
countries’ COVID-19 dataset in Figure 6, and the time series of 5 
countries from the 42 European countries’ COVID-19 dataset in 
Figure  7, and illustrate the time series of 5 regions from the 20 
Hungarian regions’ chickenpox dataset in Figure 8. Through these 
figures, it becomes evident that GRGNN generally captures and 
mirrors the trends observed in the majority of the time series from the 
original real-world data.

TABLE 4 Prediction results for each prediction method for each dataset for 5  weeks (35  days).

African dataset European dataset Hungarian dataset

ARMSE AMAE ARMSE AMAE ARMSE AMAE

GRGNN 820.70 1004.61 120230.14 127749.64 27.27 21.45

LSTM 2507.72 3072.21 255698.55 219314.79 27.40 21.55

CNN-LSTM 1536.70 1593.65 128824.08 111020.42 28.14 21.91

GRU 2234.65 2667.76 250900.80 213550.93 28.26 22.00

ARIMA 1537.67 1731.40 150250.91 125333.12 29.96 22.37

Poly 8436.73 8093.56 652543.68 625536.10 34.23 26.48

Gauss 4526.36 4227.41 212263.48 193738.61 32.04 25.00

WMA 2525.29 2301.08 238699.26 209711.46 30.51 22.38
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4 Discussion

Observing Tables 1–5, it can be  found that for the prediction 
results of the data of the 38 African countries’ COVID-19 dataset and 
the 20 Hungarian regions’ chickenpox dataset, GRGNN is able to 
achieve better prediction results compared with other prediction 
methods at different prediction steps, and the average RMSE and 
average MAE of its prediction results are the smallest among the 
prediction methods at different steps, which indicates that GRGNN is 
able to capture and learn the features in the data better than the three 
neural network methods and statistical methods in the baseline 
methods, and make accurate predictions.

Observing Figures  6, 8, it becomes apparent that for African 
dataset and Hungarian dataset, the prediction results of GRGNN 
consistently align with the developmental trend of the original time 
series, albeit with varying degrees of error. This observation suggests 
that GRGNN, to a certain extent, can predict the developmental 
trends within the datasets.

The prediction errors at different step lengths are compared with 
the step lengths on each dataset, as shown in Figure 5 and it can 
be  found that the prediction errors for the African data generally 
increase with the extension of the prediction step lengths, and the 
errors of the GRGNN method increase relatively less with the 
extension of the prediction step lengths compared with the others, 
which indicates that the GRGNN compared with the three neural 
network in the baseline methods and statistical methods to capture 
and learn more adequately the relationships and features among the 
temporal nodes of the time series. This also indicates that GRGNN 
learns the data in three dimensions: time domain, frequency domain 
and spectral domain, compared to the seven comparative forecasting 
methods that only learn and capture the data in the time domain, 
which proves that GRGNN can capture more features in the data, 
better grasp the overall trend of the data, and realize more accurate 
medium- and long-term forecasting results for the two datasets, 
namely, the data of the 38 countries in Africa and the data of the 20 
regions in Hungary. The results demonstrate that this allows GRGNN 
to explore more features in the data, better grasp the general trend of 
the data, and thus achieve more accurate medium-term and long-term 
predictions for the 38 African countries’ COVID-19 dataset and the 
20 Hungarian regions’ chickenpox dataset.

For the 20 Hungarian regions’ chickenpox dataset, it should 
be separately stated that since the data in this dataset are weekly 

collected, the actual predictions obtained at the same prediction step 
size are less than other two dataset. Therefore, as shown in 
Figures  5E,F, when the prediction step length is extended from 
2 weeks to 3 weeks, each prediction method shows an increase in 
prediction error, whereas the error of each prediction method except 
ARIMA method shows a decreasing trend when the step length is 
extended from 4 weeks to 6 weeks. Meanwhile, GRGNN was able to 
achieve better results than the other seven comparison methods in 
both average RMSE and average MAE. This indicates that GRGNN 
and the neural network prediction methods in the baseline methods 
can realize the capture of the overall trend characteristics of the data, 
which in turn shows that the prediction accuracy will be improved 
when the data prediction step length is extended to a certain length, 
and compared with the seven comparative methods, GRGNN 
achieves more accurate prediction results, which indicates that 
GRGNN is more adequate than the other seven methods for the 
capture and learning of the overall trend characteristics of the data. 
This indicates that GRGNN is more adequate than the other seven 
methods for capturing and learning the general trend features of 
the data.

Finally, the GRGNN do not always make the most accurate 
prediction, as can be  seen from Figures  5C,D, for the prediction 
experiments of 42 European countries, the errors of each prediction 
method are much larger than the errors of the prediction results for 
the African data, and the indicators of each prediction result under 
the same hyper-parameters mostly reaches 10,000 counts or even 
100,000 counts, in which case the CNN-LSTM method has the best 
prediction results in the experiments with the prediction step lengths 
of 14, 21, and 28 days, and its indicators are the smallest values among 
the eight prediction methods, but these two metrics of CNN-LSTM 
become larger with the increase of the prediction step. When the 
prediction step is extended to 35 days, the average of CNN-LSTM is 
still the smallest among the eight methods, but the mean becomes 
sub-optimal, and the optimal value is obtained from the prediction 
results of GRGNN. When the prediction step size is increased to 
42 days, the prediction result of GRGNN becomes optimal in both 
indicators. The prediction results of each prediction method in the 
experiment are not satisfactory in the European dataset, which may 
be caused by the inadequacy of the type of data collected and the 
insufficient amount of data collected for this phenomenon. Data 
inapplicability is an insurmountable problem for data-driven methods, 
and if the applicability of the prediction methods to the data cannot 
be assessed, this will greatly limit the application prospects of the 

TABLE 5 Prediction results for each prediction method for each dataset for 6  weeks (42  days).

African dataset European dataset Hungarian dataset

ARMSE AMAE ARMSE AMAE ARMSE AMAE

GRGNN 1545.62 1763.28 124665.83 133453.75 25.51 19.17

LSTM 3418.20 4090.81 308407.33 367230.08 27.58 22.07

CNN-LSTM 1657.79 1810.84 124829.94 153435.48 26.18 20.08

GRU 4648.19 5709.85 232157.67 269820.41 25.72 20.48

ARIMA 2673.66 3035.86 188922.10 229932.70 27.45 20.27

Poly 10843.29 10305.87 739501.24 697691.22 33.02 24.93

Gauss 4735.57 4382.75 251950.31 218247.07 30.33 23.09

WMA 3435.84 3093.05 426603.38 363924.52 27.98 20.14

https://doi.org/10.3389/fpubh.2024.1397260
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Liu et al. 10.3389/fpubh.2024.1397260

Frontiers in Public Health 14 frontiersin.org

FIGURE 5

The overview plot of evaluation indicator of datasets (A) the overview plot of ARMSE of the 38 African countries’ COVID-19 dataset. (B) The overview 
plot of AMAE of the 38 African countries’ COVID-19 dataset. (C) the overview plot of ARMSE of the 42 European countries’ COVID-19 dataset. (D) The 
overview plot of AMAE of the 42 European countries’ COVID-19 dataset. (E) the overview plot of ARMSE of the20 Hungarian regions’ Chickenpox 
dataset. (F) The overview plot of AMAE of the 20 Hungarian regions’ Chickenpox dataset.

prediction methods. Therefore, there is a need to discuss the 
applicability of GRGNN to different data:

Plotting the heatmap of the weight matrix (W ) for each dataset in 
Figure  9, where the blocks in the plot represent the correlation 

between the time series marked by the x-axis and y-axis the lighter the 
color of the block is the related closer the time series are. it can 
be observed that the accuracy of GRGNN is linked to the correlation 
among time series in the datasets. In cases such as the African and 
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Hungarian datasets in this research, where the correlation between 
time series is relatively close, GRGNN exhibits accurate predictions 
and the ability to forecast the developmental trend of the time series. 
However, when facing datasets like the European dataset in this 
research, where the correlation among time series is less pronounced, 
GRGNN struggles to achieve a more accurate prediction compared to 
other neural network methods.

We find that for the weight matrix W  obtained after preprocessing 
of the dataset, the average of the sum of the weights of each node over 
the other nodes is calculated, as shown in Table 6, and it can be found 
that when the average value tends to 1 then the dataset yields better 
prediction results by GRGNN.

Therefore, we hypothesize that if the average value of the sum of the 
weights of each node in the weight matrix over the other nodes converges 

FIGURE 6

The plots of original data and prediction result for countries from the 38 African countries’ COVID-19 dataset of GRGNN. (A) The plot of original data 
and prediction result for the total cases of the 38 African countries’ COVID-19 dataset of GRGNN. (B) The plot of original data and prediction result for 
Country1 from the 38 African countries’ COVID-19 dataset of GRGNN. (C) The plot of original data and prediction result for County2 from the 38 
African countries’ COVID-19 dataset of GRGNN. (D) The plot of original data and prediction result for Country3 from the 38 African countries’ 
COVID-19 dataset of GRGNN. (E) The plot of original data and prediction result for Country4 from the 38 African countries’ COVID-19 dataset of 
GRGNN. (F) The plot of original data and prediction result for Country5 from the 38 African countries’ COVID-19 dataset of GRGNN.
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FIGURE 7

The plots of original data and prediction result for countries from the 42 European countries’ COVID-19 dataset of GRGNN. (A) The plot of original data 
and prediction result for the total cases of the 42 European countries’ COVID-19 dataset of GRGNN. (B) The plot of original data and prediction result 
for Country1 from the 42 European countries’ COVID-19 dataset of GRGNN. (C) The plot of original data and prediction result for County2 from the 42 
European countries’ COVID-19 dataset of GRGNN. (D) The plot of original data and prediction result for Country3 from the 42 European countries’ 
COVID-19 dataset of GRGNN. (E) The plot of original data and prediction result for Country4 from the 42 European countries’ COVID-19 dataset of 
GRGNN. (F) The plot of original data and prediction result for Country5 from the 42 European countries’ COVID-19 dataset of GRGNN.

to 1, then the dataset will yield better prediction results by GRGNN. As 
a matter of fact, there are some researches to construct the graph by 
SoftMax and other methods to make the average value of the sum of the 
weights of each node in the weight matrix of each node to other nodes 
converge to 1 (40), but this hypothesis is only based on the observation 
of the phenomenon shown in the experimental results, and the 
mathematical proofs and the verification of the actual additional 
experiments are still need to be further supplemented.

This paper is significantly innovative: the main focus of this study 
is to realize the ability of the network to analyze datasets in multiple 

dimensions in the time, spectral, and frequency domains by 
introducing a GRU (Gated Recurrent Unit) layer in the GNN (Graph 
Neural Network) network. This gives the following advantages to the 
neural network used in this study: Firstly, the multiple-input multiple-
output temporal prediction of multiple time series variables is more 
efficient compared to the single-input single-output prediction 
method of a single time series variable; Secondly, due to the 
introduction of the GRU (Gated Recurrent Unit) layer, it yields a more 
accurate prediction in terms of prediction accuracy; and Thirdly, as a 
data-driven method, it does not require human a priori knowledge as 
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a basis, which makes it easy to migrate the application to the other 
data processing.

5 Conclusion

In this paper, gated recurrent units are attempted to 
be introduced into graph neural network, enabling graph neural 
networks to capture and learn features from data in three 
dimensions, namely, null, frequency, and time domains, which is 
utilized to produce notable results in the epidemic data prediction 
problem, which is a typical multivariate time series prediction 

problem. Compared with classical prediction methods, graph 
neural networks, as an multiple-input-multiple-output method, can 
quickly and easily construct graphs for multiple time series and 
realize effective prediction in a data-driven manner. In terms of 
prediction accuracy, when the predicted multivariate correlation 
reaches a certain level (specifically, the phenomenon observed in 
this study is that the closer the average of the sum of the connection 
weights of each node to the other nodes tends to be 1, the better the 
prediction results obtained from the GRGNN for the dataset), the 
graph neural network with the introduction of gated recurrent units 
can achieve more accurate predictions in medium-term or long-
term forecasting.

FIGURE 8

The plots of original data and prediction result for regions from the 20 Hungarian regions’ Chickenpox dataset of GRGNN. (A) The plot of original data 
and prediction result for the total cases of the 20 Hungarian regions’ Chickenpox dataset of GRGNN. (B) The plot of original data and prediction result 
for Region1 from the 20 Hungarian regions’ Chickenpox dataset of GRGNN. (C) The plot of original data and prediction result for Region2 from the 20 
Hungarian regions’ Chickenpox dataset of GRGNN. (D) The plot of original data and prediction result for Region3 from the 20 Hungarian regions’ 
Chickenpox dataset of GRGNN. (E) The plot of original data and prediction result for Region4 from the 20 Hungarian regions’ Chickenpox dataset of 
GRGNN. (F) The plot of original data and prediction result for Region5 from the 20 Hungarian regions’ Chickenpox dataset of GRGNN.
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FIGURE 9

The heat maps of the weight matrices of datasets (A) The heat map of the weight matric of the 38 African countries’ COVID-19 dataset. (B) The heat 
map of the weight matric of the 42 European countries’ COVID-19 dataset. (C) The heat map of the weight matric of the 20 Hungarian regions’ 
Chickenpox dataset.

TABLE 6 The average node sum weights of each dataset.

African 
dataset

European 
dataset

Hungarian 
dataset

average node 

sum weights

1.10 0.78 0.96
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Glossary

AMAE Average Mean Absolute Error

ARIMA Autoregressive Integrated Moving Average

ARMSE Average Root Mean Square Error

AR Autoregressive

CNN Convolutional Neural Network

DFT Discrete Fourier Transform

DNN Deep Neural Network

GFT Graph Fourier Transform

GLU Gated Linear Unit

GNN Graph Neural Network

GRU Gated Recurrent Unit

HA Historical Average

IDFT Inverse Discrete Fourier Transform

IGFT Inverse Discrete Fourier Transform

LSTM Long Short-Term Memory

MAE Mean Absolute Error

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SMA Simple Moving Average

VAR Vector Autoregressive Model

WMA Weighted Moving Average
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