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Background: The rising prevalence of diabetes underscores the need 
for identifying effective prevention strategies. Recent research suggests 
environmental factors, particularly heavy metals like copper, significantly 
influence health outcomes, including diabetes, through mechanisms involving 
inflammation and oxidative stress. This study aims to explore how serum copper 
levels affect blood glucose, employing NHANES data from 2011 to 2016, to 
provide insights into environmental health’s role in diabetes prevention and 
management.

Methods: The study analyzed data from 2,318 NHANES participants across 
three cycles (2011–2016), focusing on those with available data on serum 
copper, inflammatory markers, and blood glucose levels. We utilized principal 
component analysis for selecting inflammatory markers, mediation analysis 
to examine direct and indirect effects, multiple linear regression for assessing 
relationships between markers and glucose levels, and weighted quantile sum 
regression for evaluating individual and collective marker effects, adjusting for 
demographic variables and serum copper.

Results: Participants averaged 42.70  years of age, with a near-even split 
between genders. Average serum copper was 119.50  μg/dL, white blood 
cell count 6.82 × 109/L, and fasting blood glucose 107.10  mg/dL. Analyses 
identified significant mediation by inflammatory markers (especially white blood 
cells: 39.78%) in the copper-blood glucose relationship. Regression analyses 
highlighted a positive correlation between white blood cells (estimate: 1.077, 
95% CI: 0.432 to 2.490, p  =  0.013) and copper levels and a negative correlation 
for monocyte percentage (estimate: −1.573, 95% CI: 0.520 to −3.025, p  =  0.003). 
Neutrophil percentage was notably influential in glucose levels. Sensitive 
analyses confirmed the study’s findings.

Conclusion: Serum copper levels significantly impact blood glucose through 
inflammatory marker mediation, highlighting the importance of considering 
environmental factors in diabetes management and prevention. These findings 
advocate for public health interventions and policies targeting environmental 
monitoring and heavy metal exposure reduction, emphasizing the potential of 
environmental health measures in combating diabetes incidence.
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1 Introduction

High blood glucose, indicative of diabetes, leads to a significant 
and often irreversible decline in health, contributing to cardiovascular 
diseases, kidney failure, and vision loss (1–4). It represents a major 
cause of disability worldwide, with a growing prevalence especially 
alarming among the older adult (5). These highlight the urgency in 
identifying effective primary prevention measures for managing high 
blood glucose (BG) levels (6, 7).

One of the myriad factors influencing BG levels is the 
concentration of heavy metals in serum. Beyond dietary influences, 
the prevalence of diabetes mellitus is notably exacerbated by exposure 
to various environmental contaminants, including heavy metals, 
whose presence in the atmosphere has surged alongside 
industrialization (8–10). Research indicates a substantial positive 
correlation between the concentration of heavy metals in the blood 
and their atmospheric levels, suggesting that the accumulation of 
specific heavy metals in the human body impacts BG concentration 
(11). For instance, cadmium (Cd) accumulation in insulin-producing 
β-cells can diminish insulin release and elevate BG levels, while lead 
(Pb) has been linked to increased insulin resistance and a higher risk 
of diabetes mellitus (12, 13).

Inflammation also plays a critical role in regulating BG levels. 
Insights from the Framingham Offspring Study reveal a direct 
correlation between insulin resistance and elevated markers of 
oxidative stress. This oxidative stress compromises the ability of 
muscle and adipose tissues to absorb glucose, as well as impairing 
pancreatic islet cells’ insulin secretion capacity, thereby contributing 
to higher BG concentrations (14). Reactive oxygen species generated 
within the body inflict damage on cellular DNA, membranes, lipids, 
and proteins, further inducing the expression of inflammatory genes. 
Such inflammation disrupts insulin-mediated metabolic pathways, 
culminating in insulin resistance (15).

Serum heavy metal concentrations are mainly related to the 
external environment, with heavy metals entering the body through 
inhalation, ingestion, and dermal contact, while inflammation and 
oxidative stress are usually caused by other in vivo abnormalities (16). 
Relevant studies have shown that heavy metal exposure induces 
systemic inflammatory responses, and disruption of metal ion 
homeostasis can also lead to oxidative stress, for example, Cu induces 
oxidative stress through two pathways, namely, catalyzing the 
formation of ROS via a related reaction as well as decreasing 
glutathione levels, and zinc deficiency increase oxidative damage 
levels to some degree, thus it is envisioned that serum heavy metals 
affect BG levels as being mediated by inflammation and oxidative 
stress in vivo (16–18).

However, although existing researches have highlighted the roles 
of diet and genetic factors in the onset of diabetes, in-depth studies 
into the impact of environmental factors, particularly heavy metals, 
on diabetes were scarce. As environmental exposure to heavy metals 
such as Cd has been confirmed to increase the risk of diabetes, there 

still remains a significant research gap regarding how copper, a 
common environmental metal, affects blood glucose levels through 
internal biological processes. Moreover, although inflammation was 
widely considered key pathways in the progression of diabetes, 
systematic studies on how these pathways mediate the interaction 
between copper and blood glucose levels are extremely limited. 
Current research tends to focus on individual biomarkers, overlooking 
the complexities of the combined effects of multiple markers.

Therefore, the present study was to analyze the correlation 
between Cu and the concentration of BG and the mediating role of 
inflammatory factors therein by means of a large-scale cross-sectional 
study based on the NHANES database.

2 Materials and methods

2.1 Study population

Led by the National Center for Health Statistics (NCHS) at the 
Centers for Disease Control and Prevention (CDC), NHANES is a 
biannual program of studies designed to assess the health and 
nutritional status of adults and children in the United States. NHANES 
is designed as a multiyear, stratified, clustered four-stage sample of 
non-institutionalized civilians with fixed sample-size targets for 
sampling domains defined by age, sex, race and ethnicity, and 
socioeconomic status, with data released in 2-y cycles.

Participants gave informed consent of the survey process and their 
rights as a participant, and the survey was approved by the NCHS 
Review Board.27 Questionnaires were administered in-home followed 
by standardized health examinations in specially equipped mobile 
examination centers. Publicly available, de-identified, and detailed 
health data sets are available on the NHANES website.1 We acquired 
all data from the NHANES database that measured Cu levels in serum, 
including 3 2-y cycles (2011–2016) and all of the cycles with available 
data on blood and urinary metals and detailed drug use, to create a 
larger and more geographically diverse sample.

2.2 Exclusion criteria

Data from 3 cycles of NHANES from 2011 to 2016 were used in 
this study. First, a total of 29,902 individuals participated in the cross-
sectional study. After excluding participants without serum copper 
concentration, inflammatory markers, and BG concentration data 
types, 2,318 participants were included in this study. In addition to 
performing PCA by substituting missing values using mean or median 
for missing values, we excluded participants with missing data, and 

1 https://wwwn.cdc.gov/nchs/nhanes/
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2,162 participants were included in subsequent statistical analyses. 
Finally, for sensitivity analyses (when adjusted for demographic 
variables and metal concentrations), we excluded participants with 
missing data on demographic variables, and a total of 1873 participants 
were included (Figure 1).

The NHANES database was approved by the National Center for 
Health Statistics and was directly accessible to researchers who met 
eligibility requirements. All participants in the database signed an 
informed consent form.

2.3 Measurement of serum Cu

Serum specimens were processed and stored under appropriate 
frozen (−70°C) conditions until they were shipped to the National 
Center for Environmental Health for analysis. Serum Cu 
concentrations were measured by inductively coupled plasma dynamic 
reaction cell mass spectrometry (ICP-DRC-MS)—a multi-element 
analytical technique capable of trace-level elemental analysis. Liquid 
samples were introduced into the ICP through a nebulizer and spray 
chamber carried by a flowing argon stream. Radio-frequency power 
was coupled into flowing argon to form a plasma. The sample passed 
through a region of the plasma, and the thermal energy atomized the 
sample and then ionized the atoms. The ions, along with the argon, 
entered the mass spectrometer through an interface that separated the 

ICP from the mass spectrometer. The ions passed through a focusing 
region, dynamic reaction cell, and the quadrupole mass filter, and 
finally, were counted in rapid sequence at the detector allowing 
individual isotopes of an element to be  determined. The isotopes 
measured by this method included Zn (m/z 64), Cu (m/z 65), and Se 
(m/z 78), as well as the internal standard, gallium (m/z 71). Serum 
samples were diluted 1 + 1 + 28 with water and diluent containing 
gallium (Ga) for multi-internal standardization.

2.4 Measurement of inflammation 
biomarkers

Fasting blood sample of the participants for the laboratory tests 
was collected by the mobile examination center phlebotomist. The 
NHANES laboratory manual provides the reference ranges on 
laboratory parameters in the form of lower and upper limits. Analysis 
for the complete blood count was done in the mobile examination 
center, and refrigerated or frozen blood samples were transported and 
analyzed in the central laboratories for the other parameters.

The DxC800 with lactate dehydrogenase (LDH) reagent (using 
lactate as substrate) utilizes an enzymatic rate method to measure 
LDH activity in biological fluids. The DxC600i system or DxC800 
system uses a kinetic rate method using a 2-Amino-2-Methyl-1-
Propanol (AMP) buffer to measure alkaline phosphatase (ALP) 

FIGURE 1

Study flowchart.

https://doi.org/10.3389/fpubh.2024.1401347
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Cheng et al. 10.3389/fpubh.2024.1401347

Frontiers in Public Health 04 frontiersin.org

activity in serum or plasma. For the processing of CRP, latex-enhanced 
nephelometry with particle-enhanced assays was used for quantitation. 
These assays were performed on a Behring Nephelometer for 
quantitative CRP determination. The methods used to derive complete 
blood count (CBC) parameters [white blood cell (WBC), segmented 
neutrophils (Nsg), lymphocyte (Lym), monocyte count (Mono), 
eosinophils (Eos) and basophils (Baso)] are based on the Beckman 
Coulter method of counting and sizing, in combination with an 
automatic diluting and mixing device for sample processing. The 
Beckman Coulter MAXM instrument in the Mobile Examination 
Centers (MECs) produces a CBC on blood specimens.

2.5 Measurement of BG

The method for measuring BG levels involves using the Roche 
Cobas C311 system, which first requires the patient to be fasting or to 
undergo an oral glucose tolerance test. Blood is collected via 
venipuncture, and plasma samples are collected in fluoride-containing 
gray top tubes, with a minimum volume of 200 microliters. To reduce 
sugar decomposition, the collected samples must be  immediately 
placed in an ice water bath, and plasma and cells must be separated 
within 30 min. If testing is not conducted immediately, the samples are 
then frozen and stored at −70°C. The measurement principle is based 
on the reaction catalyzed by hexokinase between glucose and ATP to 
produce glucose-6-phosphate (G-6-P) and ADP, then G-6-P is further 
oxidized by glucose-6-phosphate dehydrogenase, simultaneously 
generating NADH directly proportional to the glucose concentration, 
which is measured by spectrophotometry at 340 nanometers. System 
calibration and quality control are performed before testing to ensure 
the accuracy and repeatability of the results. The Roche Cobas C311 
automatically calculates the glucose concentration, and the results are 
reported in mg/dL or mmol/L.

2.6 Covariates

Age, sex, race and ethnicity, education, marriage, and PIR were 
acquired from self-reported questionnaires on demographic 
information. Race and ethnicity are classified as Mexican American, 
Other Hispanic, Non-Hispanic White, Non-Hispanic Black, and 
Other Race (including Multiple Races) based on self-identification 
originally designated by NHANES. “Other Race” encompasses all 
other races, including Non-Hispanic Asians and individuals reporting 
multiple races. Common exposures to other metals (e.g., dietary) may 
vary by race and ethnicity, hence are adjusted for in our models. 
Education is reclassified into Less than 9th grade, 9–11th grade 
(Includes 12th grade with no diploma), High school graduate/GED or 
equivalent, Some college or AA degree, and College graduate or above. 
Marital status is divided into married, widowed, divorced, separated, 
never married, living with partner, refused, and missing.

2.7 Statistical analysis

First, we  utilized PCA to determine the combination of 
inflammatory markers adopted in this study. Second, we conducted a 
descriptive analysis of the serum copper (Cu), inflammatory markers, 

and BG concentration in the included population, reporting mean, 
standard deviation, median, and quartiles.

Third, we performed mediation analysis to explore the direct and 
indirect relationships and the extent of mediation effect using 
non-parametric bootstrapping (n = 1,000).

Fourth, we conducted linear regression analysis to investigate the 
mixed effects of different inflammatory markers on glucose 
concentration. Fifth, we performed WQS regression analysis to assess 
the comprehensive and individual effects of inflammatory markers on 
BG concentration by calculating weighted linear indices and assigning 
corresponding weights. In this study, 10,000 bootstrap iterations were 
used to construct positive and negative WQS indices. When the WQS 
index was significant, the corresponding weights were examined to 
determine the relative contribution of each heavy metal in the index 
to glucose concentration. The dataset was randomly split, with 40% 
allocated to the training set and the remaining 60% as the 
validation set.

Finally, we conducted the sensitivity analysis. We adjusted for 
demographic variables in mediation analyses and for serum copper 
concentrations as well as demographic variables in MLRA, WQS 
regression analyses. We also performed sensitivity analyses of PCA 
using different missing value treatments to determine the optimal 
combination of inflammatory indicators for inclusion in the study.

Adjusted for demographic factors, weighted data was not used. All 
analyses, including WQS, MLRA (Multiple Linear Regression 
Analysis), and mediation analysis, were conducted using R software. 
A p-value of <0.05 was considered statistically significant.

3 Results

3.1 General information

This study involved 2,318 participants (Table  1), evenly split 
between males (50.17%, n = 1,163) and females (49.83%, n = 1,155), 
with an average age of 42.70 years (SD = 15.34). The population was 
diverse, including Mexican American (14.41%), other Hispanic 
(12.21%), non-Hispanic White (33.69%), non-Hispanic Black 
(22.30%), and other races (17.39%). Educational levels ranged from 
less than 9th grade (8.02%) to college graduate or above (26.92%). 
Marital status varied, with 47.63% married and 21.05% never married. 
The median poverty income ratio (PIR) was 1.94 (IQR = 0.97–3.81).

3.2 Principal component analysis

First, we conducted a principal component analysis (PCA) to 
explore the combination of inflammatory markers in the study. 
We calculated the standard deviation (S.D.) and explained variance 
(VER) for each marker, resulting in the cumulative explained variance 
(CVER) across the components.

After imputing missing values with the mean, the analysis 
indicated that WBC count, Lym percentage, Mono percentage, Nsg 
percentage, Eos percentage and Baso percentage exhibited higher 
variances, with their cumulative variance accounting for a substantial 
majority of data variability (Table  2). Similarly, imputing missing 
values with the median or removing missing values altogether yielded 
comparable results.
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3.3 Level of serum Cu, inflammation 
markers and BG

Then, we analyzed the baseline levels for serum Cu, WBC count, 
Lym percentage, Mono percentage, Nsg percentage, Eos percentage, 
Baso percentage, and BG (Table 3). The mean serum Cu level was 
found to be 119.50 μg/dL, with a standard deviation (SD) of 32.04, 
highlighting a moderate variability among individuals. WBC count 
averaged at 6.82 × 109/L. Lym percentage, Mono percentage, Nsg 
percentage, Eos percentage, and Baso percentage demonstrated 
diverse immune cell distribution, with mean values of 31.67, 7.89, 
56.77, 2.98, and 0.76%, respectively. The mean BG level was noted at 
107.10 mg/dL (SD = 36.62).

3.4 Mediation analysis

Then, we conducted the mediation analysis investigating the 
role of inflammatory factors in the relationship between serum Cu 
levels and BG, we focused on four intermediary variables: WBC 
count, Lym percentage, Mono percentage, Nsg percentage (Table 4). 
The analysis revealed significant mediation effects, with WBC count 
showing a substantial mediation proportion of 39.78% (p = 0.0004), 
indicating a strong mediator role. Lym percentage displayed a 
moderate mediation effect with a proportion of 10.16% (p = 0.0421), 
while Mono percentage also demonstrated significant mediation, 
with a proportion of 33.37% (p = 0.0006). Nsg percentage 
contributed notably as well, with a mediation proportion of 20.82% 
(p = 0.0076).

3.5 Multiple linger regression analysis

Building on the results from the mediation analysis, we further 
investigated the influence of significant mediatory variables on the 
relationship between serum Cu levels and BG through multiple linear 
regression analysis.

The WBC presented a positive and significant association with 
serum Cu (estimate: 1.077, 95% CI: 0.432 to 2.490, p = 0.013), 
suggesting higher WBC counts correspond with increased serum Cu 
levels. Mono showed a notable negative relationship (estimate: −1.573, 
95% CI: 0.520 to −3.025, p = 0.003), indicating that higher Mono is 
associated with decreased serum Cu levels. Lym and Nsg did not 
demonstrate statistically significant associations (p-values of 0.126 and 
0.210, respectively) (Table 5).

3.6 WQS regression models

Subsequently, we employed WQS regression analysis to further 
explore the weighted impact of inflammatory factors on BG. The 
WQS regression results showed that the overall model estimate 
was 4.7167, with statistical significance (p-value = 0.0216), 
indicating a significant effect of the combination of inflammatory 
factors on BG. Among the inflammatory factors, Nsg had the 
highest weight coefficient (0.4472). WBC and Lym had weight 
coefficients of 0.3558 and 0.1954, respectively. Meanwhile, the 
weight coefficient for Mono was 0.0015, indicating its relatively 
minor impact on BG.

3.7 Sensitive analysis

We conducted several sensitivity analyses to verify the stability of 
our research results. Initially, after adjusting for demographic variables 
in the mediation analysis, the results showed a significant increase in 
the mediation effects of WBC and Mono (p < 0.005), while the 
mediation effect of Lym became non-significant (p = 0.7203) 
(Supplementary Table S1). Secondly, upon adjusting for serum Cu 
levels and then for serum Cu levels plus demographic variables in the 
MLRA, the negative correlation between Mono and serum Cu levels 
remained significant across all models (P < =0.003), whereas the 
correlation of WBC became non-significant after including 

TABLE 1 Baseline characteristics of participants included in the study.

Item Data

n 
(Mean)

% 
(SD)

Median 
(Q1, Q3)

Population 2,318 / /

Gender
Male 1,163 50.17 /

Female 1,155 49.83 /

Age 42.70 15.34
42.00 (29.00, 

56.00)

Race

Mexican American 334 14.41 /

Other Hispanic 283 12.21 /

Non-Hispanic White 781 33.69 /

Non-Hispanic Black 517 22.30 /

Other Race – Including 

Multi-Racial
403 17.39 /

Education 

level

Less than 9th grade 186 8.02 /

9–11th grade (Includes 

12th grade with no 

diploma)

332 14.32 /

High school graduate/

GED or equivalent
512 22.09 /

Some college or AA 

degree
664 28.65 /

College graduate or 

above
624 26.92 /

Missing 0 0.00 /

Marital 

status

Married 1,104 47.63 /

Widowed 64 2.76 /

Divorced 231 9.97 /

Separated 69 2.98 /

Never married 488 21.05 /

Living with partner 206 8.89 /

Refused 2 0.09 /

Missing 154 6.64 /

PIR 2.37 1.64
1.94 (0.97, 

3.81)

PIR stands for “People Income Ratio”.
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demographic variables (p = 0.072) (Supplementary Table S2). 
Additionally, in the WQS regression model, after adjusting for serum 
Cu levels and for serum Cu levels plus demographic variables, the 
overall estimate of the model significantly increased, with the p-value 
decreasing from 0.0216 to 0.0002, indicating an enhanced significance 
of the model under different adjustments (Supplementary Table S3).

4 Discussion

Long-term hyperglycemia can lead to serious complications, 
including cardiovascular diseases, diabetic neuropathy, nephropathy, 
and retinopathy (19–23). These conditions significantly increase 
morbidity and mortality among diabetic patients. Recent studies have 
also indicated that heavy metals are key factors in the pathogenesis of 
several diseases, including obesity, metabolic syndrome, and 
hypertension (24–26). Environmental pollution caused by heavy 
metals has become an ongoing concern worldwide (27, 28). In recent 
years, the impact of exposure to individual heavy metals on blood 
glucose levels has garnered widespread attention. These metals, by 
interfering with the body’s normal metabolic functions, may increase 
the risk of diabetes. Research covering various heavy metals, including 
manganese (29), nickel (30), mercury (31), cadmium (32), and lead 
(33), has indicated that they disrupt glucose metabolism and insulin 
sensitivity through different mechanisms, thereby affecting blood 
glucose levels. However, all of the above studies did not include copper 
exposure, so it remains uncertain whether copper exposure is 

associated with abnormal changes in blood glucose in heavy 
metal mixtures.

In this study, we  investigated the serum copper levels, 
inflammatory markers, and fasting blood glucose levels among 2,318 
participants, uncovering a range of meaningful results. The average 
serum Cu level was found to be 119.50 μg/dL, indicating moderate 
variability among individuals. Through PCA, we identified that WBC, 
Lym, Mono, and Nsg as inflammatory markers occupied significant 
positions in the variability of the data. Mediation analysis further 
revealed the important mediating roles of WBC, Lym, Mono, and Nsg 
in the relationship between serum Cu levels and BG, with WBC 
showing the highest mediation proportion at 39.78%, and Nsg 
showing the lowest at 20.82%. During MLRA, we observed a positive 
correlation between WBC and serum Cu levels, while Mono showed 
a negative correlation with serum Cu levels. Additionally, using the 
WQS regression model, we  explored the cumulative impact of 
inflammatory factors on BG and found a significant effect of the 
combination of inflammatory markers on BG levels. Sensitivity 
analysis confirmed the robustness of these findings, with the estimates 
of mediation effects and the WQS regression model being 
strengthened after adjusting for demographic variables.

Accumulating evidence supports the role of inflammation in the 
abnormal changes in blood glucose (34). Lin et al. (35) revealed the 
relationship between excessive intake of sugary drinks and abdominal 
obesity with diabetes and the elevation of C-reactive protein (CRP) 
levels, emphasizing the positive correlation between sugar intake and 
CRP levels in adults with prediabetes. Moreover, Mi et al. (36) found 

TABLE 2 Factor loadings of 11 inflammation indicators based on principal component analysis.

WBC LymPCT MonoPCT NsgPCT EosPCT BasoPCT LymC MonoC NsgC EosC BasoC

Model I

  S.D. 1.8627 1.5654 1.3369 1.2126 1.2050 0.4465 0.2698 0.2377 0.2028 0.0230 0.0062

  VER 0.3154 0.2228 0.1625 0.1337 0.1320 0.0181 0.0066 0.0051 0.0037 0.0001 0.0000

  CVER 0.3154 0.5382 0.7007 0.8343 0.9663 0.9845 0.9911 0.9962 1.0000 1.0000 1.0000

Model II

  S.D. 1.8618 1.5671 1.3359 1.2086 1.2047 0.4540 0.2757 0.2377 0.2035 0.0310 0.0147

  VER 0.3151 0.2233 0.1622 0.1328 0.1319 0.0187 0.0069 0.0051 0.0038 0.0001 0.0000

  CVER 0.3151 0.5384 0.7006 0.8334 0.9653 0.9841 0.9910 0.9961 0.9999 1.0000 1.0000

Model III

  S.D. 1.8627 1.5654 1.3369 1.2126 1.2050 0.4465 0.2697 0.2377 0.2028 0.0204 0.0062

  VER 0.3154 0.2228 0.1625 0.1337 0.1320 0.0181 0.0066 0.0051 0.0037 0.0000 0.0000

  CVER 0.3154 0.5382 0.7007 0.8343 0.9663 0.9845 0.9911 0.9962 1.0000 1.0000 1.0000

LymPCT, Lym percentage; MonoPCT, mono percentage; NsgPCT, Nsg percentage; EosPCT, Eos percentage; BasoPCT, Baso percentage; LymC, Lym count; MonoC, Mono count; NsgC, Nsg 
count; EosC, Eos count; BasoC, Baso count. Model I used the overall mean to fill in the missing values, Model II used the overall median to fill in the missing values, and Model III removed 
the missing values.

TABLE 3 Level of serum Cu, inflammation markers and blood glucose among the participants included in the study.

Mean SD Median Q1 Q3 Mean SD Median Q1 Q3

Serum Cu 119.50 32.04 113.80 98.00 133.98 NsgPCT 56.77 9.46 57.10 50.50 63.30

WBC 6.82 2.05 6.50 5.40 7.90 EosPCT 2.98 2.21 2.40 1.60 3.70

LymPCT 31.67 8.52 31.20 25.80 36.80 BasoPCT 0.76 0.45 0.70 0.50 0.90

MonoPCT 7.89 2.20 7.60 6.40 9.10 BG 107.10 36.62 99.00 92.00 108.00

LymPCT, Lym percentage; MonoPCT, Mono percentage; NsgPCT, Nsg percentage; EosPCT, Eos percentage; BasoPCT, Baso percentage.
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that the Dietary Inflammatory Index (DII) is positively associated 
with insulin resistance in adults of normal and healthy weight, 
highlighting the potential value of anti-inflammatory diets in the 
prevention or management of insulin resistance. Furthermore, Yuan 
et al. (37) explored the relationship between the DII and long-term 
all-cause and cardiovascular mortality, pointing out that high DII 
scores are associated with an increased risk of long-term all-cause and 
cardiovascular mortality in patients with diabetes.

Given this common pathogenesis, it is reasonable to investigate 
whether Cu exposure leads to abnormal changes in BG through 
inflammation. In this study, we found that WBC, Lym, Mono, and Nsg 
were involved in the positive correlation between serum Cu 
concentration and changes in BG concentration, accounting for 39.78, 
10.16, 33.37, and 20.82%, respectively, in the mediation analysis. 
Therefore, we  hypothesized that excessive Cu exposure promotes 
inflammation and thus increases blood glucose concentration.

The results of our sensitivity analysis underscore the stability of our 
findings when considering the effects of serum copper levels and 
demographic variables. Notably, the negative correlation between Mono 
and serum Cu levels remained consistent across various model 
adjustments, highlighting the potential of Mono as a robust indicator of 
serum Cu levels. However, the association between WBC and serum Cu 
levels became non-significant after adjusting for demographic variables, 
suggesting the need to consider a broader range of demographic and 
biological factors when evaluating the relationship between biomarkers 
and environmental exposure (38, 39). Finally, the results of the WQS 
model further support the importance of the relationship between 
serum Cu levels and health outcomes under different adjustments.

Our study possesses several strengths. First, this research 
constitutes the inaugural investigation into the impact of Cu exposure 
on BG concentration via inflammatory factors. Second, we utilized a 
variety of statistical methodologies and adjusted for potential 
confounding variables to enhance the robustness and reliability of our 
findings. Third, all data were sourced from a large population database 
and adhered to stringent quality control measures. However, this 
study also has certain limitations. First, due to its cross-sectional 
design, we cannot ascertain the causality between copper exposure 

and alterations in blood glucose levels. Second, the NHANES database 
lacks data on uncontrollable factors, such as exposure to wastewater 
and cosmetics, which might affect the accuracy of our results. Third, 
not considering the cumulative amount of copper exposure could 
impact the outcomes.

As for the future direction and suggestion, it is necessary to 
conduct long-term longitudinal studies to determine the causal 
relationship between Cu exposure and BG levels, and explore its 
molecular mechanisms, particularly how Cu affects BG regulation 
through inflammatory pathways. Moreover, we  should further 
investigate how environmental Cu exposure interacted with lifestyle 
factors such as diet and physical activity to collectively influenced the 
development of abnormal BG concentration. Most importantly, for 
populations living in areas of high heavy metal exposure, healthcare 
providers should consider regular testing for serum Cu and other 
relevant biomarkers as part of routine health screenings. In addition, 
specific nutritional and medical advice should be provided to these 
populations to reduce the potential health risks of heavy 
metal exposure.

5 Conclusion

This research with 2,318 NHANES participants conclusively 
demonstrated that serum Cu levels significantly influenced BG 
concentrations through specific inflammatory markers, suggesting 
reducing heavy metal exposure in the environment could lower the 
risk of developing diabetes. Mediation analyses revealed the impact of 
inflammatory markers on BG, emphasizing the role of public health 
measures to reduce heavy metal exposure and consider environmental 
factors in reducing diabetes.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 

TABLE 4 The mediating effects of the relationship between serum Cu and BG.

Intermediary 
Variable

Indirect effects β (95% CI) Direct effects β (95% CI) Total effects β (95% CI) Mediated 
proportion

p-
value

Estimate CI 
lower

CI 
upper

Estimate CI 
lower

CI 
upper

Estimate CI 
lower

CI 
upper

WBC 0.0234 −0.0193 0.0661 0.0155 0.0069 0.0240 0.0389 −0.0032 0.0810 0.3978 0.0004

LymPCT 0.0350 −0.0072 0.0771 0.0040 0.0001 0.0078 0.0389 −0.0032 0.0810 0.1016 0.0421

MonoPCT 0.0259 −0.0166 0.0684 0.0130 0.0055 0.0204 0.0389 −0.0032 0.0810 0.3337 0.0006

NsgPCT 0.0308 −0.0116 0.0732 0.0081 0.0022 0.0141 0.0389 −0.0032 0.0810 0.2082 0.0076

LymPCT, Lym percentage; MonoPCT, Mono percentage; NsgPCT, Nsg percentage.

TABLE 5 Association between potential mediators and BG determined by MLRA.

Variable Unadjusted model Variable Unadjusted model

Estimate Lower 
CI

Upper 
CI

p-value Estimate Lower 
CI

Upper 
CI

p-value

WBC 1.0769 0.4325 2.4902 0.0128 MonoPCT −1.5743 −2.5988 −0.5498 0.0026

LymPCT −0.5403 0.3529 −1.5309 0.1259 NsgPCT −0.4527 −1.1208 0.2154 0.1840

LymPCT, Lym percentage; MonoPCT, Mono percentage; NsgPCT, Nsg percentage.
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number(s) can be  found at: https://wwwn.cdc.gov/nchs/nhanes/
Default.aspx.
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