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Introduction: Dynamic Bayesian networks improve the modeling of complex 
systems by incorporating continuous probabilistic relationships between 
covariates that change over time. This study aimed to analyze the complex 
causal links contributing to child undernutrition using dynamic Bayesian 
network modeling, examining both the best- and worst-case scenarios. The 
Young Cohort of the Ethiopian Young Lives dataset from 2002–2016 was used 
to analyze the complex relationships among various covariates influencing child 
undernutrition. We used a built-in Bayes server tool to identify potential features, 
followed by building the structure of the directed acyclic graph using a structural 
learning algorithm. The maximum posterior is determined using the relevance 
tree algorithm. The node with the highest values of mutual information and 
target entropy reduction, along with the lowest value of target entropy, was 
considered to have the strongest predictive power in the dataset.

Results: This study revealed that long-term participation in programs increased 
the likelihood of children being in a normal nutritional state. Key factors 
influencing the nutritional status of children under two years of age include the 
mother’s education level, her subjective well-being, and the household’s wealth 
quintile. Children with educated parents were more likely to have a healthy 
nutritional status. Additionally, the causal pathway of intervention programs → 
wealth quintile → child nutritional status consistently exceeded 90% in Waves 
3, 4, and 5, indicating a strong relationship. Similarly, the relationship between 
intervention programs → food security → child nutritional status was nearly 
perfect at 99.99% in Waves 4 and 5, indicating a strong association. Finally, 
the study revealed that household participation in intervention programs 
significantly reduces undernutrition in best-case scenarios, while the absence 
of support poses a higher risk in worst-case conditions.

Conclusion: The comprehensive intervention program strongly improved 
household wealth, food security, and maternal well-being, which in turn 
affected children’s nutritional status.
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Introduction

Child undernutrition is a pressing health concern that affects 
children, necessitating thorough examination and effective 
interventions (1, 2). In Ethiopia, child undernutrition is one of the 
countries where it poses a health challenge (3). In addition to Ethiopia, 
India, Nigeria, Pakistan, Bangladesh, Indonesia and the Democratic 
Republic of the Congo are among the seven nations with the highest 
prevalence of child undernutrition (2, 4, 5). These countries face 
challenges in undernutrition, including access to nourished food and 
inadequate healthcare services.

Multivariate logistic regression models are commonly used in 
studies on child undernutrition outcomes and risk factors (6, 7). 
However, these models have limitations owing to their static nature and 
inability to capture temporal relationships (8, 9). The studies conducted 
by Egata et al. (10) and Bahru et al. (11) utilized a longitudinal model 
because it is preferable to address this gap by considering within-subject 
correlations and temporal changes (12, 13). Although longitudinal 
analysis may not explicitly model transitions between states, it can still 
provide valuable insights into how variables evolve over time and how 
they are related to each other. Likewise, Jeyaseelan et al. (14), Owoeye 
et  al. (15) and Begashaw et al. (57) used Markov chain models to 
address this limitation by incorporating state transitions. However, 
these models also have limitations because of their assumption of 
memorylessness, which means that the future state depends only on the 
current state and not on previous states. Moreover, the research 
conducted by Hoddinott et al. (16) and Pérez Albertos (17) using the 
difference-in-differences (DiD) model does not consider the long-term 
impact of the Productive Safety Net Program (PSNP). On the other 
hand, Bahru’s et al. (18) marginal structural model has limitations, such 
as unmeasured time-varying confounding variables and model 
specification sensitivity.

To address these methodological gaps, this study employs a dynamic 
Bayesian network (DBN) model that allows for the consideration of 
uncertainties in the relationships between interventions, covariates, time 
slices, and nutritional status. Unlike traditional statistical methodologies, 
which often assume linear relationships or require strong parametric 
assumptions, DBNs can capture the nonlinear and dynamic relationships 
among variables. This makes DBNs well suited for analyzing the 
complex interactions of covariates influencing child undernutrition in 
a complex socioeconomic context such as Ethiopia (19, 20).

A DBN is a probabilistic reasoning graphical model that represents 
temporal dependencies between variables in a system (21, 22). It 
extends traditional Bayesian networks to capture evolving dynamics 
and is an integral part of artificial intelligence (AI), with applications 
in finance, healthcare, and other domains that require modeling and 
predicting complex systems (23, 24). This study provides valuable 
insights for policymakers and stakeholders by identifying potential 
interactions between variables to address the challenges related to 

system dynamics and decision-making. Additionally, DBNs allow the 
integration of prior knowledge and expert opinions, thereby 
enhancing the robustness of the modeling process (25).

Currently, DBNs are the most effective models for encoding causal 
relationships and reasoning uncertain knowledge (26, 27). However, 
despite Ethiopia having one of the highest rates of undernourished 
children, DBN use in this context remains relatively underexplored. 
Our study aimed to fill this gap by applying DBNs to analyze the 
factors contributing to undernutrition among children in Ethiopia. 
Identifying key causal pathways and assessing their interactions to 
improve targeted interventions and policy responses. We  also 
examined which program combinations yielded the most effective 
improvements and how these changes aligned with the nutritional 
status of children within participating households.

Many studies on child undernutrition have used composite 
indices or classified children into categories, such as normal, 
underweight, stunted, and wasted, or by severity (mild, moderate, and 
severe). However, these studies often fail to account for concurrent 
nutritional outcomes, as children may experience multiple forms of 
undernutrition simultaneously. To address this limitation, 
we employed a DBN that captures the probability of children being in 
multiple states of undernutrition over time. This method allows us to 
analyze the complex interrelationships among various nutritional 
outcomes and identify the dynamic factors influencing child nutrition. 
By doing so, we gained deeper insights into how different risk factors 
and intervention programs interact, ultimately informing more 
effective strategies to combat undernutrition.

To the best of our knowledge, there is limited evidence regarding 
the use of the DBN approach to assess the concurrent nutritional 
status in Ethiopia. Consequently, this proof-of-concept study seeks to 
explore the potential of DBNs in predicting causal relationships 
among various parental, household, and child-level nodes/covariates 
among Ethiopian children under 15 years of age. Additionally, this 
study aims to identify the strength of key causal relationships 
contributing to low levels of undernutrition in the best-case 
conditions, as well as those leading to high levels of undernutrition in 
the worst-case conditions, counterfactual scenarios in Ethiopia.

Methods

Data source and survey design

This study utilized longitudinal data from Ethiopia’s Young Lives 
of Young cohort (YLCS), an international initiative aimed at 
addressing childhood poverty and health. The cohort includes 
approximately 1999 children aged 1–15 (28, 29). The country is highly 
heterogeneous, with large socioeconomic differences across regional 
states and between urban and rural areas (30). The surveys were 
conducted in 20 sentinels across five Ethiopian regions: Amhara, 
Oromia, Southern Nations, Nationalities, and Peoples (SNNP), Tigray, 
and Addis Ababa City Administration (CA) from 2002 to 2016 with 
five waves. Notably, the Productive Safety Net Program (PSNP) 
operates in 14 sentinels in four regions (excluding Addis Ababa CA), 
targeting the pro-poor population (31), while the Emergency Aid 
Programme (EAP) and Health Extension Programme (HEP) operate 
in all five regions, targeting disadvantaged socioeconomic groups and 
offering antenatal care, childhood disease management, and 

Abbreviations: AI, Artificial Intelligence; BMI, Body Mass Index; DAG, Directed 

Acyclic Graph; DBN, Dynamic Bayesian Network; DiD, Difference in Differences; 

EAP, Emergency Aid Programme; HEP, Health Extension Programme; IRB, 

Institutional Review Board; MAP, Maximum A Posteriori; MLE, Maximum Likelihood 

Estimation; MPE, Most Probable Explanation; PC, Peter and Clark; PDAG, Partially 

Directed Acyclic Graph; PSNP, Productive Safety Net Program; SNNP, Southern 

Nations, Nationalities, and Peoples’; UK, United Kingdom.
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micronutrient supplement coverage (32). The study conducted 
interviews with randomly selected households to determine whether 
they had participated in the PSNP, EAP, and/or HEP programs within 
the past 12 months, facilitating the identification of beneficiaries. In 
the PSNP and EAP, households were categorized as beneficiaries or 
non-beneficiaries beginning in 2009 (third wave), with the HEP 
categorization starting in 2013 (fourth wave). These intervention 
programs were consolidated into a single package using the “program 
participation status” variable with eight categories (C, P, E, H, PE, PH, 
EH, and PEH), as detailed in Supplementary Table S1. Similarly, as 
outlined in Supplementary Table S2, children’s anthropometric 
conditions encompassed eight distinct states: N, U, S, W, US, UW, SW, 
and USW (57).

This study did not require ethics approval, as it involved a secondary 
analysis of publicly available anonymized data. There was no direct 
interaction with human participants; therefore, informed consent and 
institutional review board (IRB) approval were not required.

Data preprocessing pipeline: techniques 
for anomalies, missing values, and 
quantization

This study utilizes Bayes Server software, which offers built-in 
tools for handling missing values, anomaly detection, and feature 
relevance assessments. It estimates missing values using observed data 
and probabilistic relationships in the network, without imputing them 
with static values. Bayes Server employs inference algorithms for 
temporal models, considering data from past and future time slices. It 
also uses a probabilistic anomaly detection algorithm to identify 
outliers or unusual data points, ensuring the quality and reliability of 
the dataset.

Quantization is essential for preparing continuous variables for 
analysis in DBNs, as it simplifies modeling and improves 
interpretability. A balance is needed between using a few categories to 
prevent overfitting and enough detail to capture variability. 
Furthermore, the study uses a uniform time interval approach, with 
data collected every 3.5 years (2002, 2006, 2009, 2013, and 2016) (29, 
33). A Lag-1 time window assesses past conditions’ impact on current 

outcomes, while a Lag-2 window captures longer-term dependencies, 
enhancing model accuracy and providing deeper insights. As 
illustrated in Figure  1, our DBN model follows a step-by-step 
workflow for analyzing children’s nutritional status using YLCS data 
(see Supplementary material for details).

Nodes selection in the child nutritional 
status network

Feature selection is a crucial step in the construction of a 
DBN. Including all variables in a temporal node can increase the 
complexity of the network, resulting in higher computational costs 
and potential convergence issues. Therefore, dedicating extra effort to 
feature selection is considered to be the best practice. The Bayes Server 
also offers a built-in feature selection tool that can automatically 
determine relevant features through the “Add nodes from the data” 
functionality. Additionally, it uses mutual information and target 
entropy reduction to assess the conditional dependencies between the 
features and target variable. The features with the highest mutual 
information values and target entropy reduction were the most 
important factors for the predictive performance of the model. As a 
result, out of the 39 covariates considered, 13 variables were selected 
as important, reducing model complexity and improving 
computational efficiency without compromising predictive accuracy 
(see Supplementary Table S3). The final 13 covariates were treated as 
nodes in the DBN analysis, allowing for the modeling of temporal 
dependencies and causal relationships among influential variables 
(Table 1).

Structure learning

This study created a directed acyclic graph (DAG) structure to 
analyze child undernutrition data. The process involved consulting 
experts, reviewing the literature, and identifying key nodes. An initial 
DAG structure was constructed, defining nodes representing factors 
related to child undernutrition and hypothesizing directional 
relationships. The DAG structure was then refined using 

FIGURE 1

Technical workflow of DBN in application with children nutritional status in YLCS data.
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structure-learning algorithms in Bayes Server Desktop version 10.9. 
However, several erroneous links were produced, requiring validation 
and correction, with certain causal relationships, such as those from 
DA → HHS, MSW and ME → CS, CS → WQ, and CA → MA, 
identified as implausible. These causal links are static and cannot 
be  influenced by other variables, and were confirmed during the 
structural learning process.

The final DAG structure was validated and refined to ensure 
consistency with the domain knowledge and plausibility of the 
generated links, accurately representing child undernutrition dynamics 
while considering system complexity (Figure 2). In the DAG, the child’s 
sex is the only node that does not have a curved arrow pointing back. 
This means that all other nodes, excluding the child’s sex, have a 
temporal dependency on their responses (Supplementary Table S5). In 
addition, all temporal nodes except the PS and FS nodes had five time 
slices. The PS and FS nodes had only three time slices, with zero 
placeholder values used for the first and second visits to account for the 
missing data (Supplementary Table S4). The fundamental concepts of 
temporal relationships and causal dependencies in DBNs are briefly 
discussed in the Supplementary material.

Statistical analysis

DBNs have expanded the scope of traditional BNs to include 
temporal features such as changes in child undernutrition data 

over discrete time intervals (t = 1, 2, 3, …, T). The set of variables 
in a DBN is represented by { }1 2, , , NX X X X= … , with conditional 
dependencies represented by directed edges. The transition model 
in a DBN is defined by the joint probability distribution over time 
(34, 35).

 
( ) ( )( )1 , ,

1
, , Pa

N
t t t T t i t i

i
P X X X P X X− −

=
… =∏| |

where, ( )1, ,t t t TP X X X− −…|  is the joint probability 
distribution of the state variables at time t given the past 
observations, tX  represents the state of variables at time t , and the 
conditional dependencies capture how the state at the current time 
depends on the previous states, ,t iX  is the state of node i at time t, 
and ( ),Pa t iX  represents the parents of node i at time t in the graph 
(Figure 2).

The model incorporates the transition probabilities between time 
steps 1t −  and t . For example, the probability of transitioning from 
state ( ) ,1, to t it iX X−  can be represented as:

 ( ) ( )( ), 1,t i t iP X X −|

The model parameters were calibrated against available data using 
maximum likelihood estimation (MLE). The log-likelihood function 
for the entire dataset D can be defined as:

 
( ) ( )( )

5
, ,

1 1
; log Pa ;

n
t i t i

t i
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= =
Θ = Θ∑∑ |

where Θ  represents the parameters of the DBN and D is the 
observed data.

The structure of the DBN was learned from data using the Peter 
and Clark (PC) algorithm. Let D be the dataset; the objective is to find 
the optimal structure G  that maximizes the likelihood of the data:

 ( )optimal argmaxGG P D G= |

The PC algorithm efficiently explores possible network structures 
by systematically identifying conditional independence relationships 
among data variables, which helps to determine the structure of the 
DBN. The PC algorithm constructs a DAG starting from an empty 
graph by adding edges based on a statistical test of conditional 
independence (36, 37). It constructs a partially directed acyclic graph 
(PDAG) and applies rules such as the “V-structure” and “immorality” 
rules to obtain a full DAG.

The DBN parameters (è), including conditional probability tables, 
were estimated from the data D using the following 
mathematical formula:

 ( )optimal optimalargmax ,P D Gθθ θ= |

This step involves estimating the parameters that maximize the 
likelihood of the data, given the chosen DBN structure.

TABLE 1 Description and abbreviations of nodes in the child nutritional 
status network.

Node 
category

Abbreviation Node name Time-
dependent

Time step t Round of Survey 

( 0t =  to 4t = )

–

Target state CNS Child nutritional 

status

Yes

Child level 

nodes

CA Children age Yes

CS Children sex No

Parents’s 

level nodes

MSW Mother’s subjective 

wellbeing

Yes

DA Father’s education 

level

Yes

DE Father’s age Yes

MA Mother’s age Yes

ME Mother’ education 

level

Yes

Household 

level nodes

HS Household size Yes

WQ Wealth quintile Yes

FS Food Security Yes

HHA Household head age Yes

HHS Household head sex Yes

Intervention 

node

PS Program Participation 

Status

Yes

t (recommended approach in Bayes server as shorthand for time) represents time, where 
4t =  indicates time step 4. All time steps are zero-based, meaning 0t =  is the initial time 

step.
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Maximum a posteriori (MAP) queries, also known as the 
most likely explanation (MPE), aim to determine the most likely 
state of the target variables based on the evidence observed in the 
data. MAP estimation in DBNs involves finding the sequence of 
hidden states that maximizes the posterior probability, given the 
observed evidence. This can be formulated using Bayes’ theorem 
as follows:

 
( ) ( ) ( )

( )
1:

1:
1:

|
| t t t

x t t x
t

P E X P X
argmax P X E argmax

P E
=

where:
tX : represents the hidden state at time t; 1:tE  denotes the evidence 

observed up to time t; ( )1:|t tP X E is the posterior probability of the 
hidden state given the evidence; ( )1: |t tP E X is the likelihood of 
observing evidence given the hidden state; ( )tP X is the prior 
probability of the hidden state; and ( )1:tP E is the marginal likelihood 
of the evidence.

The relevance tree algorithm was utilized to compute the MAP 
estimate, which efficiently found the most likely sequence of hidden 
states based on model parameters and observed data. This algorithm 
is particularly useful for computing probabilities in DBNs with large 
state spaces and complex variables because it constructs a 
tree structure.

In causal inference, we model counterfactual outcomes to estimate 
the probability of an event under hypothetical conditions. Let Y  

represent the outcome of interest, such as child nutritional status, and 
let { }1 2, , , nX X X X= …  be a set of covariates, including factors like 
household, caregiver, and parental information. To formalize 
counterfactual reasoning, we typically use a causal graph or a Bayesian 
network, where directed edges represent the causal dependencies 
between variables.

In this framework, the counterfactual probability can 
be expressed as:

 
( )( )cf cfP Y y do X x= =|

Here, cfY  refers to the counterfactual outcome of Y , representing 
the value that would have been observed if the hypothetical conditions 

cfX x=  were true. In contrast, Y  is the observed outcome under 
normal conditions. Similarly, cfX x=  refers to a set of counterfactual 
conditions, which represent a hypothetical intervention or 
modification of the covariates. The operator, ( )cfdo X x=  denotes an 
intervention where we actively set cfX x= , effectively modifying the 

system. Therefore, the expression ( )( )cf cfP Y y do X x= =|  gives the 
counterfactual probability of Y y=  if the intervention cfX x=  had 
been applied. For instance, if we consider X to represent maternal 
education level and Y as child nutritional status, the counterfactual 
probability ( )( )cf cfP Y y do X x= =|  quantifies the likelihood of 
different nutritional outcomes had the maternal education level been 
fixed at x, regardless of other influencing factors.

FIGURE 2

Temporal causal pathways in DAGs for child undernutrition. NB: The detailed DAG causal pathways are listed in Supplementary Table S5 because the 
number of causal pathways across time points is extensive and difficult to display in a single DAG structure.
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Model performance metrics

Model performance was assessed using three key metrics: 
log-likelihood and Value of Information (VOI). The log-likelihood 
metric assesses how well the model fits the observed data and provides 
an indication of its accuracy. Finally, VOI measures the potential value 
of acquiring additional information to improve the model’s predictions.

Computational environment

The study evaluated various software options, including GeNIe 
and SMILE (38), Hugin Expert (39), Netica (40), R (bnlearn and gRain 
packages) (41–43), and BayesiaLab (44). Bayes Server Desktop version 
10.9 was found to be most effective for managing the complexities of 
a DBN model with numerous variables. It enabled precise inference, 
updated beliefs, and assessed uncertainty in child nutrition decisions. 
The intuitive graphical interface and efficient analysis were achieved 
on a system with an Intel i7-9300H, NVIDIA GTX 1650 GPU, and 
32 GB of RAM.

Results

Conditional probabilities of child 
nutritional status and household 
characteristics over time

In 2016, 41% of the children from households without any 
program enrollment had a normal nutritional status. In contrast, 
those enrolled in the PEH in 2013 had a 49% chance of having a 
normal nutritional status and a 15% chance of being underweight and 
wasting concurrently (UW). Between 2009 and 2013, in 2016, 58% 
of the households participating in the PEH and PEH programs were 
normal children, 16% were underweight, and 16% were wasting 
children (Figure 3).

Figure  4 shows the conditional probabilities of children’s 
undernutrition status based on the parents’ education levels over time. 
In 2016, children with illiterate parents had a greater risk of developing 
underweight and stunted conditions concurrently than those with 
literate parents. The risk was 30% greater for children with illiterate 
fathers and 26% greater for children with literate mothers.

The study showed that in 2016, mothers in households without prior 
intervention had a 57% chance of improved well-being. For those who 
joined after 2013, the likelihood increased to 75%. However, the number 
of households that joined in 2009 but discontinued after 2013 decreased 
to 69%. Among those engaged since 2009, 79% had significantly 
increased well-being, indicating that sustained program participation 
positively impacts mothers’ well-being. In 2016, households that were 
not in the intervention program had a 60% probability of securing food 
access. Those participating in 2009 or 2013 had a 72% probability, 
whereas those participating in both years had a 95% probability. Finally, 
in 2016, households not previously enrolled in the programme had a 
24% probability of being wealthy. For those who received support from 
2013 onward, the probability increased to 68%. For households 
supported beginning in 2009, but discontinued after 2013, the 
probability was 64%. Households that have been continuously supported 
since 2009 have an 84% probability of earning wealth (Figure 5).

Moreover, since 2009, the likelihood of a child being classified as 
having normal nutritional status in 2013 was 47% when she was a 
family with access to food security. This probability increased to 54% 
in 2016 for children from households that had gained access to food 
security in 2013. In contrast, the likelihood of a child experiencing 
concurrent underweight, stunting, and wasting (USW) in 2013 was 
11% among families with continuous access to secure food since 2009. 
This probability has decreased slightly to 11% in 2016 for a child in a 
household with sustained food security since 2013 (Figure 6).

Key household and parental factors 
influencing food security, well-being, 
wealth, and child nutrition outcomes

In 2009, households with more than six members in the poor 
wealth quintile and those participating in PSNP programs were most 
likely to experience food insecurity. By 2013, households with fewer 
than six members in the poor wealth quintile and enrolled in both 
PSNP and EAP programs were most likely to have secure food access. 
By 2016, households with fewer than six members in the economically 
wealthy quintile and participating in all three programs (PSNP, EAP, 
and HEP) were most likely to maintain food security (Table 2).

In 2002, 2006, and 2009, mothers not enrolled in the intervention 
program were most likely to have low subjective well-being regardless 
of their age. However, in 2013 and 2016, mothers under the age of 30 
but enrolled in EH and PEH, respectively, were most likely to have 
high subjective well-being (Table 3).

In 2002 and 2006, households were most likely to be poor if the 
mother was illiterate, both parents were aged 18–30, or the household 
head was male, regardless of the father’s education level and household 
head’s age. However, in 2009, 2013, and 2016, households headed by 
males aged 30–50 years and fathers of the same age range were more 
likely to achieve wealth when enrolled in PE, PEH, or PE programs, 
respectively (Table 4).

In 2002, households with illiterate fathers and literate mothers 
were most likely to have undernourished (US) female infants. By 2006, 
households with illiterate mothers, literate fathers, and wealthier status 
were the most likely to have stunted male children. Conversely, in 
2009, households with literate mothers and illiterate fathers in poor 
conditions had a greater chance of being undernourished (SW) 
preadolescent males. In 2013, households with both literate parents 
and wealthier status were most likely to have preadolescent females 
with normal nutritional status. Finally, in 2016, households with 
literate mothers, illiterate fathers, and wealthier status were most likely 
to have wasted adolescent females (Table 5).

Causal pathway strength over time: 
evidence from posterior probabilities in the 
DAG model

Due to the extensive number of causal pathways across time 
points, displaying them all in a single DAG structure has been 
challenging. The DAG structure presents detailed causal pathways 
across time points based on hard evidence, with parent and child 
nodes and their causal edges indicated by right arrows 
(Supplementary Table S5). These arrows show the temporal direction 
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of the causal connection, specifying which parent node is connected 
to a child node at which time slice. Additionally, temporal dependency 
edges are included, indicating where a node has a connection to itself 
across time slices. The probabilities indicate edge strength, with higher 
probabilities indicating stronger relationships or causation.

In this study, we  found varying edge probabilities in the 
relationship from PS → MSW in the posterior DAG across different 
waves, ranging from 74 to 93%, indicating a consistent strengthening 
of this connection over time. Mothers in households involved in EH 
and PEH intervention programs exhibited higher levels of subjective 
well-being. The edge probabilities for PS → FS and PS → WQ were 
100% during waves 2, 3, and 4 as well as during waves 3 and 4. This 
perfect certainty in the posterior DAG suggests a robust link between 
household food security and wealth quintiles within combined 
initiative programs. Specifically, households with fewer than six 
members who received assistance from both the PSNP and EAP in 
2013 were more likely to have secure access to food 
(Supplementary Table S5).

The study revealed a strong relationship between the wealth 
quintile and food security, with a near-certain relationship in Waves 2 

and 4 (99.99%) and a slightly weaker but still significant relationship 
in Wave 3 (95%). This finding underscores the substantial impact of 
wealth quintiles on food security, indicating that individuals in higher-
wealth quintiles are more likely to experience better food security than 
those in lower-wealth quintiles. The relationship between food 
security and undernutrition was 48% in Wave 2, rising to 100% in 
both Wave 3 and Wave 4. This finding indicates a strong and enduring 
link between food security and children’s nutritional status over time.

Examining child nutrition outcomes in 
Ethiopia: best- and worst-case situation

The study aimed to find a condition that reduce child 
undernutrition (best-case situation) in Ethiopia by setting the 
“Normal” category to 100% and adjusting counterfactual values. The 
original values for underweight (U), stunted (S), and wasting (W) 
were 3.8, 7.8, and 5.3%, respectively. For combined undernutrition 
conditions, the initial values were underweight and wasting (US) at 
14.1%, underweight and stunting (UW) at 11.1%, stunting and 

FIGURE 3

Conditional probability of child nutritional status by household program participation status over time.
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wasting (SW) at 0.1%, and a combination of all three conditions 
(USW) at 8.1%. This idealized scenario represents a condition in 
which no child suffers from undernutrition.

The corresponding counterfactual results under the header 
“Predicted” are listed in Supplementary Table S6. The up and down 
arrows next to the predicted value indicate an increase and decrease, 
respectively, compared with the original value. The results of the best-
case counterfactual situations can be interpreted as follows. The results 
of the best-case counterfactual scenarios reveal that by the time 
children reach eight years old (time slice 2), households with fewer 
than six members experience increased counterfactual probabilities of 
31.7, 26.2, and 21.2% for time slices 2, 3, and 4, respectively, compared 
to the original values. This trend suggests that smaller household sizes 
during early childhood may reduce the likelihood of undernutrition. 
As household size increases, food insecurity also tends to increase, 
which in turn increases the likelihood of children experiencing 
undernutrition. Likewise, counterfactual probabilities for poor 
maternal subjective well-being decreased as children aged 8 to 
15–28.3, 21.4, and 14.3% for time slices 2, 3, and 4, respectively—
compared to the original probabilities. Simultaneously, the 
probabilities for better subjective well-being increased (31.4, 19.7, and 
23.1%), highlighting the importance of improving maternal well-
being as an effective strategy for reducing child undernutrition. 
Similarly, the decreased counterfactual probabilities for poor maternal 
well-being—28.3, 21.4, and 14.3% for time slices 0, 1, and 2, 
respectively—indicate an improvement as children age to 8 years.

To emphasize the worst-case situation, the probability of a child 
being categorized as ‘Undernourished’ is set to 100%, which 
represents a scenario where every child is experiencing some form of 
undernutrition. Conversely, the probability of children being 
classified as ‘Normal’ (i.e., not undernourished) is set to 0%. The 
model shows that a low subjective wellbeing of mothers significantly 
impacts child undernutrition, with the probability of children being 
undernourished increasing as the mother’s wellbeing declines. This 
is particularly evident in the later time slices, where the probability 
reaches 3.1% for those in high wellbeing and 40.2% for those in low 

wellbeing. Smaller households (<=6 members) initially have a higher 
probability of undernutrition (38.2% in Time slice 0), but this 
decreases over time. Larger households (>6 members) initially 
experience a smaller proportion of undernutrition, but this increases 
in later time slices (Supplementary Table S7). Similarly, poor 
households and those experiencing food insecurity show much 
higher probabilities of undernutrition across all time slices. In 
contrast, wealthier households and those with food security 
experience fluctuations, but they generally see a higher probability of 
‘Normal’ status compared to their poorer counterparts. Similarly, 
illiterate fathers and mothers contribute to a higher likelihood of 
child undernutrition. However, the scenario shows a complex pattern 
with some improvements in later time slices, possibly due to 
interventions or other factors impacting education.

Impact of intervention programs on 
combating child undernutrition

As shown in Figure 7, the predicted counterfactual probability of 
household program participation combinations across each time slice is 
visualized for both the best- and worst-case scenarios. In the most 
favorable scenario, the probability of program participation (except EH) 
is highest at time slice 2, followed by time slice 3, and decreases further at 
time slice 4. In contrast, in the least favorable scenario, the probability 
shows a decline from time slice 2 to time slice 3, and again from time slice 
3 to time slice 4. This suggests that early household participation in the 
program provides the most effective scenario for improving children’s 
nutritional status, whereas decreased participation over time correlates 
with higher likelihoods of child undernutrition.

For non-beneficiary households under the best-case scenario, the 
predicted probability is lowest at time slice 2 and increases in time 
slices 3 and 4. Conversely, under the worst-case scenario, this 
probability is highest at time slice 2 and decreases in subsequent time 
slices, indicating a greater risk of undernutrition for 
non-participating households.

FIGURE 4

Conditional probability of child nutritional status based on parental education history.
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Performance metrics of DBN model

Table 6 shows that variables such as MSW, DE, PS, HS, and 
MA had higher mutual information values, indicating stronger 
relationships with child undernutrition within the network. 
Additionally, variables such as PS, DE, HS, CA, and FS exhibit 
high target entropy reduction, suggesting their importance in 
reducing uncertainty within the network. Conversely, covariates 
such as DE, PS, HS, MA, and MSW exhibited lower target entropy 
values, implying lower uncertainty and greater predictability of 
the target variable compared to other covariates in the network 
(Table 6).

Discussion

Child malnutrition is a complex health problem affected by 
various factors, such as food security, socioeconomic status, parental 
education, mother well-being, and access to healthcare services, as 
indicated in previous research studies (45, 46).

In our study, we found that children with educated parents were 
more likely to have a normal nutritional status. A recent study by Zhu 
et al. (47) revealed that socioeconomic factors impact the body mass 
index (BMI) of both primary and secondary caregivers, which in turn 
affects the BMI of their children through a causal relationship. 
Research has demonstrated that the educational level of parents and 

FIGURE 5

Conditional probabilities of household characteristics over time by programme participation status.

FIGURE 6

Trends in the conditional probability of child undernutrition in food-secured households.
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primary caregivers significantly impacts the nutritional status of 
children, with improvements in nutritional status observed as 
education levels increase (48, 49).

Access to nutritious food and essential services such as clean 
water, electricity, healthcare, and proper sanitation facilities tends to 
increase as household wealth increases. This improvement in access 
leads to better nutritional status for children. In this regard, the 
intervention program showed a significant association with wealth 
quantiles (PS → WQ), particularly in the 4th and 5th waves, 
suggesting a positive impact on household wealth improvement. 
Research indicates that children from economically disadvantaged 
and displaced families are particularly vulnerable and may require 
assistance in accessing food and healthcare services (50–52).

The study highlights the substantial impact of mother well-being 
on child nutrition, attributed to improved mental health, emotional 
availability, and caregiving practices. Mothers with enrolled 
households in the program were most likely to report high subjective 
well-being (PS → MSW). Health workers, through regular nutritional 
counseling, significantly improve child-feeding practices, reducing 
undernutrition risk in children. Sunguya et al. (53) showed that health 
workers’ nutritional training enhances feeding frequency, energy 
intake, and dietary diversity in children aged six months to two years. 
Furthermore, this study is supported by a study by Miller et al. (54), 
which highlighted the effective management of children by health 
extension workers.

The study showed that the improvement in a household’s food 
security status is conditional on the combination of the intervention 
program (PS → WQ), indicating that the intervention program 
positively impacts household food security. A study by Tadesse and 
Gebremedhin (55) using propensity score matching found that PSNP 
significantly enhances the income and food security of households in 
chronically food-insecure areas by increasing consumption 
expenditure and daily caloric intake. This finding is further supported 
by a study conducted by Bahru et al. (18), which also confirmed the 
positive impact of PSNP on household food security and child meal 
frequency. Furthermore, a study conducted by Gilligan and 
Hoddinott (56) using a difference-in-differences matching estimator 
revealed that households in rural areas affected by drought 
experienced improvements in food security when they received 
support from emergency food aid programs.

The DBN model predicts that household participation like in PSNP, 
EAP, and PE programs can significantly reduce undernutrition in the 
best-case conditions. However, counterfactual probabilities for 
non-beneficiary households are higher. These results highlight the 
impact of program interventions on reducing undernutrition over time, 
emphasizing the higher risk of undernutrition without support. Early 
and sustained program engagement is crucial for improving children’s 
nutritional outcomes. The best-case conditions for reducing childhood 
undernutrition in households are based on earlier participation in the 
program (except EH program combination), with the higher predicted 
probabilities for participation in the intervention program and clearly 
visualized in Figure 7.

Strong temporal causation is shown in the 
Supplementary Table S5 for variables such as CNS, PS, FS, and 
WQ, all of which have a significant effect on child undernutrition 
in Ethiopia. From time 0 to time 1, the CNS is extremely 
dependent, however PS shows long-lasting benefits from time 2 
to 4. In order to reduce undernutrition, FS is essential for 
mitigating undernutrition, and WQ highlights the significance of 
household economic position. Weaker temporal dependencies 
like household head age and child age indicate that the influence 
of variables diminishes with time.

Strengths, limitations, and future work

A significant methodological contribution of this study is the 
application of DBNs to analyze child undernutrition, a relatively novel 
approach in public health research. This study demonstrates how 
DBNs can provide temporal dependencies, capturing how risk factors 
and nutritional states change and influence each other over different 
time periods.

TABLE 4 Maximum posterior effect of household characteristics and program enrollment on wealth status over time.

t DE ME DA MA HHA HHS PS WQ

2002 Illiterate Illiterate 18–30 18–30 18–30 Male – Poor

2006 Literate Illiterate 18–30 18–30 30–50 Male – Poor

2009 Literate Illiterate 30–50 Under 30 30–50 Male PE Wealthy

2013 Illiterate Literate 30–50 30–50 30–50 Male PEH Wealthy

2016 Literate Literate 30–50 30–50 30–50 Male PE Wealthy

Dash (−) indicates that the program was not available in that specific time slice.

TABLE 2 Maximum posterior effect of household characteristics on food 
security.

t HS WQ PS FS

2009 >6 Poor P Insecure

2013 <6 Poor PE Secure

2016 <6 Poor PEH Secure

TABLE 3 Maximum posterior effect of maternal characteristics and 
program enrollment on subjective well-being.

t MA PS MSW

2002 Under 30 – Low

2006 30–50 – Low

2009 Under 30 C Low

2013 Under 30 EH High

2016 Under 30 PEH High

Dash (−) indicates that the program was not available in that specific time slice.
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To maintain a manageable publication length, we opted not to 
include the predicted counterfactual probabilities for all seven 
undernutrition states, as presenting each state individually would 
be overly bulky. Instead, these states were consolidated into a single 
“Undernourished” category, for modeling worst-case situation of child 
undernutrition. Additionally, query outputs for all variables and time 
steps were excluded, as they were primarily used internally for 
structure learning, assessing causal pathway, and edge strengths 
within the DBN. A system with 13 nodes has an order of 278 possible 
graph structures, as calculated using the formula ( )1

22
n n− 

 
  
 

. Due to 

this immense complexity, attempting to visualize all potential graph 
structures for a system with 16 nodes and 5 time points becomes 
practically impossible.

For future researchers working with DBNs, access to high-
performance computing systems is essential to handle larger models 
efficiently. Future research could explore hybrid models that integrate 
additional machine learning techniques and causal artificial intelligence 
(AI), which are supported in Bayes Server through its API, to capture 
more complex relationships and enhance causal insights.

TABLE 5 Maximum posterior effect of parental education and household wealth on child nutritional status over time.

t ME DE WQ MSW FS CA CS CNS

2002 Literate Illiterate Poor Low - Infants (0–2 years) Female US

2006 Illiterate Literate Wealthy Low - Early childhood (2–6 years) Male S

2009 Literate Illiterate Poor Low Insecure Preadolescence (6–12 years) Male SW

2013 Literate Literate Wealthy High Secure Preadolescence (6–12 years) Female N

2016 Literate Illiterate Wealthy High Secure Adolescents (12–18 years) Female W

Dash (−) indicates that the program was not available in that specific time slice.

FIGURE 7

Most- and least favorable situation of child undernutrition in Ethiopia based on household participation in intervention programs.

TABLE 6 Predictive performance of nodes in the DBN.

Variables Mutual 
information

Target 
entropy 

reduction

Target 
entropy

MSW 0.97 0.44 0.03

DE 0.96 0.52 0.03

PS 0.94 0.68 0.02

HS 0.92 0.51 0.04

MA 0.91 0.45 0.05

ME 0.89 0.48 0.04

WQ 0.88 0.54 0.05

HHA 0.82 0.39 0.04

HHS 0.79 0.42 0.06

CA 0.78 0.52 0.07

DA 0.75 0.37 0.05

FS 0.73 0.57 0.05

CS 0.62 0.54 0.06
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Conclusion

Overall, our DBN model offers a novel approach for 
understanding child undernutrition in Ethiopia by capturing 
temporal relationships and identifying critical risk factors. This 
study demonstrates how DBNs can enhance public health research, 
providing policymakers and practitioners with a predictive tool for 
targeted interventions. The combined intervention program showed 
a strong causal relationship with enhancing the food security, 
wealth, and subjective well-being of mothers. Wealth quantiles 
provide better access to nutritious food, healthcare services, and 
education, which are vital for ensuring optimal growth and 
development in children. Food security ensures that adequate, safe, 
and nutritious food for healthy growth is essential for promoting 
healthy growth in children. Mothers’ subjective well-being, 
including mental health, stress levels, and overall satisfaction, also 
influences children’s nutritional status.

The study provides valuable insights for policymakers and health 
practitioners to simulate “what-if ” scenarios to optimize nutritional 
outcomes and forecast at-risk situations leading to child 
undernutrition. It highlights high-risk factors like food insecurity, 
low maternal education, and household economic challenges, 
highlighting areas for targeted interventions. The DBN model 
suggests addressing these risk factors early in a child’s life to prevent 
undernutrition onset or worsening, advocating for policies focused 
on maternal and child health during critical developmental periods. 
This tool aids in informed decision-making and improving child 
health and nutrition in Ethiopia.
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