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Introduction: Rescuing individuals at sea is a pressing global public health 
issue, garnering substantial attention from emergency medicine researchers 
with a focus on improving prevention and control strategies. This study aims 
to develop a Dynamic Bayesian Networks (DBN) model utilizing maritime 
emergency incident data and compare its forecasting accuracy to Auto-
regressive Integrated Moving Average (ARIMA) and Seasonal Auto-regressive 
Integrated Moving Average (SARIMA) models.

Methods: In this research, we analyzed the count of cases managed by five 
hospitals in Hainan Province from January 2016 to December 2020 in the context 
of maritime emergency care. We employed diverse approaches to construct and 
calibrate ARIMA, SARIMA, and DBN models. These models were subsequently 
utilized to forecast the number of emergency responders from January 2021 to 
December 2021. The study indicated that the ARIMA, SARIMA, and DBN models 
effectively modeled and forecasted Maritime Emergency Medical Service (EMS) 
patient data, accounting for seasonal variations. The predictive accuracy was 
evaluated using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), 
and Coefficient of Determination (R2) as performance metrics.

Results: In this study, the ARIMA, SARIMA, and DBN models reported RMSE of 
5.75, 4.43, and 5.45; MAE of 4.13, 2.81, and 3.85; and R2 values of 0.21, 0.54, and 
0.44, respectively. MAE and RMSE assess the level of difference between the 
actual and predicted values. A smaller value indicates a more accurate model 
prediction. R2 can compare the performance of models across different aspects, 
with a range of values from 0 to 1. A value closer to 1 signifies better model 
quality. As errors increase, R2 moves further from the maximum value. The 
SARIMA model outperformed the others, demonstrating the lowest RMSE and 
MAE, alongside the highest R2, during both modeling and forecasting.  Analysis 
of predicted values and fitting plots reveals that, in most instances, SARIMA’s 
predictions closely align with the actual number of rescues. Thus, SARIMA is 
superior in both fitting and forecasting, followed by the DBN model, with ARIMA 
showing the least accurate predictions.
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Discussion: While the DBN model adeptly captures variable correlations, the 
SARIMA model excels in forecasting maritime emergency cases. By comparing 
these models, we glean valuable insights into maritime emergency trends, 
facilitating the development of effective prevention and control strategies.

KEYWORDS

medical assistance at sea, prediction, ARIMA, SARIMA, emergency medical service, 
dynamic Bayesian network

1 Introduction

Working at sea is one of the world’s most perilous occupations, 
characterized by a markedly high accident rate (1). Surveys reveal that 
there are 103 injuries per 1,000 full-time fishermen (2). In Australia, 
the annual fatality rate at sea is three times that of agriculture and four 
times that of the road freight sector (1). Similarly, in the 
United Kingdom, the fatal accident rate at sea from 2003 to 2012 was 
nearly five times higher than in the construction sector (3), 
highlighting the significant risk and mortality associated with 
maritime accidents. Delivering emergency care at sea presents 
considerable challenges exacerbated by factors such as geographic 
isolation, limited medical personnel, remoteness, and the scarcity of 
medical facilities aboard ships (4). These conditions render medical 
emergencies at sea among the most arduous prehospital situations for 
healthcare professionals and researchers (5). Furthermore, low- and 
middle-income countries encounter difficulties in providing maritime 
and aquatic first aid, contributing to a major global public health 
concern. According to Dykes et  al. (6), approximately 19% of all 
marine search and rescue missions require medical evacuation at sea, 
significantly impacting patient outcomes due to delays in rescue 
operations and the absence of immediate responders.

To tackle the aforementioned challenges, the United States has 
initiated several telemedical maritime assistance service centers and 
extended telemedicine globally since 2003 to alleviate the shortage of 
medical personnel at sea (7). Scholars like Adrian P (8). have 
scrutinized sea and land ambulance response times in the Philippines, 
devising care strategies and spatial pathways to expedite detection, 
optimize human resource allocation, and reduce rescue durations. 
However, dynamically adjusting medical rescue personnel at sea 
remains an unresolved issue. Zhang et  al. (9) have proposed 
dynamically allocating emergency resources; yet existing models 
struggle with uncertain data and lack the capability to adapt human 
resources promptly. The demand for Emergency Medical Services 
(EMS) at sea fluctuates on a monthly basis, particularly during periods 
of heightened migrant, refugee, and asylum seeker rescues, or mass 
casualties from disasters (10–13). Leveraging historical data to forecast 
future requirements aids in improved scheduling and staffing, thereby 
enhancing emergency supply reserves for high-risk days. Historical 
data has proven instrumental in predicting demand and understanding 
variability, facilitating more effective pre-hospital emergency care 
planning (14). Accurate prediction of human resource needs enables 
hospitals to circumvent the expenses associated with hiring temporary 
staff or implementing flexible schedules, thus reducing response times 
and resource wastage. The development of a dynamic scheduling 
system that aligns with patient needs, catering to both full-time and 
part-time staff, holds immense promise in addressing these challenges. 

Hence, the creation of a precise model for predicting emergency 
patient numbers at sea is paramount for optimizing medical 
manpower allocation and shaping preventive measures and policies.

Recent research has increasingly embraced advanced technologies 
such as deep learning, neural networks, and big data for forecasting 
patient volumes. Key models in this domain include the Auto-regressive 
Integrated Moving Average (ARIMA), Seasonal Auto-regressive 
Integrated Moving Average (SARIMA), and Dynamic Bayesian 
Networks (DBN). ARIMA, renowned for its efficiency in capturing 
linear trends in time series data with minimal computational burden, is 
often employed to explore variable relationships or serve as a benchmark 
in testing hybrid models, albeit with mixed outcomes (15). For instance, 
Li et  al. (16) in China utilized ARIMA to assess the impact of the 
Corona Virus Disease 2019 (COVID-19) on gonorrhea trends, while 
Eyles et al. (17) in the United Kingdom (UK) employed it to generate 
precise short-term forecasts for patient admissions and bed occupancy, 
thereby improving predictions for medical specialties and lengths of 
stay. And ARIMA has proven capable of processing and predicting 
complex but stable time series data. It can also effectively manage short-
term mutations and trends, making it suitable for rapid prediction of 
emergency events (18). Despite demonstrating high accuracy, ARIMA 
may struggle with seasonal fluctuations, potentially leading to prediction 
inaccuracies. SARIMA, on the other hand, excels in analyzing time 
series periodicity, trends, and disturbances, making it a staple choice for 
infectious disease forecasting (19–21). Almeida et  al. (22) utilized 
SARIMA to study pediatric emergency department visits, while Zhang 
et  al. (23) applied it to predict hospital blood demand, facilitating 
resource allocation. Moreover, the maritime environment has significant 
seasonal characteristics, such as monsoons and tides, so the SARIMA 
model can better capture and predict these cyclical changes. However, 
SARIMA’s limitations in capturing dynamic inter-variable changes can 
impede prediction accuracy. In contrast, the DBN model, a graphical 
representation of variable correlations and temporal changes (24), finds 
extensive application in infectious disease (25–27) and diabetes research 
(28) for pathway identification and risk assessment. Emergencies at sea 
often involve multiple uncertain factors, such as weather changes, wave 
conditions, ship status, etc. The DBN model can effectively process and 
integrate this information for real-time dynamic prediction. Despite its 
utility, DBN typically requires at least 3 years of historical data (25), 
compared to ARIMA and SARIMA models, which necessitate a 
minimum of 50 time points (15). Consequently, while DBN models 
demand less data, they may be  susceptible to specific errors. 
Furthermore, the comparative effectiveness of these models in 
forecasting emergency patient volumes and their sensitivity to dynamic 
predictions remain relatively unexplored.

In this study, we delved into the stability and predictive efficacy 
of three models to analyze the number of maritime emergency 
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patients. By comparing the fitting and predictive abilities of these 
models, our goal is to provide an early warning system, facilitating 
effective prevention and control strategies for maritime 
emergencies. This includes ensuring timely allocation of manpower 
and medical resources in anticipation of significant maritime 
incidents along China’s coast. First, this study utilized medical 
records from the South China Sea region of Hainan Province 
spanning from 2016 to 2020 to develop ARIMA, SARIMA, and 
DBN models. These models were evaluated using 2021 data to 
improve the analysis and prediction of illness trends among offshore 
emergency patients. The rest of this document is organized as 
follows: Section 2 outlines the data collection locations, time 
frames, ethical considerations, inclusion and exclusion criteria, data 
entry methods, statistical models, their fundamental principles, 
analysis tools, evaluation criteria, and the overall modeling process. 
Section 3 elaborates on the modeling procedures of the three 
models, the selection of parameters, the comparison of their 
predictive performance, and the identification of the best model. In 
addition, Section 4 elaborates on why SARIMA excels in predicting 
the number of first aid workers at sea, the importance of forecasting 
marine emergencies, the strengths and limitations of this study, and 
recommendations for future policy. Finally, Section 5 presents the 
conclusions derived from this research.

2 Subjects and methods

2.1 Subjects

The researcher discovered through initial investigations that 
the Hainan Maritime Safety Bureau primarily directs sea medical 
rescues in the South China Sea to five key medical facilities: 
Haikou City’s first aid center handles the Haikou region, while 
Sanya City, Dongfang City, Wenchang City, and the Yangpu 
Economic Development Zone each have a dedicated hospital for 
other areas. Consequently, maritime emergency patients treated at 
these five Hainan Province hospitals between January 2016 and 
December 2021 were chosen for this study. Previous research (15, 
25) indicates that constructing ARIMA, SARIMA, and DBN 
models requires a minimum of 50 time points and 3 years of 
historical data, respectively. Accordingly, this study utilized EMS 
patient data from January 2016 to December 2020 for model 
development, and data from January to December 2021 served as 
an internal validation set to assess the models’ predictive accuracy. 
The Hainan Medical University Ethics Committee approved this 
study (NO.: HYLL-2022-018), adhering to the Declaration of 
Helsinki’s guidelines. Informed consent was obtained from 
all participants.

2.2 Data collection

2.2.1 Inclusion criteria
In this study, we examine various cases including: ① 120 instances 

of emergency vehicles arriving at the dock, port, harbor first aid 
station, etc.; ② communication with units such as the Maritime Bureau, 
Coastal Radio Division, port medical aid station, etc.; ③ the nature of 
calls involving ships affected by natural disasters like typhoons, as well 

as other onboard emergencies such as poisoning, requiring immediate 
medical attention for patients, sudden illnesses or injuries, and the 
medical history of patients describing injuries or the onset of illnesses 
onboard, such as cable strangulation injuries, acute gastric perforation, 
and drowning due to ship sinking or jumping into the sea.

2.2.2 Exclusion criteria
This study excludes: ① 120 instances where emergency vehicles 

arrived at the scene but did not encounter the patient; ② medical 
records containing missing information, incomplete data (missing 
more than 3 items), errors, and duplicates; ③ patients who 
independently visited the hospital for prescriptions, examinations, or 
consultations without recorded statistics are also excluded.

2.2.3 Data entry
From the pre-hospital case management system of the five 

hospitals mentioned above, data of emergency patients at sea in the 
South China Sea from 2016 to 2021 were exported. If the hospital did 
not enter into the pre-hospital case management system in that year, 
the data was collected by manually flipping through records and using 
image records (taken by the camera) to gather relevant information. 
Afterward, a database was set up using Excel software to conduct the 
study, as shown in Table 1.

2.3 Statistical models and description

First, the data were loaded and preprocessed to create trend charts 
and related factor decomposition charts, and then a time series model 
was developed to forecast sea emergency patients using three predictive 
models: ARIMA, SARIMA, and DBN. The prediction framework for 
the time series model is depicted in Supplementary Figure 1.

2.3.1 ARIMA (p, d, q)
The ARIMA model is commonly represented as ARIMA (p, d, q), 

where Auto-Regressive (AR) signifies the auto-regressive function, 
I represents the differencing term, and Moving Average (MA) stands 
for the moving average function. Here, p indicates the count of 
autoregressive terms, q represents the number of moving average 
terms, and d signifies the levels of differencing applied to transform 
the original dataset into a smoother series. Below are the generalized 
formulas for the p-order AR model [Equation (1)] and the q-order 
MA model [Equation (2)].

 AR p Y Y Y Yt t t p t p t( ) = + + + + +− − −: µ β β β ε1 1 2 2   (1)

In this sequence, every value can be  depicted as a linear 
combination of its preceding p values. Here, Yt represents any given 
observation within the sequence, µ  stands for the sequence’s average, 
β  denotes the weight, and εt  signifies the random disturbance.

 MA q Yt t t q t q t( ) = − − …− +− − −: µ θ ε θ ε θ ε ε1 1 2 2  (2)

where each value of the sequence can be represented as a linear 
combination of the previous q  residuals. ε  denotes the predicted 
residuals and θ  is the weight.
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The ARMA (p, q) model merges the AR model [Equation (1)] 
with the MA model [Equation (2)], resulting in a unified model 
expressed mathematically as Equation (3).

 

Y Y Y Yt t t p t p t

t q t q t

= + + + + −
− − +

− − − −

− −

µ β β β θ ε
θ ε θ ε ε

1 1 2 2 1 1

2 2





 (3)

where each sequence value is depicted as a linear blend of p  
previous observations and q residuals.

The ARIMA (p, d, q) model assumes that the time series data is 
non-stationary. The integration (I) component involves differencing 
the data to meet the model’s requirements for smoothness, allowing 
further steps in the modeling process. After differencing the data d  
times, each point in the series is modeled as a linear combination of 
p past observations and q residuals. This process, which ensures the 
data adheres to the smoothness criterion, precedes the ARMA (p, q) 
modeling, represented by the subsequent Equation 4:

 

Y Y Y Yt t t p t p

t t q t q t

′
−
′

−
′

−
′

− − −

= + + + +
− − − +
µ β β β
θ ε θ ε θ ε ε

1 1 2 2

1 1 2 2



  (4)

where Yt′ represents the differenced sequence.

2.3.2 SARIMA (p, d, q) (P, D, Q)
Data often exhibit seasonal trends, making a simple ARIMA 

model inadequate for capturing their correlations. This necessitates 
employing SARIMA, which further differentiates the data based on 
the time series’ seasonal cycle, typically denoted as SARIMA (p, d, q) 
(P, D, Q)[s]. In this notation, P represents the number of seasonal 
autoregressive terms, D the number of seasonal differencing orders, Q 
the number of seasonal moving average terms, and s the length of the 
seasonal cycle. The general SARIMA model is mathematically 
expressed as follows (Equation 5):

 
Φ Β Β Β Β Θ ΒΡ

m m D d
Q

m
q tt B w( ) ( ) −( ) −( ) = ( ) ( )ϕ θρ 1 1 

 
(5)

Where t  represents the non-stationary time-series,  t  stands 
for the Gaussian white noise process, ϕ B( )  denotes the non-seasonal 
auto-regressive polynomial, and θ B( )  signifies the non-seasonal 
moving average polynomial. Additionally, D represents the seasonal 

differencing term, which can adopt the values 1 or 2, among others. 
However, the value of D1 effectively guarantees the data’s stationarity. 
Furthermore, ΦP B

m( )  symbolizes the seasonal auto-regressive 
polynomial, while ΘQ B

m( )  represents the seasonal moving average 
polynomial. In this context, B is defined as the backshift operator, 
described as follows (Equation 6):

 Bk t t k = −  (6)

2.3.3 DBN model
The Least Absolute Shrinkage and Selection Operator (LASSO) 

regression algorithm stands out as a method for variable selection, 
known for its high model stability. It systematically reduces coefficients 
by incorporating penalty terms during model estimation, streamlining 
the model and addressing overfitting and multicollinearity effectively 
(29). Tibshirani (30) is renowned for pioneering the LASSO approach, 
enabling simultaneous variable selection and coefficient estimation. 
The LASSO estimate is identified as the solution to Equation 7.

 
β β β λ β λmin

,Y X Y X−( ) −( ) + ≥′

=
∑
j

k
j

1

0

 
(7)

Least Absolute Shrinkage and Selection Operator regression 
becomes equivalent to ordinary least square (OLS) regression when 
the tuning parameter λ is set to 0. As the tuning parameter λ grows, 
it progressively reduces the magnitude of the unknown regression 
parameter vector β  toward 0, leading to some regression parameters 
being precisely reduced to 0 for sufficiently high values of λ. The 
predictors linked to these zero-valued regression parameters are 
deemed inactive and are consequently excluded from the model.

The configuration and parameters of a DBN are typically 
derived by employing the LASSO algorithm (25). This method 
operates on the principle that, by introducing an L1 penalty to the 
least squares minimization function, it is possible to reduce the 
coefficients of less correlated variables to zero. This process refines 
the model by eliminating irrelevant variables, leaving only 
significant variables represented by directed arcs to the response 
variables. On the other hand, Bayesian Networks (BNs), a type of 
directed acyclic graph (DAG), depict the relationships between 
variables using nodes and arcs, with nodes symbolizing random 
variables and arcs illustrating the interactions among them. Given 
that complex systems evolve over time, static BN models fall short 

TABLE 1 Emergency medical treatment at sea in Hainan region from January 2016 to December 2021.

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Year

2016 18 14 20 19 16 13 10 17 17 17 29 20

2017 20 15 15 17 21 11 6 39 18 21 25 18

2018 16 18 16 18 15 7 6 13 21 21 19 19

2019 20 14 20 19 12 3 6 13 17 24 28 27

2020 31 27 29 19 15 9 13 16 25 23 27 22

2021 22 19 22 21 17 8 8 16 20 24 26 25
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in capturing these dynamics, leading to the development of DBNs. 
These models extend BNs by incorporating time, allowing for the 
analysis of time series data through arcs that connect variables at 
successive time points. This feature enables DBNs to capture both 
the interactions among variables and how these relationships evolve 
over time, offering a comprehensive framework for understanding 
dynamic systems. The calculation method is shown in Equation 8.

 Χt t t p t p tu A X A X a= + + + +− −1 1   (8)

Let (t = 1, 2, \ldots, T) where Χt i tX= ( )( ) , (i = 1, \ldots, k), 
represents (k) as the vector of observations of the number of first 
aiders at sea at time (t). (A) is the matrix of coefficients to 
be estimated, and Xt p−  represents the vector of observations of the 
number of first aiders at sea at lag order (p). ut  denotes the 
constant term, and at  represents the residuals. All arcs in the 
network are defined between two consecutive time points, with the 
set of arcs represented by the matrix A c tc 1≤ ≤( ) . If an element 
a i jij ≠ ≠( )0  exists in Ac , then the network includes an 
arc from X Xi t c j t−( ) ( ).

2.4 Analytical tools and model evaluation

The following tools are employed to evaluate the reliability of time 
series analysis: Auto-Correlation Function (ACF), Partial Auto-
Correlation Function (PACF), Augmented Dickey-Fuller Test (ADF 
test), Akaike’s Information Criterion (AIC), and Ljung-Box Test (LB 
test). These tools help identify the relationships between observations 
in a time series. ACF measures the correlation between the time series 
data and its previous values, whereas PACF identifies the correlation 
of the time series with its lagged values by specific time intervals. The 
ADF test assesses the smoothness of the time series, with the trend 
term parameter indicating the significance of the trend; a non-smooth 
series requires differencing before applying the ADF test. AIC serves 
as a penalized likelihood criterion, with a lower AIC value suggesting 
a more plausible model. The LB test checks if the series is purely 
random, using the p value to determine the presence of white noise.

The metrics employed in this study included Relative Error (RE), 
Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), 
along with the coefficient of determination (R2).

2.4.1 ACF and PACF
Auto-correlation refers to the relationship between a current 

observation and one from a previous time step (lag) within time series 
data. An auto-correlation plot, which graphs auto-correlation against 
lag, visualizes this relationship. The ACF quantifies the linear 
connection between an observation at time t and another at time t + k. 
This concept is encapsulated in the time series Equation 9 as follows:

 
ACF

o
art t k t t k
t t k

t
Y Y Y Y

C Y Y
V Y

, ,
,

+ +
+( ) = ( ) = ( )

( )
ρ

ν

 
(9)

Where k represents the lag, it is defined by t  and t k+ . Lag k 
auto-correlation describes the correlation between observations 
that are k time periods apart. Conversely, partial auto-correlation 
measures the correlation between the time series and its lags, but 

only after removing the influence of observations in between. 
Essentially, PACF “subtracts” the correlation that earlier lags have 
already accounted for. This feature is crucial for identifying the 
appropriate order for the AR model, as illustrated in the 
Equation 10.

 
PACF Corrt t k t t t k t k     , ,+

′′
+ +

′′( ) = − −( ) (10)

t
′′ represents the estimated value of t, derived through linear 

regression analysis of variables t−1,t−2,…,t k− +1. Similarly, t k+ ′′ 
signifies the estimated value of t k+ , calculated using linear regression 
based on t k+ −1,t k+ −2 ,…,t . Corr t t t k t k   − −( )′′

+ +
′′,  denotes 

the correlation coefficient that measures the relationship strength 
between  t t− ′′ and  t k t k+ +

′′− . PACF t t k , +( ) is defined as the 
partial auto-correlation coefficient for a lag of k periods.

2.4.2 ADF test
The unit root test stands as the principal technique for assessing 

the smoothness of time series data. Within the framework of the 
ADF test, it is essential to conduct a regression analysis to derive 
the coefficients α , β , and  , along with the residual error’s variance, 
followed by a unit root test on the residual term. Absence of a unit 
root in this term indicates that the time series is smooth, leading to 
the rejection of the null hypothesis. Conversely, presence of a unit 
root signifies a non-smooth time series, necessitating the acceptance 
of the null hypothesis. In practical applications, the ADF test’s p 
value is frequently employed to gauge the time series’ smoothness. 
A p value below the significance threshold (commonly set at 0.05 or 
0.01) leads to the rejection of the null hypothesis, indicating that 
the time series is indeed smooth. The Formula 11 is described 
as follows:

   t tt k t k t− +( ) = +( ) + + +α β γ ε  (11)

Where t  represents the initial observation in the time series, 
 t k+( )  denotes a subsequent observation, α  is the regression 
coefficient, β  refers to the coefficient of the time trend, γ  stands as the 
intercept (the point at which a line crosses the x- or y-axis), and γ  
signifies the error term (in statistics).

2.4.3 Akaike’s information criterion
To elucidate the connections among variables, it is crucial to assess 

the generated models for their performance efficacy. This evaluation 
employs insightful criteria to gauge a model’s ability to delineate a 
relationship accurately. The primary metric used is the AIC, which 
evaluates model quality by rewarding models that minimize errors 
and penalizing those with excessive parameters. AIC is mathematically 
formulated as follows (Equation 12).

 AIC LL K= − +2 2  (12)

LL represents the log-likelihood function, and K  stands for the 
number of parameters. Within the AIC framework, a lower score 
signifies the optimal model, characterized by a greater likelihood 
value. This aids the time series analyst in choosing the most suitable 
model from a restricted pool of possible models.
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2.4.4 LB test
The LB test evaluates the presence of auto-correlation in a 

time series, examining not only white noise in the residuals but 
also testing for complete randomness, as implied by the nature of 
white noise, where residuals are uncorrelated. The test uses the p 
value to assess if the series is independent, random, and exhibits 
white noise characteristics. A p value below 0.05 leads to the 
rejection of the null hypothesis, suggesting the series is correlated; 
whereas a p value of 0.05 or higher indicates acceptance of the 
null hypothesis, portraying the series as an uncorrelated white 
noise sequence. This is represented in Equation (13).
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n n
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Where n represents the sample size, r stands for the auto-
correlation coefficient of the residual series, and k denotes the 
order of the auto-correlation coefficient. By referring to the critical 
values of Q and the degrees of freedom, one can conduct hypothesis 
testing to ascertain the presence of auto-correlation in the 
residual series.

2.4.5 Evaluation metrics
RE, MAE, RMSE, and R2 are frequently utilized to assess the 

accuracy of the proposed model, as described by Equations (14–17). 
The R2 value varies between 0 and 1, with values closer to 1 indicating 
a better model fit. Conversely, for RE, a smaller RMSE and MAE 
suggest a more accurately fitted model.
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Where  ,i  denotes the actual value, i  signifies the forecasted 
value, i  stands for the average value, and n indicates the sample size.

2.5 Statistical methods

Data analyses were conducted using R version 4.3.1, utilizing the 
“forecast,” “tseries,” “lars,” and “bnlearn” packages. Hypothesis testing 

was performed with a significance level of 0.05. For the analysis steps, 
refer to Figure 1.

2.5.1 ARIMA and SARIMA modeling
 1. Employ the ADF unit root test to determine if the maritime 

emergency time series data is smooth or stationary, differencing 
any non-smooth information.

 2. Generate auto-correlation and partial correlation plots of the 
maritime emergency time series to initially evaluate appropriate 
model parameters.

 3. Fit possible ARIMA/SARIMA models according to step 2 and 
select the optimal model. Use the LB test to determine whether 
the residuals of the optimal model are white noise, and only the 
model whose residuals are white noise is a valid model.

 4. Predictions utilized the optimal model, calculating RE, RMSE, 
MAE, and R2 to compare the models’ predictive efficiency.

2.5.2 DBN modeling
 1. Assess the smoothness of the maritime emergency time series 

data. If non-smooth, apply differencing before model fitting.
 2. Determine the lag order of the DBN based on data 

characteristics. Utilize the LASSO algorithm to learn DBN 
parameters and structure.

 3. The potential DBNs were adjusted as per step 2, and the best 
model was chosen. Subsequently, the LB test was applied to 
check if the residuals of the chosen model exhibit white noise 
characteristics, thereby confirming the model’s validity.

 4. Utilize the optimal model for predictions. Calculate the RE, 
RMSE, MAE, and R2 to evaluate model performance. Compare 
the predictive effectiveness of the models.

3 Results

3.1 Descriptive analysis

From January 2016 to December 2021, five hospitals in Hainan 
Province documented 1,312 maritime emergencies, with an average 
of 18.22 incidents per month. The process of case selection is outlined 
in Figure 2. The 60 time points of maritime first aid from January 2016 
to December 2020, as detailed in Table 1, were inputted into R and 
depicted in a trend chart. Figure 4 displays the fluctuations in the 
number of maritime first aid incidents in Hainan Province during this 
timeframe. The data were preprocessed to decompose a series of 
factors influencing changes in maritime first aid in the South China 
Sea, as depicted in Supplementary Figure  2. Figure  4 and 
Supplementary Figure 2 present the time series analysis of maritime 
first responders in Hainan, unveiling a noticeable seasonal pattern. 
October, November, and December emerge as peak months for rescue 
and treatment services, while June and July experience the lowest 
activity, likely attributed to the summer season.

3.1.1 ARIMA modeling
The unit root test for the count of sea-based first responders from 

January 2016 to December 2020 yields ADF = 0.01, p ≤ 0.01, 
confirming the series’ stationarity. Figures 3, 5 illustrate the ACF’s 
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sinusoidal trend and the PACF’s initial spike, followed by diminishing 
lags, suggesting an ARIMA (1, 0, 0) model. However, model selection 
can be subjective. Objectively, the AIC criterion prefers the ARIMA 
(1, 0, 0) model, with the lowest AIC at 462.8274 (see Table 2) and an 
R2 value of 0.21. The LB test result, PLB text = 0.8695, exceeding 0.05, 
indicates the residuals are white noise, validating the model’s 
predictive accuracy for the number of sea-based first responders.

3.1.2 SARIMA modeling
The data remains consistent, yet the time series graph reveals a 

distinct seasonal trend. As a result, we  implemented first-order 
seasonal differencing. The SARIMA model is expressed as: ARIMA 
(p, d, q) (P, D, Q)[s], where s denotes the seasonal cycle, (p, d, q) 
represents the non-seasonal component of the model, and (P, D, Q)[s] 
denotes the seasonal part of the model. The seasonal cycle is 12 months 

per year (evident from the spikes at lags 12  in the ACF plot after 
differentiating the SARIMA model in Figure 6), hence s = 12, D = 1. 
By examining the auto-correlation and partial correlation of the 
maritime EMS trips time series (Figures 6, 7) and using the AIC for 
model selection, we identified SARIMA(1,0,0)(0,1,1)12 as the optimal 
model. The AIC’s parameter estimation results are depicted in 
Figure 8. This model boasts an R2 value of 0.54, and the LB test, with 
a p value of 0.6729—above the 0.050 threshold—verifies that the 
residuals are white noise, underscoring the model’s precision and 
reliability in predicting the number of maritime first-aiders.

3.1.3 DBN modeling
The original series is renowned for its fluidity. Consequently, the DBN 

model was precisely tailored with a maximum lag of 12 to accommodate 
seasonality. We  utilized 12 sequences of lagged morbidity numbers, 

FIGURE 1

Algorithm demonstrating the approach for constructing ARIMA, SARIMA, and DBN models.
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FIGURE 2

Flowchart of case screening.
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FIGURE 3

Sequential ACF chart of the number of emergency cases at sea from January 2016 to December 2020.

FIGURE 4

Sequence of maritime EMS attendances from January 2016 to December 2021.

FIGURE 5

Sequential PACF chart of the number of EMS cases at sea from January 2016 to December 2020.
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ranging from 1 to 12, as input. The LASSO algorithm facilitated parameter 
estimation, with outcomes detailed in Table 3. The nonzero coefficients of 
the 12 lagged morbidity numbers suggest a significant correlation with 
the current period’s maritime first-aiders count. This relationship is 
mirrored in the DBN’s structure, illustrated in Figure 9. The DBN’s R2 
stood at 0.44. Moreover, the LB test yielded a p value of 0.708, surpassing 

the 0.050 threshold, with the residuals classified as white noise, affirming 
the model’s predictive accuracy for the number of sea first responders.

3.1.4 Comparison of three model fitting and 
prediction effects

The ARIMA, SARIMA, and DBN models were utilized for 
forecasting. Table 4 showcases the forecasted outcomes from each 
model, with SARIMA’s forecasts more accurately mirroring actual 
rescues than those of ARIMA and DBN. Following this, the RMSE 
and MAE for each model were computed and are detailed in 
Table 5. The R2 scores for ARIMA, SARIMA, and DBN range from 
0 to 1, with SARIMA’s score surpassing 0.5, signifying a robust 
model fit. Hence, SARIMA demonstrates superior performance 
over the ARIMA and DBN models. Specifically, SARIMA’s RMSE 
and MAE saw reductions of 22.96 and 31.96%, respectively, in 
comparison to ARIMA. Additionally, compared to ARIMA, 
SARIMA’s RMSE and MAE fell by 18.72 and 27.01%, respectively, 
whereas DBN’s RMSE and MAE saw smaller declines of 5.22 and 
6.78%, respectively. Figure 10 illustrates the fitting and prediction 
plots, indicating that SARIMA’s fitting and forecast trajectories 
more closely match the actual data.

FIGURE 6

ACF plot after differential.

FIGURE 7

PACF plot after differential.

TABLE 2 ARIMA model least squares parameter estimation.

Model AIC

ARIMA (2,0,2) 469.6173

ARIMA (0,0,0) 477.6239

ARIMA (1,0,0) 462.8274

ARIMA (0,0,1) 465.1882

ARIMA (0,0,0) 632.9414

ARIMA (2,0,0) 465.0171

ARIMA (1,0,1) 465.0313

ARIMA (2,0,1) Inf

ARIMA (1,0,0) 483.6405
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4 Discussion

In our study, we  constructed several forecasting models, 
including ARIMA, SARIMA, and DBN, to predict the monthly 
influx of maritime patients treated by hospitals across Hainan 
Province. By analyzing the treatment data of patients from the 
South China Sea region, we  evaluated and compared the 
predictive accuracy of these models. Our results reveal that the 
SARIMA (1, 0, 0) (0, 1, 1)12 model outperforms others in 
forecasting accuracy.

In our study, we analyzed data on maritime emergency patients 
rescued in the South China Sea, specifically within the Hainan 
region, from 2016 to 2021. This data, totaling 1,312 rescues, aligns 
closely with figures reported by the Hainan Maritime Bureau, 
encompassing police responses and search and rescue operations 
(31). Our dataset comprises notable events that influenced these 
figures, including the onset of the COVID-19 epidemic in 2019, 
Typhoon Pigeon in August 2017, and Super Typhoon Rey in late 
December 2021. These occurrences resulted in a surge in rescue 
operations, consistent with our collected data. This correlation, 
particularly in light of the unpredictable nature of such disasters, 

FIGURE 8

Results of AIC parameter estimation.

https://doi.org/10.3389/fpubh.2024.1401161
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Yang et al. 10.3389/fpubh.2024.1401161

Frontiers in Public Health 12 frontiersin.org

emphasizes the accuracy of our predictive model and the objective, 
realistic selection of our data.

Aside from occasional spikes in Maritime EMS volume resulting 
from major disasters, there are noticeable seasonal fluctuations and 
trends. Peak periods for rescue and treatment operations typically 
occur during the winter months of October, November, and December, 
while quieter months are observed in June and July. Similar seasonal 
patterns have been identified in other studies (32, 33). However, both 

the DBN model and the time series model effectively capture these 
seasonal fluctuations and trends in rescue numbers, serving as 
dynamic tools for forecasting data with periodic characteristics.

Prior research suggests that at least 3 years of historical data are 
necessary to meet sample size requirements (25), as insufficient data 
may diminish auto-correlation and hinder the extraction of periodic 
features, ultimately impacting prediction accuracy (34). This study 
relies on authentic, objective, and reliable medical records from 
Hainan hospitals specializing in maritime emergency care. The dataset 
spans 5 years and 60 months from 2016 to 2020, constituting a 
complete cycle and meeting the prerequisites for modeling. To the best 
of our knowledge, this is the first study to apply a DBN model and 
time series analysis to predict maritime EMS dispatches in China.

To enhance the management of first aid responders at sea, it is 
crucial to improve sea rescue prevention and control strategies, 
necessitating cooperation from all stakeholders. Accurately predicting 
emergency incidents at sea is vital for effective sea rescue operations. 
This study aims to provide predictive analytics for managing maritime 
first aid in the South China Sea. After extensive analysis, we identified 
the ARIMA (1, 0, 0) and SARIMA (1, 0, 0) (0, 1, 1)12 models as optimal. 
By developing the DBN model and refining it through iterative 
debugging based on data characteristics, we established a DBN model 
with a maximum lag of 12 orders, starting with a non-zero lag order 
coefficient. Comparing the ARIMA (1, 0, 0) and SARIMA (1, 0, 0) (0, 
1, 1)12 models’ fitting capabilities with the DBN model, using predicted 
values, RE, RMSE, MAE, and R2, revealed that the SARIMA (1, 0, 0) (0, 
1, 1)12 model offers more precise predictions, lower RE, and better 

TABLE 3 Results of DBN modeling parameter estimation.

Lag Coefficient

X_t1 0.31678192

X_t2 0.19788793

X_t3 −0.05581918

X_t4 0.06195344

X_t5 −0.10013309

X_t6 −0.04453516

X_t7 0.02913787

X_t8 −0.08300831

X_t9 −0.07589329

X_t10 0.04222040

X_t11 0.04748903

X_t12 0.28105241

FIGURE 9

DBN model of first aid trips at sea.
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RMSE, MAE, and R2 scores, outperforming the DBN model. The 
ARIMA (1,0,0) model showed lesser fitting capabilities. Therefore, the 
SARIMA (1,0,0)(0,1,1)12 model is more effective for forecasting future 
maritime EMS operations, leading to more accurate EMS trend forecasts.

Numerous studies indicate that DBN methods deliver strong 
performance in predictive analytics (25, 35), yet their application in the 
medical sector, including areas like infectious diseases, outpatient 
volume, and emergency care, remains limited. DBN, a graphical model, 
effectively represents fitting results through network graphs. DBN 
estimation employs various machine learning algorithms, notably the 
LASSO algorithm in this research, along with James-Stein shrinkage 
estimation and first-order conditional dependence approximation (30, 
36, 37). Despite this, the SARIMA method is also recognized for its 
robust fitting and predictive capabilities (34, 38, 39). Given our data’s 
specific characteristics, we found SARIMA to surpass both the DBN 
and ARIMA methods in performance. The SARIMA model excels at 
capturing and predicting seasonal components, making it effective for 
handling abnormal and fluctuating data with periodicity (40). This 
capability is particularly valuable for maritime emergency rescue data, 
which inherently follows a cyclical pattern. In contrast to the high 
computational demands and complexity of DBN (41), SARIMA offers 
high prediction accuracy at lower computational costs, making it well-
suited for various real-time and near-real-time applications. While 
ARIMA struggles with seasonal data (15), SARIMA stands out for its 
ability to make precise predictions in complex datasets without the 
need for intricate assumptions or extensive prior knowledge. As 
illustrated in Figure  10, the comparison of the three models 

demonstrates how SARIMA (1,0,0)(0,1,1)12 adeptly fits historical data, 
offering a reliable forecast for the number of EMS sea trips.

Forecasting maritime emergency visits is crucial for managing 
healthcare in coastal areas. Emergency department visits serve as a 
vital measure of workload and the quality of care provided. 
Overcrowding occurs when the demand from patients surpasses the 
available resources during peak times (33). Thus, it is imperative to 
efficiently allocate medical staff. Precise predictions of maritime 
emergencies are essential for distributing hospital emergency 
resources effectively, ensuring the quality and safety of medical 
services, and optimizing the use of human, financial, and material 
resources for better economic and social outcomes. Failure to do so 
may result in the squandering of resources. Based on the findings, 
actionable steps include: (1) Boosting medical staff reserves in coastal 
hospitals from September to November, organizing medical staff 
more logically, and dynamically managing them according to the 
off-peak season characteristics to leverage their flexibility, 
adaptability, and synergy. (2) Adopting a flexible scheduling system 
to reduce work pressure and mental stress on team members, thus 
safeguarding their well-being and mitigating adverse effects. (3) 
Enhancing medical resource allocation by opening a fast-track 
process for resource approval during high-demand periods and 
allowing resource managers to review and augment resources in 
slower periods. This not only aids in the training and development of 
medical staff but also ensures that rescue organizations are adequately 
prepared for peak season challenges, thereby advancing the precise 
and sophisticated management of medical resources.

TABLE 5 Evaluation metrics for ARIMA, SARIMA, and DBN model fitting and prediction accuracy.

Model RMSE MAE R2

ARIMA 5.75 4.13 0.21

SARIMA 4.43 2.81 0.54

DBN 5.45 3.85 0.44

Percentage decrease in SARIMA over ARIMA 22.96% 31.96% −157.14%

Percentage decrease in SARIMA over DBN 18.72% 27.01% −22.72%

Percentage decrease in DBN over ARIMA 5.22% 6.78% −109.52%

TABLE 4 ARIMA, SARIMA, and DBN projections of the number of patients in maritime emergencies in Hainan from January 2021 to December 2021.

Month Actual ARIMA RE SARIMA RE DBN RE

Jan. 22 20 9.09% 22 0.00% 26 18.18%

Feb. 19 20 5.26% 19 0.00% 25 31.58%

Mar. 22 19 13.64% 21 4.55% 22 0.00%

Apr. 21 20 4.76% 19 9.52% 19 9.52%

May 17 20 17.65% 16 5.88% 16 5.88%

Jun. 8 28 250.00% 9 12.50% 14 75.00%

Jul. 8 14 75.00% 9 12.50% 12 50.00%

Aug. 16 14 12.50% 18 12.50% 15 6.25%

Sep. 20 17 15.00% 20 0.00% 19 5.00%

Oct. 24 19 20.83% 22 8.33% 23 4.17%

Nov. 26 21 19.23% 26 0.00% 25 3.85%

Dec. 25 22 12.00% 22 12.00% 24 4.00%
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This study introduced the time series model and DBN model into 
maritime emergency medical rescue research, expanding the scope 
of the time series model. Through a systematic evaluation of ARIMA, 
SARIMA, and DBN models, it compares the effectiveness of different 
time series forecasting models for the number of first responders at 
sea, demonstrating their application in real-world scenarios. This 
provides practical cases for maritime administration officials and 
medical rescue personnel, enhancing the research’s practical 
application value and laying a foundation for future development in 
emergency medical management for maritime rescue work. In the 
future, the prediction model constructed in this study can 
be extended to other coastal cities. Managers can combine SARIMA 
with machine learning models (such as Long Short-Term Memory) 
based on local data, leveraging the strengths of different models to 
improve prediction accuracy. Moreover, with improved computing 
power, future research can develop real-time prediction systems, 
using SARIMA and other efficient models for real-time data analysis 
and prediction. This will enhance marine monitoring and emergency 
response efficiency, providing new perspectives and methods for 
research combining emergency medicine and public health.

The study’s policy recommendations are as follows: (1) Establish a 
prediction and early warning system. Medical and maritime managers 
should create a system based on the study’s model. Each unit and 
institution can regularly upload emergency and environmental data, 
build a data-sharing platform, and improve data comprehensiveness 
and timeliness. (2) Enhance the dispatch of emergency rescue resources 
at sea. Based on predicted personnel needs, dynamically and 
scientifically allocate rescue vessels, medical supplies, and personnel to 
ensure sufficient and equitable distribution of resources and reduce 
response time. (3) Advance intelligent emergency management. 
Develop a dispatching system that integrates ARIMA, SARIMA, and 
DBN models into the emergency platform to achieve intelligent 
dispatching and optimized resource management. Conduct regular 

emergency drills to validate the prediction model’s accuracy and the 
dispatching strategy’s feasibility, continuously refine the emergency 
plan, and enhance overall emergency preparedness.

However, this research encounters two primary constraints. Firstly, 
it did not encompass the entire Hainan region, resulting in unavoidable 
data omissions. Secondly, the study compiled only 1,312 medical 
records, a quantity considerably lower than that in similar studies. This 
reduced data pool likely impacted the predictive precision of the DBN 
model compared to the SARIMA model. To achieve more reliable long-
term predictions, expanding data collection, collaborating with various 
centers, and closely examining the time distribution patterns of 
maritime emergency medical services are essential. Such initiatives will 
foster more efficient and scientifically accurate strategies for allocating 
medical staff. Another limitation is the study’s lack of access to detailed 
environmental and meteorological data, which could have illuminated 
fluctuations in the need for first responders at sea. Enhancing the 
proposed model with this additional data could lead to improvements.

5 Conclusion

This study marks the first predictive analysis of maritime 
emergency medical personnel incidents in the South China Sea, 
specifically within China’s Hainan region, covering the period from 
2016 to 2021. It was found that the SARIMA, DBN, and ARIMA 
models are all effective in forecasting the need for emergency 
medical treatment at sea. Among these, the SARIMA method 
stood out for its superior accuracy over the DBN and ARIMA 
approaches. By applying the SARIMA (1, 0, 0) (0, 1, 1)12 model to 
forecast the number of first aid responders at sea, this research 
provides valuable scientific insights for policymakers in 
management. It supports dynamic training of personnel, planning 
for human resource allocation, and optimizing resource use.

FIGURE 10

Fitting and prediction plots of ARIMA, SARIMA, and DBN models.
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Glossary

COVID-19 Corona Virus Disease 2019

U.K. United Kingdom

EMS Emergency medical services

ARIMA Auto-regressive Integrated Moving Average

SARIMA Seasonal Auto-regressive Integrated Moving Average

DBNs Dynamic Bayesian networks

LASSO Least Absolute Shrinkage and Selection Operator

OLS Ordinary least square

BNs Bayesian networks

DAG Directed acyclic graph

ACF Auto-correlation function

PACF Partial auto-correlation function

ADF test Augmented Dickey-Fuller Test

AIC Akaike’s information criterion

RE Relative error

MAE Mean absolute error

RMSE Root mean square error

R2 The coefficient of determination

MA Moving Average

AR Auto-Regressive

LB test Ljung-Box Test
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