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Objectives: Model prediction of radioactivity levels around nuclear facilities is a 
useful tool for assessing human health risks and environmental impacts. We aim 
to develop a model for forecasting radioactivity levels in the environment and 
food around the world’s first AP 1000 nuclear power unit.

Methods: In this work, we  report a pilot study using time-series radioactivity 
monitoring data to establish Autoregressive Integrated Moving Average (ARIMA) 
models for predicting radioactivity levels. The models were screened by 
Bayesian Information Criterion (BIC), and the model accuracy was evaluated by 
mean absolute percentage error (MAPE).

Results: The optimal models, ARIMA (0, 0, 0)  ×  (0, 1, 1)4, and ARIMA (4, 0, 1) were 
used to predict activity concentrations of 90Sr in food and cumulative ambient 
dose (CAD), respectively. From the first quarter (Q1) to the fourth quarter (Q4) 
of 2023, the predicted values of 90Sr in food and CAD were 0.067–0.77  Bq/
kg, and 0.055–0.133  mSv, respectively. The model prediction results were in 
good agreement with the observation values, with MAPEs of 21.4 and 22.4%, 
respectively. From Q1 to Q4 of 2024, the predicted values of 90Sr in food and 
CAD were 0.067–0.77  Bq/kg and 0.067–0.129  mSv, respectively, which were 
comparable to values reported elsewhere.

Conclusion: The ARIMA models developed in this study showed good short-term 
predictability, and can be used for dynamic analysis and prediction of radioactivity 
levels in environment and food around Sanmen Nuclear Power Plant.
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1 Introduction

As a clean energy with near zero emissions, nuclear power has been vigorously developed 
in China in recent years as one of the important measures to achieve carbon neutrality by 2060 
(1). Currently, there are 55 nuclear reactors in operation, and 18 under construction in China 
(2). During the operation of nuclear power plants, radioactive debris or effluents are inevitably 
discharged into the environment through air and water. As the continuous expansion of 
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nuclear energy, the levels of radioactivity in environment and food 
have become a major concern for residents around the nuclear power 
plant (3–5), especially after the Fukushima Daiichi Nuclear Power 
Plan accident in 2011.

Radioactive substances present in the environment could 
potentially induce radiation exposure to human via external radiation 
and internal radiation through absorption, inhalation, and ingestion. 
As per the findings of the United Nations Scientific Committee on the 
Effects of Atomic Radiation (UNSCEAR 2000), an estimated 8% of 
natural human radiation exposure can be attributed to the ingestion 
of water and food (6). In order to safeguard the well-being of 
inhabitants, the World Health Organization (WHO) has established 
thresholds for gross alpha (0.5 Bq/L) and gross beta (1.0 Bq/L) in 
drinking water as a means of ensuring radiation safety (7). 90Sr is a 
high-yield byproduct of nuclear fission (8, 9), possessing a half-life of 
28.8 years. Its primary route of entry into human body is through the 
food chain, where it can accumulate in teeth, bones, and muscle 
tissues. Given its relatively long half-life and high radiotoxicity, 90Sr is 
recognized as a crucial artificial radionuclide for evaluating radiation 
risks to both the environment and human health (10, 11).

In view of the radiation exposure risks of and high level of public 
concern, prediction of radioactivity levels in the environment and 
food around the nuclear power plant are crucial to ensure radiation 
safety for the public and the environment.

Time series analysis is widely recognized as a valuable predictive 
model, and the Autoregressive Integrated Moving Average model 
(ARIMA) being one of the most important models. The ARIMA 
model, a hybrid of autoregressive and moving average models, was 
initially proposed in 1976 by Box and Jenkins (12). So far, it has been 
widely used in economic management, meteorological prediction, 
environmental prediction, and disease prediction (13–16). In addition, 
ARIMA model also has been applied in the field of radioactive 
monitoring and evaluation. In four districts of Istanbul, the model was 
used to predict concentrations of 226Ra, 232Th, and 40K (17). After 
Fukushima Daiichi Nuclear Power Plan accident, Hemn Salh et al. 
reported the use of ARIMA models for prediction of air radiation dose 
rates around (18). Some scholars have already used it to predict radon 
concentrations and thus to predict earthquakes (19, 20).

Sanmen Nuclear Power Plant (SNPP), located in Sanmen, Zhejiang, 
China, adopts the world’s most advanced third-generation pressurized 
water reactor (AP1000) technology, which is one of the achievements 
of China’s efforts to develop nuclear power. With the operation of 
SNPP, its impacts on the environment and residents’ health have 
become a growing concern. To assess the impacts, we have continuously 
monitored radioactivity levels in the environment and food around 
SNPP since 2011. In this study, we analyzed the historical monitoring 
data and used ARIMA models, which is a time-series analysis 
technology, to fit and predict radioactive levels around SNPP for the 
first time. The predicted data can provide a basis for environmental 
impact assessment and human health risk assessment around SNPP.

2 Data and methods

2.1 The study region

All monitoring stations were located in Sanmen County. There 
were four monitoring stations for gross α and gross β in water 
representing surface water, factory water, tap water, and well water, 

respectively. Water samples were collected quarterly. There were three 
monitoring stations for 90Sr in collected quarterly food including 
mullet, crucian carp, cabbage, and rice. There were 30 monitoring 
stations for ambient radiation, which were monitored quarterly. The 
images of the collected samples are shown in Figure 1. All data were 
obtained from Zhejiang Provincial Center for Disease Control and 
Prevention and Taizhou City Center for Disease Control and 
Prevention. In this study, all these monitoring data were averaged 
across the corresponding monitoring stations as shown in Figures 2, 3. 
The dataset of gross α in water was excluded because the activity 
concentrations were mostly below the detection limits.

2.2 Sample preparation and analysis

2.2.1 Gross α and β in water
Figure 4 illustrates the schematic flow for determination of gross 

α and β in water, according to the Chinese national standard (21).

2.2.2 90Sr in food
Figure 5 illustrates the schematic flow for determination of 90Sr in 

food, according to the Chinese national standard (22).

2.2.3 Ambient radiation
The cumulative ambient dose (CAD) was monitored by 

thermoluminescent dosimeter (TLD) (23). The LiF (Mg, Cu, and P) 
powder was placed into a hermetically sealed container in order to 
fabricate TLD. Each monitoring point was equipped with two TLDs 
installed at a height of 2 m. The TLDs were measured by TLD reader.

2.3 Data

The model training dataset (Supplementary Tables S1–S3) included 
90Sr activity concentrations in food from the second quarter (Q2) of 
2011 to the fourth quarter (Q4) of 2022, gross β activity concentrations 

FIGURE 1

Samples collected in this study.
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in water from the first quarter (Q1) of 2016 to Q4 of 2022 and CAD 
from Q1 of 2011 to Q4 of 2022. The monitoring data from Q1 to Q4 in 
2023 were used as a test dataset to assess the predictability of the models 

using the mean absolute percentage error (MAPE) between the 
forecasted and observed values. Finally, the best model was applied to 
forecast the radioactivity levels from Q1 to Q4 of 2024.

FIGURE 2

Monitoring stations of water and food around SNPP. The map was produced by software of Lantu Draw (URL link: https://www.ldmap.net/).

FIGURE 3

Monitoring stations for ambient radiation exposure of ambient environmental around SNPP. The map was produced by software of Lantu Draw (URL 
link: https://www.ldmap.net/).
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2.4 Methods

2.4.1 Auto-regressive integrated moving average 
[ARIMA (p,d,q)]

An ARIMA model is defined by three parameters: p, d, and q, 
where p is the order of Auto-Regressive (AR) term, d is the order of 
differencing required to make the time-series stationary, and q is the 
order of Moving Average (MA) term.

AR (p) usually explains the present value Xt, unidirectionally it 
terms of its previous values Xt − 1,Xt − 2,, Xt − p, and the current residuals 
εt. It can be expressed as Equation (1):

 1 1 2 2φ φ φ ε− − −= + + + +t t t p t p tX X X X
 (1)

The model illustrates a linear association between the current 
observed value of the sequence at time t and the past observed values 
at the preceding p time points. This type of regression was known as 
autoregression because it is based on its own historical data. The 
regression with the observed values from the previous p time points 
is referred to as p-order autoregression. φi (i = 1, 2…p) is its partial 
regression coefficient.

MA (q) refers to the current value of the time series Xt in terms of 
its current and previous residuals εt − 1, εt − 2,…, εt − q. It can be expressed 
as Equation (2):

 1 1 2 2ε θ ε θ ε θ ε− − −= − − − −t t t t q t qX
 (2)

The model indicates that the value of the sequence at time t is 
independent of the past observed values at the preceding q time 
points, however, it exhibits a linear relationship with the preceding q 
stochastic disturbances. Therefore, the model is referred to as the 
q-order moving average model. The εt is indicative of a stochastic 
disturbance sequence, also referred to as a white noise sequence, that 
is characterized by independence and adherence to a normal 
distribution. θi (i = 1, 2…q) is its partial regression coefficient.

The ARIMA model is the combination of AR model and MA 
model algorithms. I in the ARIMA (p,d,q) refers to Integrated. When 
time-series is stationary, the ARIMA (p,d,q) model is ARMA (p,q), can 
be expressed as Equation (3):

 

1 1 2 2 1 1

2 2

φ φ φ ε θ ε
θ ε θ ε

− − − −

− −

= + + + + − −
− −





t t t p t p t t

t q t q

X X X X

 (3)

Transform the Equation (3) to Equation (4).

 

1 1 2 2 1 1

2 2

φ φ φ ε θ ε
θ ε θ ε

− − − −

− −

− − − − = − −
− −





t t t p t p t t

t q t q

X X X X

 (4)

In order to facilitate ease of expression, a backshift operator is 
employed, which is akin to a time pointer. The multiplication of the 
present sequence value by a backshift operator is tantamount to shifting 
the temporal position of said sequence value one moment into the past. 
If denoted as B, the backshift operator yields Equation (5) and (6): 

 
m

t t mB X X −=  (5)

 
m

t t mB ε ε −=  (6)

Upon utilization of the backshift operator, Equation (4) is 
transformed to Equation (7).

FIGURE 4

Procedure for determination of gross α and β in water.
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FIGURE 5

Procedure for determination of 90Sr determination in food.
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( )
( )

θ
ε

φ
=t t

B
X

B  
(7)

Where φ(B) is non-seasonal autoregressive polynomial, θ(B) is 
non-seasonal movingaverage polynomial, which are expressed as 
Equation (8) and (9):

 ( ) 2
1 21 ..ϕ ϕ ϕ ϕ= − − − − p

pB B B B
 (8)

 ( ) 2
1 21 ..θ θ θ θ= − − − − q

qB B B B
 (9)

If the time-series is non-stationary, which should be converted to 
stationary by differencing, the model used is ARIMA (p,d,q). Assume 
ΔXt is the sequence which obtained after first-order differencing of Xt, 
which is expressed as Equation (10):

 1t t tX X X −∆ = −  (10)

Therefore, the equation of ARIMA (p,d,q) as follows Equation (11), 
which transforms from Equation (7).

 

( )
( )

θ
ε

φ
∆ =d

t t
B

X
B  

(11)

2.4.2 Multiple seasonal auto-regressive integrated 
moving average [MSARIMA (p, d, q) (P, D, Q)]

The Seasonal-ARIMA [SARIMA(p, d, q)(P, D, Q)] model 
incorporates a non-seasonal ARIMA(p, d, q) model along with 
supplementary seasonal terms (P, D, Q)s, which accounts for the 
seasonality inherent in the time-series data over S time steps, 
corresponding to a singular seasonal period. P is the order of seasonal 
autoregressive term, D is the order of seasonal differencing, Q is the 
order of seasonal moving average term and S is the length of the 
seasonal cycle. The complete expression of the SARIMA model can be 
written as Equation (12):

 

( ) ( )
( ) ( )

θ
ε

φ
∆ ∆ =

s
d D

t tS s

B V B
X

B U B
 

(12)

Where εt was white noise; U(BS) is seasonal autoregressive 
polynomial, and V(BS) is seasonal moving average polynomial, which 
are expressed as Equation (13) and (14):

 
( ) 2

1 21 ..= − − − −S S S PS
PU B u B u B u B

 
(13)

 
( ) 2

1 21 ..= − − − −S S S QS
QV B v B v B v B

 
(14)

When P = Q = D = 0, it means that there is no seasonal in the 
model. In this case, the model reduces to the standard ARIMA model.

3 Results and discussion

3.1 Model establishment

Figures 4, 5 show the time-series diagrams and autocorrelation 
function (ACF) plots of the original sequences of the CAD, 90Sr 
activity concentrations in food, and gross β activity concentrations in 
water. The time-series diagram for the CAD (Figure  6A) shows 
fluctuations within a certain range and most ACFs (Figure 7A) fall 
into the confidence interval and tend to zero rapidly. This indicates 
that the sequence is stable and does not need differencing. In contrast, 
both the time-series diagrams (Figure 6B) and ACF plots (Figure 7B) 
for the 90Sr activity concentrations in food exhibit clear periodic 
changes, indicating that the sequences require seasonal differencing. 
For gross β activity concentrations in water, the time series diagram 
(Figure 6C) appears relatively stable without any obvious trend, but all 
ACFs (Figure 7C) fall within the confidence interval. Therefore, it was 
determined to be white noise, and further analysis was halted.

After performing first-order seasonal differencing on the original 
time-series of 90Sr activity concentrations in food, the ACF plot of the 
resulting time-series is shown in Figure 8. The majority of ACFs fall 
within the confidence interval and quickly reach zero, indicating that 
the new sequence is stable and does not exhibit any significant 
seasonal fluctuations.

The determination of p, q, P and Q is a crucial aspect for 
establishing the ARIMA model. Some researchers suggested that the 
most effective method to determine these values involves analyzing 
ACF and partial autocorrelation function (PACF) of time-series after 
differencing and seasonal differencing. The lag number of the peak 
entering the confidence level in ACF and PACF plots is used to 
determine the values of p, q, P and Q (24–28). However, some 
scientists criticized this estimation method for not being sufficient 
every time (29). Besides the ACF and PACF plots, there are other 
methods that can be used to determine the optimal ARIMA model, 
such as the Bayesian Information Criterion (BIC). The model with the 
lowest BIC value is considered as the best fit.

In this study, we tested various parameter values for p, q, P and Q 
(with a maximum value of 4) in ascending order, and selected the 
models with the lowest BIC values. After model identification and 
parameter estimation, we selected the models that met all standards, 
as shown in Table 1.

Another key point of model construction is the diagnosis of 
residual sequence and model parameters. If the residual sequence of 
the model follows a normal distribution and appears random like 
white noise, it suggests that the model has extracted most of the 
information from the original sequence (30). The residual sequences 
that are considered as white noise could be verified by Ljung-Box 
Q-test (31, 32) with p value greater than 0.05. In addition, the 
parameters of the model should also be significantly different from 
zero (p < 0.05) to ensure the validity of the model. The models shown 
in Table 1 all passed both residual sequences Ljung-box Q-test and 
model parameters diagnosis, which were eventually selected as the 
optimal models.
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3.2 Model fitting and prediction

Figure  9 shows the model forecasting results covering the 
training, testing and prediction periods. Each diagram consists of 
the observed, fitted and forecasted data, as well as the upper and 
lower confidence limits. The fitted values in the diagram follow the 
same trend as the observed values and are within the confidence 
interval, indicating that the fitting effect of the model is good. To 
further the accuracy of the model, MAPEs were calculated between 
the observed and the forecast values for 90Sr activity concentrations 

in food, CAD from Q1 to Q4 in 2023, which were 21.4 and 22.4%, 
respectively (Table 2). These low error values indicate that the model 
has a high level of accuracy in predicting the future values of 
these variables.

In this study, the established optimal models were applied to 
forecast the radioactivity levels around SNPP in 2024. As shown in 
Table 3, the activity concentrations of 90Sr in food from Q1 to Q4 were 
predicted to be  0.067–0.77 Bq/kg, and the CAD to be  0.067–
0.129 mSv. The forecasted values of 90Sr in food are lower than the 
concentration limit recommended by the Chinese standard (33) and 

FIGURE 6

Time-series diagram of monitoring data. (A) CAD; (B) 90Sr activity concentrations in food; (C) Gross β activity concentrations in water.

FIGURE 7

ACF plot of original sequence. (A) CAD; (B) 90Sr activity concentrations in food; (C) Gross β activity concentrations in water.
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FIGURE 9

Time-series diagram for the model fit and forecast. (A) 90Sr activity concentrations in food; (B) CAD.

FIGURE 8

ACF plot of the sequence of 90Sr activity concentrations in food after performing first-order seasonal differencing.

TABLE 1 Optimal models.

Name Optimal model BIC Ljung-Box Q-test

p values
90Sr in food ARIMA(0, 0, 0) × (0, 1, 1)4 −3.024 0.388

CAD ARIMA(4, 0, 1) −5.532 0.927
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comparable to the activity concentrations of 90Sr in food from other 
regions of the world (Table 4) (34–40). The forecasted values of CAD 
are comparable to the level of Qinshan Nuclear Power Plant (0.073–
0.093 mSv) (41).

Based on radioactivity monitoring data around SNPP, ARIMA 
models were established to fit and predict the short-term changes. 
However, there were instance where the forecast values and actual 
values of individual quarters differ greatly, such as 90Sr in food in Q1 and 
Q2 of 2019, CAD in Q4 of 2017 and 2020, and Q2 of 2021 (Figure 7). 
These differences may be  related to large fluctuations of external 
conditions, such as climate (42), which were accounted by the ARIMA 
model. While ARIMA models focus on the role of time factors in fitting 
and forecasting, they do not analyze and discuss the relationship 
between the prediction object and the influencing factors (43).

When the prediction time becomes longer, these external 
influencing factors bring greater changes. Therefore, despite ARIMA 

models can maintain high accuracy when using historical data for 
short- and medium-term prediction, their accuracy may decrease 
when predicting further into the future. To improve the models 
accuracy in predicting radioactivity levels around SNPP for a longer 
period, continuous radioactivity monitoring data collection should 
be carried out to adjust and refine the model over time (44). This will 
ensure that the models reflect the variability and trends of radioactivity 
levels, leading to the best possible predictions.

In this study, the monitoring data from 2011 to 2022 as the 
training dataset. In June 2018, after the operation of SNPP, 
significant changes have taken place in external conditions. In our 
previous research, we found that the contributions of radioactive 
substances released to the environment after SNPP operation was 
negligible (45, 46), we  think this change does not affect the 
establishment of the model. In addition, if a nuclear accident or 
other unknown external input occurs, the model cannot predict. 

TABLE 2 Observed and predicted radioactivity levels around SNPP from Q1 to Q4 in 2023.

Quarter Observed value Forecast value 95% confidence interval Absolute percentage 
error

90Sr activity 
concentration 
in food (Bg/kg)

CAD 
(mSv)

90Sr activity 
concentration 
in food (Bg/kg)

CAD 
(mSv)

90Sr activity 
concentration 
in food (Bg/kg)

CDA 
(mSv)

90Sr activity 
concentration 

in food (%)

CAD 
(%)

1 0.40 0.183 0.43 0.133 0.150–0.984 0.044–0.222 7.5 27.3

2 0.92 0.111 0.77 0.130 0.270–1.764 0.036–0.223 16.3 17.1

3 0.18 0.108 0.22 0.109 0.076–0.497 0.015–0.204 22.2 0.9

4 0.048 0.099 0.067 0.055 0.024–0.154 −0.040-0.150 39.6 44.4

Mean absolute percentage error (MAPE) 21.4 22.4

TABLE 3 Forecast values of radioactivity levels around SNPP from Q1 to Q4 in 2024.

Quarter Forecast value

90Sr activity concentration in food (Bq/kg) CAD (mSv)

1 0.43 0.129

2 0.77 0.123

3 0.22 0.112

4 0.067 0.067

TABLE 4 Comparison of activity concentrations of 90Sr in foods from different regions of the world.

Location Sample type(sample time) Activity concentration (Bq/kg)

Vicinity of Ningde Nuclear Power Plant, China (34) Rice, Vegetables, Marine fish, Freshwater fish (2013–2017) <0.017–0.677

Qinshan Nuclera Power Plant, China (35) Rice, Salsola, Mullet, Crucian carp (2012–2019) 0.04–1.3

Tianwan Nuclear Power Plant, China (36) Rice, Chinese cabbage, wheat (March 2000 to April 2002) 0.024–0.23

Cuban (37) Vegetables, Fish (/) 0.0034–0.28

Austrian (38) Cereals, Cabbage, Freshwater fish (1997) 0.09–0.12

Mayak Industrial Association (39) Wheat, Cabbage, Carrots (2008–2010) 0.029–0.24

Niigata, Japan (40) Undaria pinnatifida (1999–2007) <0.016–0.036
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When the observed data are significantly higher than predicted, 
excluding external input, it indicates that SNPP significantly 
releases radioactive substances.

The ARIMA model has been successfully applied to SNPP, but its 
applicability to other nuclear power plants with different technologies, 
operating practices or environmental backgrounds, such as Qinshan 
Nuclear Power Plant, will depend on the regularity and randomness 
of the time series of their historical radioactivity data. If the time series 
has a certain regularity and norandom, the ARIMA model has good 
potential to be applied.

4 Conclusion

This study attempts to develop ARIMA models for medium and 
short-term prediction of radioactive levels in the environment and 
food around SNPP, utilizing historical time series data spanning from 
2011 to 2023. The data from 2011 to 2022 were used as the training 
set, while the data from 2023 served as the testing set. The time series 
of gross β in water was a white noise series, which has no value in 
establishing a model. In contrast, the time series of 90Sr in food and 
CAD were stationary, non random, and have short-term correlation, 
making them suitable for establishing ARIMA models. In this study, 
our established models showed good consistency between the fitted 
values and observed values, coupled with the relatively small MAPEs, 
suggesting satisfactory fitting effect and accuracy in the 
ARIMA models.

The CAD and 90Sr activity concentrations in food in 2024 were 
predicted using the established model. The forecasted values of 
90Sr in food are lower than the recommended threshold by the 
Chinese standard, and comparable to the active concentrations of 
90Sr in food from other regions of the world. The forecasted values 
of CAD are comparable to the level of Qinshan Nuclear 
Power Plant.

However, we acknowledge the limitation of the ARIMA models, 
such as some external factors, e.g., climate, were not taken into 
account. This limitation might be compensated by continuous feeding 
of monitoring data thus to adjust and improve the models performance 
over time. In short, ARIMA models can be used as an additional tool 
for environmental radioactivity monitoring and human health risk 
assessment around SNPP.
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