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Accumulating research suggested that long-term exposure to fine particulate

matter (PM2.5) is related to cardiovascular disease (CVD). However, evidence

regarding the relationship between PM2.5 and CVD risk factors remains

inconsistent. We hypothesized that this association may be partially modified

by socioeconomic status (SES). To investigate the relationships and to test

the modifying e�ect of SES, we included baseline data for 21,018 adults

from September 2017 to May 2018. PM2.5 concentrations were determined

by employing an amalgamation of linear measurements obtained from

monitoring stations located near the participants’ residential and workplace

addresses. We assessed SES across several domains, including income,

education, and occupation levels, as well as through a composite SES index.

The results indicated that for every 10 µg/m3 increase in PM2.5 exposure,

the risk of hypercholesterolemia, hyperbetalipoproteinemia, diabetes, and

hyperhomocysteinemia (HHcy) increased by 7.7% [Odds ratio (OR) = 1.077, 95%

Confidence Interval (CI) = 1.011, 1.146], 19.6% (OR = 1.196, 95% CI = 1.091,

1.312), 4.2% (OR = 1.042, 95% CI = 1.002, 1.084), and 17.1% (OR = 1.171, 95%

CI = 1.133, 1.209), respectively. Compared to the high SES group, those with

low SES are more prone to hypercholesterolemia, hyperbetalipoproteinemia,

diabetes, and HHcy. Notably, the disparities in SES appear significant in the

relationship between PM2.5 exposure and hypercholesterolemia as well as

hyperbetalipoproteinemia. But for diabetes and HHcy, the modification e�ect of

SES on PM2.5 shows an inconsistent pattern. In conclusion, the results confirm

the association between PM2.5 and cardiovascular risk factors and low SES

significantly amplified the adverse PM2.5 e�ect on dyslipidemia. It is crucial to

emphasize a need to improve the socioeconomic inequality among adults in

Beijing and contribute to the understanding of the urgency in protecting the

health of vulnerable groups.
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GRAPHICAL ABSTRACT

Association between PM2.5 and cardiovascular risk factors and the modifying e�ect of SES.

Highlights

• PM2.5 exposure was significantly associated with unfavorable
cardiovascular health profiles.

• In China, those with lower SES were less likely to reach their
cardiovascular risk factors targets.

• Low SES significantly amplified the adverse PM2.5 effect on
dyslipidemia.

• For diabetes and hyperhomocysteinemia, the modification
effect of SES on PM2.5 shows an inconsistent pattern.

1 Introduction

Premature death and decreased quality of life in older adults
are primarily attributed to cardiovascular disease (CVD) (1,
2). Cardiovascular risk factors, which predominantly include
hypertension, dyslipidemia, and diabetes, play a pivotal part in
the occurrence and progression of CVD (3–5). In addition,
hyperhomocysteinemia (HHcy) is usually a consequence of a
reduction in the activity of enzymes involved in homocysteine
(Hcy) metabolism, which is generally a crucial and modifiable risk
factor for CVD (6). Rapid economic growth, coupled with the
increasing adoption of unhealthy lifestyles, has caused a continuous
increase in the incidence of cardiovascular risk factors, which
in turn has led to a substantial increase in the CVD burden in
China (7).

A considerable amount of accumulating research suggested
that long-term exposure to fine particulate matter (PM2.5) is
connected to an elevated likelihood of developing CVD (8, 9).
Based on biological plausibility, it is conceivable that prolonged

exposure to air pollution, through the aforementioned mechanistic
pathways, might induce undesirable alterations in CVD risk
factors, encompassing blood lipid, glucose, and Hcy levels (10, 11).
Consequently, these modifications could serve as intermediaries
connecting exposures to the overt manifestation of CVD (12,
13). However, epidemiological studies associating these exposures
with CVD risk factors are lacking (14, 15), and evaluations may
be influenced by remaining confounders, such as socioeconomic
status (SES) and nutritional status (16, 17).

Low SES, which is commonlymeasured in terms of low income,
limited education, or primarily manual labor occupations (18, 19),
has been acknowledged as a potential contributory element to
cardiovascular metabolic disorders (20). Socioeconomic inequities
remain barriers to the optimal management of cardiovascular risk
factors (4). In addition, SES assumedly covaries with the spatial
distribution of PM2.5 (21, 22). Therefore, it is common for air
pollution epidemiology studies to consider SES as a confounding
factor (23, 24); in addition, SES is likely a crucial effect modifier, and
results that do not include examination of this effect modification
may cause incorrect estimation of the true burden of PM2.5

exposure (25–28). However, the majority of the relevant literature
includes populations in China or other low- or middle-income
countries and provides scarce evidence that SES may modify
the relationship between PM2.5 concentrations and cardiovascular
risk factors.

Although a boom in economic development has occurred in
China in recent decades, groups with severely low SES remain (29),
causing serious inequity in the utilization of medical services (30).
During the COVID-19 pandemic, the impacts of inequity have been
more pronounced, with the greatest impact on socially vulnerable
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groups (31). Thus, up-to-date studies are needed to determine the
status quo in China. Our objective was to address two questions
related to the impact of SES on the association between PM2.5

exposure and cardiovascular risk factors in this study. Our first
question was related to the assessment of the relationship between
long-term exposure to PM2.5 and cardiovascular risk factors while
adjusting for SES. Here, we used multiple indicators spanning three
aspects of SES, namely, income, education, and occupation, to fully
capture its relevance in this particular study. Our second question
focused on whether individuals with low SES are more vulnerable
to the pollutant-related health effects. This issue is pivotal in
protecting the health of vulnerable groups and we addressed this
question by testing whether SES status is a modifying effect. To
fully understand the relationship between air pollution exposure
and these indicators modified by different SES levels, we further
constructed a composite SES index.

2 Methods

2.1 Study population

The objective of the Beijing Population Health Cohort
study was to prospectively investigate the interplay between
environmental and genetic factors across a broad spectrum of
diseases. The study’s design specifications have been outlined in
a previous publication (32, 33). From September 2017 to May
2018, we used a multistage, stratified cluster method to select
215 communities or villages and 24,990 participants across all 16
districts in Beijing (see Supplementary Figure S1). After excluding
3,972 individuals due to incomplete residential information,
missing SES data, or refusal to undergo a physical examination, the
current analysis comprises a total of 21,018 participants. Our study
protocol was approved by the Beijing Center for Disease Prevention
and Control Ethics Committee [No. 2017D (6)], and all participants
provided written consent after being fully informed before taking
part in the study.

2.2 Definition of health outcomes

Blood samples were obtained from individuals after overnight
fasting and were subsequently transported on the same day.
A Hitachi Autoanalyzer (Type 7600, Hitachi Ltd.) was used to
conduct the biochemical analysis and laboratory tests, which
included the determination of glucose, total cholesterol (TC),
triglyceride (TG), high-density lipoprotein cholesterol (HDL-
C) and low-density lipoprotein cholesterol (LDL-C) levels,
in the laboratory of the BJCDC. Dyslipidemia was defined
according to the 2016 Chinese Adult Dyslipidemia Prevention
Guideline (34), and hypercholesterolemia, hypertriglyceridemia,
hypoalphalipoproteinemia and hyperbetalipoproteinemia were
defined as TC ≥240 mg/dl, TG ≥200 mg/dl, HDL-C ≤40 mg/dl,
and LDL-C ≥160 mg/dl, respectively. Diabetes was defined as a
fasting blood glucose (FBG) level exceeding 7 mmol/L, the use of
antidiabetic medications, or a confirmed diagnosis of the condition.

An elevated level of Hcy, specifically a level ≥15 µmol/L, was
defined as HHcy.

2.3 Exposure assessment

Over a period of 730 days, PM2.5 data from 35 air monitoring
stations were meticulously gathered hourly. This comprehensive
data was subsequently utilized to evaluate the long-term impacts
of PM2.5 exposure on cardiovascular risk factors. The entire
process adhered strictly to the standardized guidelines established
by the State Environmental Protection Administration of China
(SEPA) in 1992. For a comprehensive understanding of and
further details regarding the analytical methods, quality control
procedures, quality assurance practices, and outlier management
strategies employed to collect the monitoring data, please see the
Supplementary Method S1.

We acquired the residential and occupational addresses of every
participant, allowing us to perform geocoding for each address.
For every residential and occupational address, we selected a
representative monitoring station based on minimal proximity. In
our investigation, the average distances between the residential
and occupational addresses and their respective representative
monitors were 3.52 km and 3.17 km. The exposure averaged over
730 days was calculated by means of a linear aggregation of the
concentrations that were measured at both locations, with the
weighting based on the duration of time spent at each location:





730
∑

i

work hours
∑

j

CON1ij +

730
∑

i

home hours
∑

j

CON2ij



 /(730 d × 24 h)

where CON1ij and CON2ij represent the PM2.5 concentrations at
the residential and occupational addresses, respectively, during
hour i on day j. Details about the exposure algorithm have been
described elsewhere (32).

2.4 SES

To determine the modifying effect of SES on the relationship
between long-term exposure to PM2.5 and cardiovascular risk
factors, we evaluated three distinct domains: family income,
education and occupation. According to the annual disposable
income per capita of Beijing residents in 2016, we grouped income
into two groups: low (≤50,000 RMB/year) and high (>50,000
RMB/year). In terms of education, referring to the standards of
China’s higher education and previous epidemiological findings
(25, 35), we have categorized education into high school education
and below, and college education and above. Occupations were
classified as mainly manual occupations (i.e. homemakers, crafts
and related trade workers, semi-skilled and unskilled manual
workers, farmers, and people in elementary occupations) and
non-manual occupations (i.e. clerical, service and sales workers,
professionals and managers) (36, 37). We further combined three
dimensions of SES to develop a composite SES index ranging from
0 to 4 (38). The first category, with an SES level of 0, included
individuals who were at low levels of all SES measures. The second
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and third categories included individuals who were at low levels
of any one or any two of the three SES measures. The fourth SES
category included individuals who were not at a low level on any
SES measures.

2.5 Covariates

Trained personnel administered a standardized questionnaire
to collect data on age, sex, SES, marital status, smoking and

TABLE 1 Baseline characteristics of the study participants.

Characteristics Total (N = 21,018)

Age (years), mean (±SD) 46.0 (14.3)

Male, n (%) 9,849 (46.9)

Married, n (%) 17,920 (85.3)

BMI (kg/m2), mean (± SD) 25.3 (7.6)

Smoking, n (%)

Nonsmoker 14,835 (70.6)

Former smoker 1,152 (5.5)

Current smoker 5,031 (23.9)

Drinking, n (%)

Nondrinker 14,702 (70.0)

Nonhabitual drinker 4,333 (20.6)

Habitual drinker 1,983 (9.4)

Physical activity, n (%)

Low 5,047 (24)

Moderate 6,352 (30.2)

High 9,619 (45.8)

High fruit intake, n (%) 4,341 (20.7)

High vegetable intake, n (%) 6,072 (28.9)

Education, n (%)

Low 10,001 (47.6)

High 11,017 (52.4)

Income, n (%)

Low 5,644 (26.8)

High 15,374 (73.2)

Occupation, n (%)

Mainly manual 7,807 (37.1)

Non-manual 13,211 (62.9)

Hypertension, n (%) 7,895 (37.6)

Diabetes, n (%) 2,622 (12.5)

Hypercholesterolemia, n (%) 2,209 (10.5)

Hypertriglyceridemia, n (%) 4,011 (19.1)

Hypoalphalipoproteinemia, n (%) 2,908 (13.8)

Hyperbetalipoproteinemia, n (%) 1,561 (7.4)

HHcy, n (%) 9,133 (43.5)

PM2.5 (µg/m3) 67.3 (10.9)

drinking status, the frequency of fruit consumption (one or
more servings/less than one serving per day), the frequency
of vegetable consumption (two or more servings/fewer than
two servings per day), physical activity level (in accordance
with the International Physical Activity Questionnaire) (39),
and comorbidities. Hypertension was defined as a measured
unaware systolic blood pressure (SBP) ≥140 mmHg or a diastolic
blood pressure (DBP) ≥90 mmHg, the self-reported use of
blood pressure-lowering medication or a physician diagnosis of
hypertension. On the day of data collection, height and weight were
measured while the individuals were barefoot and lightly dressed,
and body mass index (BMI, kg/m2) was computed.

2.6 Statistical analyses

Linear mixed regression was employed to calculate the effects
(b) of PM2.5 exposure on cardiovascular metabolic indicators in
which the community or village was considered to have a random
effect. For each 10-mg/m3 increment, after log-transforming the
data to enhance linearity, the corresponding 95% confidence
intervals (95% CIs) were derived by employing the formula 100
× [exp(b) – 1] for various health indicators including TC, TG,
HDL-C, LDL-C, FBG, and Hcy levels. Odds ratios (ORs) with
95% CIs were obtained by using logistic models with respect to
10 mg/m3 increments of PM2.5 and cardiovascular risk factors.
In this analysis, participants were considered as first-level units,
while communities or villages treated as second-level units.
Comprehensive explanations of the linear mixed regression and
the two-level binary logistic regression models have been offered
in prior researches (15, 40–42), as well as in the accompanying
(Supplementary Method S2). We included covariates based on
the hypothetical causal pathway linking PM2.5 exposure and
cardiovascular risk factors as well as previous results from the
literature. Covariates within a certain range were added gradually
to the different models.

We conducted further investigations to determine whether the
associations between PM2.5 exposure and hypercholesterolemia,
hyperbetalipoproteinemia, diabetes, and HHcy were influenced by
SES (comprising income, education, and occupation levels). To
achieve this, we introduced an interaction term between SES and
continuous PM2.5 exposure. Additionally, we employed restricted
cubic spline method to meticulously detect the dose–response
curves between PM2.5 exposure and cardiovascular risk factors
across various SES categories.

We conducted sensitivity analyses to confirm the robustness
of the present results. We first include multiple pollutants in the
original regression models. Second, we evaluated the associations
by excluding participants with CVD. Third, we utilized the
average concentrations of air pollution during the 1-year period
prior to the baseline survey as a substitution for long-term
exposure measurements. Finally, we further utilized the average
PM2.5 exposure levels estimated by the Weather Research and
Forecasting (WRF) model (32, 43), spanning the 2-year prior to
the baseline survey, with a spatial resolution of 0.1 degree, to
comprehensively capture the variations in individual exposure as
accurately as possible.
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TABLE 2 Percent change (%, mean and 95% CI) in cardiovascular metabolic indicators associated with a 10 µg/m3 increase in PM2.5 exposure.

PM2.5, µg/m
3 Model 1a Model 2b Model 3c

TC, mg/dl 0.732 (0.325, 1.139)∗ 0.738 (0.333, 1.144)∗ 0.729 (0.324, 1.134)∗

TG, mg/dl 0.293 (−1.015, 1.617) 0.283 (−0.985, 1.566) 0.116 (−1.114, 1.362)

HDL-C, mg/dl 0.729 (−0.170, 1.637) 0.67 (−0.220, 1.568) 0.661 (−0.230, 1.556)

LDL-C, mg/dl 1.959 (1.225, 2.698)∗ 1.954 (1.220, 2.692)∗ 1.973 (1.240, 2.712)∗

FBG, mmol/L 1.140 (0.835, 1.446)∗ 1.142 (0.837, 1.448)∗ 1.026 (0.724, 1.330)∗

Hcy, µmol/L 1.976 (0.865, 3.100)∗ 1.912 (0.805, 3.031)∗ 1.905 (0.800, 3.022)∗

aAdjustment was carried out to account for age, sex, residential area, BMI, and SES (income, education, and occupation levels).
bAdjustment was further carried out to account for drinking status, smoking status, physical activity level, and the frequencies of fruit and vegetable consumption.
cAdjustment was further carried out to account for hypertension.
∗P < 0.05.

TABLE 3 Odds ratios (and 95% CIs) of cardiovascular risk factors associated with a 10 µg/m3 increase in long-term exposure to PM2.5.

PM2.5, µg/m
3 Model 1a Model 2b Model 3c

Hypercholesterolemia 1.076 (1.011, 1.145)∗ 1.077 (1.011, 1.146)∗ 1.073 (1.008, 1.143)∗

Hypertriglyceridemia 0.998 (0.949, 1.048) 0.997 (0.952, 1.044) 0.986 (0.941, 1.033)

Hypoalphalipoproteinemia 1.009 (0.934, 1.090) 1.008 (0.933, 1.090) 1.007 (0.932, 1.089)

Hyperbetalipoproteinemia 1.193 (1.088, 1.308)∗ 1.196 (1.091, 1.312)∗ 1.195 (1.089, 1.311)∗

Diabetes 1.038 (0.999, 1.080) 1.042 (1.002, 1.084)∗ 1.045 (1.005, 1.086)∗

Hyperhomocysteinemia 1.171 (1.133, 1.209)∗ 1.171 (1.007, 1.064)∗ 1.167 (1.130, 1.206)∗

aAdjustment was carried out to account for age, sex, area, BMI, and SES (income, education, and occupation levels).
bAdjustment was further carried out to account for drinking status, smoking status, physical activity level, and frequencies of fruit and vegetable consumption.
cAdjustment was further carried out to account for hypertension.
∗P < 0.05.

All the statistical analyses were performed
using R software 4.2.1. A P-value of <0.05
indicated statistical significance for a two-
tailed test.

3 Results

The baseline characteristics of the participants in the
present study are described in Table 1. Among the 21,018
participants, the average age was 46.0 (14.3) years, and 46.9%
(n = 9,849) were men. The participants were generally
nonsmokers (70.6%), nondrinkers (70.0%), and had a
high level of physical activity (45.8%). The unadjusted
prevalence of hypercholesterolemia, hypertriglyceridemia,
hypoalphalipoproteinemia, hyperbetalipoproteinemia, diabetes,
and HHcy was 10.5%, 19.1%, 13.8%, 7.4%, 12.5% and 43.5%,
respectively. A comparison between the included study population
and the excluded patients is available in Supplementary Table S1.
Excluded participants were more likely to be younger, unmarried,
non-smokers, and non-drinkers, with low education and unskilled
occupation. But there were no significant differences in terms of
sex, BMI and income level. Within the SES quartiles, we identified
statistically significant differences in the distributions of the
selected characteristics (all P < 0.05; see Supplementary Table S2).
Furthermore, the concentrations of the four air pollutants varied
slightly across the different SES classes, with a median value of 67.3
µg/m3 for PM2.5.

Table 2 indicates that increased exposure to PM2.5 is linked
to the increases in TC, LDL-C, FBG, and Hcy levels. Specifically,
for an increase of 10 mg/m3 in PM2.5 exposure, a corresponding
increase of 0.729% (95% CI = 0.324%, 1.134%) in the TC level,
1.973% (95% CI = 1.240%, 2.712%) in the LDL-C level, 1.026%
(95% CI = 0.724%, 1.330%) in the FBG level, and 1.905% (95%
CI = 0.800%, 3.022%) in the Hcy level after fully adjusting for
confounding factors was observed.

The correlation results between PM2.5 exposure and
cardiovascular risk factors are shown in Table 3. We
found that PM2.5 exposure was linked to a higher risk of
hypercholesterolemia, hyperbetalipoproteinemia, diabetes
and HHcy, and the results of the different models were
consistent. After we adjusted for demographic characteristics
and behavioral risk factors in the main models, for a 10 µg/m3

increase in PM2.5 exposure, the risk of hypercholesterolemia,
hyperbetalipoproteinemia, diabetes, and HHcy increased by
7.3% (OR = 1.077, 95% CI = 1.011, 1.146), 19.6% (OR =

1.196, 95% CI = 1.091, 1.312), 4.2% (OR = 1.042, 95% CI
= 1.002, 1.084), and 17.1% (OR = 1.171, 95% CI = 1.007,
1.064), respectively. When using the 1-year average exposure
as a proxy for measuring long-term exposure, the association
between hypoalphalipoproteinemia and PM2.5 appeared to be
significantly strengthened. The results of sensitivity analyses
yielding similar or slightly varying results are presented in the
Supplementary Table S3.

In comparison with those in the high SES group, people in the
low SES group were less likely to reach their TC and LDL-C targets
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FIGURE 1

Interaction e�ects of income, education and occupation levels on associations between each 10 mg/m3 increase in PM2.5 exposure and

hypercholesterolemia, hyperbetalipoproteinemia, diabetes, and HHcy. The covariates included age, sex, location, BMI, smoking status, drinking

status, frequencies of fruit and vegetable consumption, and physical activity level. *P < 0.05.

(Figure 1). For example, the prevalence of hypercholesterolemia
was 12.8%, 13.6% and 12.2% in the low-income, limited education,
and mainly manual occupation groups, respectively, while the
proportion decreased to 9.7%, 7.7% and 7.5% in the high income,
high education, and non-manual occupation groups, respectively.

According to our stratified analysis, the effect of PM2.5 exposure
on health appeared to be greater in patients with a low SES.
For hypercholesterolemia, the SES interaction was significant
or marginally significant for all three SES indicators (P for
interaction = 0.058, 0.029, 0.038). For hyperbetalipoproteinemia,
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FIGURE 2

Dose–response relationships of PM2.5 exposure with hypercholesterolemia, hyperbetalipoproteinemia, diabetes, and HHcy risk according to SES

levels ranging from 1 to 4. Dashed lines represent the 95% CIs of the ORs. Multivariate models were adjusted for age, sex, location, BMI, smoking

status, drinking status, physical activity level, and frequencies of fruit and vegetable consumption. The sample sizes for the subgroups were 3,080,

4,511, 5,226, and 8,201.

the SES interaction was significant for income and education
levels (P for interaction = 0.009, 0.004) but was not significant
for occupation level (P for interaction = 0.598). The disparities
in statuses did not appear to be significant for the relationship
between PM2.5 exposure and diabetes risk. Similarly, regarding
the relationship between PM2.5 exposure and HHcy risk, these
disparities manifested only through differences in education level
(P-value of interaction <0.001).

The relationships between PM2.5 exposure and
hypercholesterolemia as well as hyperbetalipoproteinemia
appeared to increase with decreasing SES (see
Supplementary Figure S2). The spline analysis showed a
significant linear relationship between PM2.5 exposure and
dyslipidemia among individuals who exhibited low levels of all
three SES indicators (SES score = 0, P for linearity = 0.032 for
hypercholesterolemia and <0.001 for hyperbetalipoproteinemia)
and among those with a low level for any one of the three
SES indicators (SES score = 1, P for linearity = 0.006 for
hypercholesterolemia and 0.003 for hyperbetalipoproteinemia;
Figure 2). No significant linear trend was found between PM2.5

exposure and dyslipidemia risk among individuals who exhibited
high levels across all three SES indicators (SES score = 3). For
diabetes and HHcy risk, the modifying effect of SES was no
longer evident. The dose-response curves on PM2.5 exposure
and diabetes risk exhibited a linear trend exclusively among
individuals with an SES level of 3 (P for linearity = 0.034).
Furthermore, the relationship between PM2.5 exposure and
prevalence of HHcy only failed to demonstrate a linear trend
among individuals with an SES level of 0 (P for linearity
= 0.142), whereas it did exhibit such a trend within other
SES groups.

4 Discussion

Our study substantiates that long-term exposure to PM2.5 could
lead to elevations in TC, LDL-C, FBG, and Hcy levels. In addition,
we observed socioeconomic inequalities in the associations between
PM2.5 exposure and prevalence of dyslipidemia among adults.
Most significantly, our study represents the first comprehensive
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community-based investigation to assess the modifying effects of
SES on the correlation between PM2.5 exposure and cardiovascular
risk factors. Here, we employed both single-indicator variables,
spanning the three aspects of SES, and a composite index for
assessment of the effect modification.

Consistent with previous results (44–47), we found that
PM2.5 was linked to altered TC and LDL-C levels. For example,
researchers (45) performed a longitudinal quasiexperiment and
found that a reduction in PM2.5 corresponded to a significant
decrease in TC and LDL-C concentrations, but no significant
associations were observed with TG and HDL-C concentrations.
Another recent study (46) in China showed that each 10 µg/m3

increase in PM2.5 was linked to 0.9% (95% CI = 0.6%, 1.2%)
and 3.0% (95% CI = 2.6%, 3.5%) increases in TC and LDL-C
concentrations, respectively. However, the results of the following
studies were less consistent: among conscripted Korean soldiers,
long-term exposure to PM2.5 was associated with lower HDL-
C levels but not with TC, TG or HDL-C levels (15). Among
children and adolescents in China, PM2.5 concentrations were
associated with higher TC concentrations, while no associations
were found with other blood lipids (48). This inconsistency could
potentially be attributed to the diversity among the research
participants (e.g., genetic background and age), study region (e.g.,
air pollution levels and compositions of PM), and accuracy of the
measurements of confounding factors inherent to observational
studies (e.g., nutritional status, physical activity level and SES),
which, we supposed, were adjusted sufficiently in our current
study. In addition, compared with the abovementioned studies,
our study has advantages in terms of measuring exposure,
which was approximated by calculating a combination of linear
concentrations at different locations, accounting for the duration
of time spent at home and at work; thus, we believe that the present
estimates are more precise.

Specifically, inhalation of particles and gases can induce
inflammation and oxidative stress in lung function, which are
driven by alveolar macrophages and lung epithelial cells. These
effects can be transferred from the lung to the circulatory system,
further interfering with lipoprotein metabolism and oxidative
stress. In addition, evidence from several previous studies (49,
50) suggests that PM2.5 exposure can also cause abnormal DNA
methylation by reducing DNA methyltransferase activity. In the
present study, the correlations between atmospheric pollutant
concentrations and lipid concentrations (especially TC and LDL-C)
are consistent with these hypothesized biological mechanisms.

Our study confirmed a substantial association between PM2.5

and elevated FBG levels, as well as an increased risk of
diabetes outcomes. Several previous epidemiological researches
have investigated the impacts of ambient air pollution exposure
on the likelihood of developing diabetes. A cross-sectional study
(51) conducted in India did not establish a correlation between
residential PM2.5 exposure and the prediabetes/diabetes incidence
in that population. However, studies conducted in East Asia
support a relationship between PM2.5 exposure and diabetes risk.
A study among older adults ≥65 years old in Hong Kong (52)
revealed that for every increment of 3.2 µg/m3 in ambient PM2.5

exposure, there was a corresponding rise of 5% in the OR for
diabetes, with a 95% CI ranging from 1.01 to 1.10. Another recent

study conducted in Okayama City, Japan (53), revealed that the
OR remained significant at 1.10 (1.00–1.20) for each 2.1 µg/m3

increment in the interquartile range of the PM2.5 concentration.
The results of this research underscore the significant impact of
PM2.5 exposure on diabetes risk, even in areas with relatively low
pollution levels.

Despite the lack of a complete understanding of the specific
biological mechanisms through which exposure to air pollutants
induces diabetes, several theories have been suggested. One such
theory postulates that exposure to air pollutants might increase
oxidative stress and inflammation within adipose tissue. This, in
turn, can trigger endoplasmic reticulum stress, disrupt insulin
signaling, and ultimately lead to cell apoptosis. These processes
can potentially impact insulin resistance as well as the risk of
metabolic disorders (54, 55). PM2.5 has also been shown to
mediate dysfunction in brown adipose tissue and mitochondria,
which are systemic pathologies associated with type 2 diabetes
(56). Additionally, air pollutants can cause imbalances in the
autonomic nervous system, directly affecting insulin resistance
(57). The positive correlation identified in our study between
exposure to PM2.5 and FBG as well as diabetes, further reinforces
these underlying mechanisms and provides compelling proof of the
detrimental impacts of exposure to PM2.5 on diabetes.

Elevated Hcy levels are acknowledged to be an independent
contributory factor for CVD incidence. Despite a growing body of
research examining the impact of air pollution on blood Hcy levels,
the results remain ambiguous. A recent systematic review (58)
synthesized the available evidence supporting a positive correlation
between higher concentrations of particulate matter (PM) and
elevated Hcy levels. However, owing to the restricted quantity of
accessible studies and the significant heterogeneity in terms of
study participants, research design, exposure duration, and the
composition and sources of particulate matter, we failed to draw
a definitive conclusion. In this study, we identified a clear linear
correlation between PM2.5 exposure and Hcy levels as well as HHcy
outcome, providing further demonstration for the relationship
between air pollution and health outcomes, especially in areas with
high HHcy incidence and concentrated air pollution.

Our results of effect modification by SES are in accordance
with the hypothesis that individuals with low SES appear to
be disproportionately affected by adverse pollutant-related health
effects. This is the first study to assess the role of SES in the
correlation between PM2.5 exposure and cardiovascular risk factors;
thus, it is difficult for us to compare our results. The impact of SES
as an effect modifier in the risk of cardiovascular diseases (59, 60),
respiratory diseases (25, 26, 61, 62) and all-cause mortality (63, 64)
has only recently been investigated. Unlike previous studies that
have typically utilized single SES variables without delving into
the complex pathways and observations through which SES may
impact health and the estimated relationship between exposure to
pollutants and health, our study took a comprehensive approach.
In addition, the results of previous studies exploring the role of
SES as an effect modifier of pollutant-related health effects seem too
weak.While some studies have reported that individuals with lower
SES experience more pronounced health effects from exposure to
pollutants, this relationship has not been consistently observed
across all studies. For example, studies in Western Europe (61),
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Korea (64) and China (63) revealed differential susceptibilities
to pollutant-related health effects according to educational and
occupational levels. However, none of these differential effects of
SES variables had statistically significant interactions, which was
probably related to differences in political and cultural factors,
direct and indirect measures of SES and lack of power due to
limited sample sizes (16). The current study advances previous
work by evaluating the multiple facets of SES. Although single
SES variables are preferred for statistical analysis, the composite
index score (which captures more information) has advantages in
stratified analyses and in the communication of results.

In the present study, we found that low SES significantly
increased the impact of PM2.5 on the risk of hypercholesterolemia
and hyperbetalipoproteinemia, while no such association was
observed with high SES. The implications of our findings are
illustrated in the Graphical Abstract. SES may lie along the causal
pathway that links PM2.5 exposure to dyslipidemia. Individuals of
lower SES not only have fewer resources but also face multiple
cooccurring risk factors, including restricted chances of engaging
in health-enhancing activities, increased psychosocial stress, and
limited access to optimal nutrition. Conversely, deteriorating air
quality could impact the desirability of a neighborhood, leading
to the migration of higher-SES individuals away from the area
while causing lower-SES individuals to move into the area. These
findings heighten the susceptibility of individuals with low SES
to the detrimental health effects of air pollution exposure. Above
all, understanding the directionality of SES and pollutant-related
health effects is difficult and important, especially in China, which
is a rapidly developing country where different processes may occur
in different places.

Based on the findings of this study, the crude prevalence of
diabetes among adults aged 18–74 years in Beijing in 2017 was
12.5%. A recent large-scale national survey (65) also revealed that
11.2% of adults aged 18 and over in China suffer from diabetes. The
prevalence of diabetes has continued to increase worldwide, and the
epidemic trend of diabetes in China is the same as that worldwide,
increasing from 9.7% in 2007 and 2010 to 10.4% in 2013 (66–68).
According to the results of this study, the overall prevalence of
diabetes in China has maintained a continuous growth trend, and
there has been no inflection point. The prevalence of diabetes is
even greater among people with low income, limited education, or
a mainly manual occupation, reaching 15.7%, 18.4%, and 15.7%,
respectively. A similar trend was observed for HHcy, and a recent
meta-analysis (69) revealed that 37.2% of the Chinese population
suffers from HHcy. Our study further indicated that the prevalence
of HHcy in Beijing remains at a staggering 43.5%. Moreover, this
prevalence increases notably among individuals with low income,
education, and occupational statuses, reaching 49.3%, 50.1%, and
49.7%, respectively. However, we failed to verify the modifying
effect of SES on the relationship between PM2.5 exposure and
diabetes or HHcy risk (P for interaction > 0.05).

The following are limitations of our study. First, although
we evaluated SES as a composite index that included income,
education, and occupation levels, it may not fully capture all
aspects of SES. This approach, which is common in the literature,
omits additional SES aspects (e.g., residence, social support, living
environment, community resources, etc.) (16, 18). Second, many

adjustments (e.g., physical activity, smoking status and drinking
status) were self-reported and only assessed at baseline; thus,
evaluation biases were inevitable. Future studies with follow-up
investigation data will be necessary. Finally, despite controlling for
key covariates in our regression and stratified analysis, residual
confounding from unmeasured or unadjusted factors may still be
present, potentially overestimating or underestimating the role of
SES in the association between PM2.5 exposure and the incidence
of cardiovascular risk factors.

5 Conclusion

In this large-scale community-based study, we observed that
PM2.5 was associated with unfavorable lipid profiles, elevated
FGB and Hcy concentrations, and an increased prevalence of
cardiovascular risk factors. Notably, low SES significantly amplified
the adverse effect of PM2.5 on dyslipidemia. Our findings emphasize
the need to improve socioeconomic inequality among adults in
Beijing and contribute to the understanding of the urgency of
protecting the health of vulnerable groups. In the future, exploring
additive interaction models across multiple SES indicators in
diverse study areas may be crucial.
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