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Purpose: Limited investigation is available on the correlation between 
environmental phenols’ exposure and estimated glomerular filtration rate 
(eGFR). Our target is established a robust and explainable machine learning (ML) 
model that associates environmental phenols’ exposure with eGFR.

Methods: Our datasets for constructing the associations between environmental 
phenols’ and eGFR were collected from the National Health and Nutrition 
Examination Survey (NHANES, 2013–2016). Five ML models were contained 
and fine-tuned to eGFR regression by phenols’ exposure. Regression evaluation 
metrics were used to extract the limitation of the models. The most effective 
model was then utilized for regression, with interpretation of its features carried 
out using shapley additive explanations (SHAP) and the game theory python 
package to represent the model’s regression capacity.

Results: The study identified the top-performing random forest (RF) regressor 
with a mean absolute error of 0.621 and a coefficient of determination of 
0.998 among 3,371 participants. Six environmental phenols with eGFR in 
linear regression models revealed that the concentrations of triclosan (TCS) 
and bisphenol S (BPS) in urine were positively correlated with eGFR, and the 
correlation coefficients were β  =  0.010 (p  =  0.026) and β  =  0.007 (p  =  0.004) 
respectively. SHAP values indicate that BPS (1.38), bisphenol F (BPF) (0.97), 
2,5-dichlorophenol (0.87), TCS (0.78), BP3 (0.60), bisphenol A (BPA) (0.59) and 
2,4-dichlorophenol (0.47) in urinary contributed to the model.

Conclusion: The RF model was efficient in identifying a correlation between 
phenols’ exposure and eGFR among United  States NHANES 2013–2016 
participants. The findings indicate that BPA, BPF, and BPS are inversely associated 
with eGFR.
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1 Introduction

As a common economic stress and public health event, chronic 
kidney disease (CKD) has a significant impact on global health and 
has been recognized as a leading public health problem worldwide (1). 
The estimated glomerular filtration rate (eGFR) reflects the kidney’s 
ability to filter blood. It has the characteristics of stable results and 
high reproducibility. It is an important clinical indicator for evaluating 
human renal function (2, 3). Not only is it of great value in the 
prevention, diagnosis and treatment of renal function, but eGFR is 
also related to other functions of the body. European Society of 
Cardiology states that the prognostic impact of eGFR on heart failure 
has been well established, decreased eGFR is a better predictor of 
adverse outcome than decreased left ventricular ejection fraction (4). 
A large meta-analysis illustrated that the assessment and inclusion of 
eGFR will provide some support for cardiovascular risk in the general 
population (5). Furthermore, eGFR were associated with all-cause 
mortality among US adults with obstructive lung function (6). 
Therefore, additional studies of eGFR related factors and development 
of prevention strategies are necessary to ensure optimal health care. 
Diabetes and hypertension are the prior factors of abnormal eGFR, 
but other factors, including environmental toxins, also cause abnormal 
changes in eGFR (7). Yufen and colleagues studied the relationship 
between serum concentrations of per-and polyfluoroalkyl substances 
(PFAS) and kidney damage in 1,700 people over 18 years. The results 
show that PFAS has a combined effect on eGFR. Perfluorooctane 
sulfonate (PFOS) concentration is negatively correlated with eGFR, 
while perfluorohexane sulfonate (PFHS) is positively correlated (8).

Phenolic compounds represented by bisphenol A (BPA) and its 
substitutes are widely detected in various foods, consumer products, 
human and animal bodies, and are widely found in multi environmental 
components such as soil, water and air. It is widely distributed in areas 
with high levels of urbanization and industrialization and is a typical 
environmental endocrine disruptor (9). Even at low doses, it can 
stimulate cellular responses and affect body functions (10). In addition 
to the self-toxicity of phenolic compounds, their transformation 
metabolites in vivo may have more complex endocrine disrupting and 
toxic effects than their own compounds (11). Some animal studies have 
suggested that kidney may be  adversely affected by phenolic 
compounds. BPA deregulates autophagy flux and redox protection 
mechanisms, exacerbating chronic kidney injury (12). Kapil et  al. 
showed that bisphenol S (BPS) exposure significantly disrupted rat 
kidney tissue structure, changed kidney injury marker levels, and 
affected kidney metabolic pathways (13). Epidemiological studies have 
also found that phenolic compounds may have adverse effects on renal 
function. Kang evaluated the effect of exposure to phthalates and 
environmental phenols on eGFR in 9008 adults from 2005 to 2016 
National Health and Nutrition Examination Survey (NHANES). 
Moreover, exposure to BPA may be responsible for declined eGFR and 
increased albumin-to-creatinine ratio (ACR) (14). However, phenolic 
compounds are a large class of substances, and previous studies have 
focused on the analysis of BPA. The association between other phenolic 
compounds and eGFR lacks support from population data.

Most traditional statistical models have certain requirements or 
assumptions for the data. However, in most cases, people cannot make 
any assumptions about the distribution of real-world data, and are 
prone to over-fitting or under-fitting, making them unrepresentative. 
Machine learning (ML) does not make any assumptions about the 

data, and the generated results are judged by the cross-validation 
method, getting rid of the classic statistical process of assuming 
distribution, model fitting, hypothesis testing, and p-value comparison. 
It has the advantages of good model prediction effect and cross-
validation results that are easily understood by practical workers. 
Currently commonly used “black box” models, such as one-hot coding 
mlp and random forest (RF), have been widely used to build medical 
risk prediction models and determine potential determinants (15, 16).

Therefore, to provide new insights into the potential influencing 
factors of eGFR, this study utilized data from the 2013–2016 
NHANES, fitted a ML interpretability model, to explore the 
relationship between phenolic exposure and eGFR.

2 Materials and methods

2.1 Study population

NHANES employs a cross-sectional study design and the survey 
data is collected in two-year cycles, which is then made available to 
researchers for analysis. The survey data has been instrumental for 
epidemiological studies and public health policy decision-making, 
covering a wide range of topics including the prevalence of chronic 
diseases, food consumption patterns, and environmental exposures 
(17). A total of 20,146 participants were considered potential study 
subjects. After excluding participants missing environmental phenols 
and serum creatinine data required to calculate eGFR, a total of 3,371 
adults aged 20 years and older were included in our final analytic 
model (Supplementary Figure S1). Multiple imputation was performed 
to impute missing covariate values. To ensure that all the protocols and 
procedures implemented by the program align with the highest ethical 
standards, the National Center for Health Statistics’ ethics review 
board has approved all NHANES protocols. Additionally, the program 
respects the rights and privacy of all participants, and written informed 
consent is always obtained before any data collection takes place.

2.2 Detection of environmental phenols

The NHANES employs a technique called online solid-phase 
extraction, which is coupled with high-performance liquid 
chromatography and tandem mass spectrometry. By using isotopically 
labeled internal standards, they are able to detect phenols in 
non-occupationally exposed subjects’ urine with a limit of 0.1–1.7 
micrograms per liter (μg/L) in 100 μL of urine. Following NHANES 
analysis guidelines, Phenolic below the limit of detection (LOD) were 
expressed using LOD divided by the square root of two (Statistics 
2024). Phenolic substances included in the study include BPA, 
bisphenol F (BPF), BPS, benzophenone-3 (BP3), triclosan (TCS), 
2,5-dichlorophenol (2,5-DCP) and 2,4-dichlorophenol (2,4-DCP) in 
urinary. Phenolic substances concentrations were standardized by 
urine creatinine were used to adjust for urine dilution.

2.3 eGFR calculation

For eGFR calculation, we  used the CKD-Epidemiology 
Collaboration (EPI) equation. The eGFR calculated by the CKD-EPI 
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equation is considered a better diagnostic tool than the modification 
of diet in renal disease equation for diagnosing and staging CKD (18, 
19). Equation as follows: eGFRCKD−EPI (mL/
min/1.73 m2) = 141 × min (Scr/κ, 1) α × max (Scr/κ, 1) 
-1.209 × 0.993Age × 1.018 [if female] × 1.159 [if black], where Scr 
denotes serum creatinine concentration that were measured by the 
Jaffe rate methods, κ is 0.9 for men and 0.7 for women, and α is −0.411 
for males and − 0.329 for females.

2.4 Covariates

We gathered covariate data on research subjects in Demographics, 
Laboratory, and Questionnaire Data of NHANES. The following 
covariate data was collected: 1. General characteristics such as age, 
gender, ethnicity, education level, marital status, family poverty 
income ratio (PIR), body mass index (BMI), and past-year alcohol 
consumption; 2. Medical conditions such as diabetes and 
hypertension based on whether or not they have ever been informed 
by a doctor or other health expert. To simplify the covariate grouping, 
we  categorized the covariates briefly, and the detailed feature 
grouping is shown in Table  1, based on previously published 
relevant literature.

2.5 Statistical analysis

In this study, R 4.2.2 software and python software were used to 
sort out and analyze the data. A two-sided p-value <0.05 was 
considered statistically significant. Different groups of population 
characteristics are statistically described using absolute numbers 
and percentages. In addition, the content and differences of 
log-transformed eGFR between different groups were explored. For 
the normally distributed variables, differences were compared by 
two independent sample t-tests or analysis of variance. For skewed 
variables, geometric mean, the median and interquartile were used 
to describe. Prior to statistical analysis, we established generalized 
additive models to assess potential nonlinear relationships between 
environmental phenol exposure and eGFR. The results show that 
the effective degrees of freedom (EDF) of most models are equal to 
or close to 1. Combined with the consideration of nonlinear p values 
and fitting curves, we believe that the association between eGFR and 
environmental phenols is more likely to be  linear. Therefore, 
we used multiple linear regression to analyze the linear relationship 
between phenolic concentration and eGFR, in which the 
concentration was transformed by natural logarithm. The model 
adjusted for covariates (age, sex, race, BMI, PIR, diabetes, and 
hypertension) with significant differences in eGFR levels between 
groups. Analysis is adjusted for the survey design and 
weighting factors.

Several sensitivity analyses were conducted to examine the 
robustness of our results: (a) covariates with no significant difference 
in eGFR levels between groups were also included in the model for 
adjustment, including marital status, educational level, and alcohol 
drinking; (b) we also used Quantile-based g calculation (QGC) to test 
the associations between environmental phenols joint exposures and 
eGFR and p-value less than 0.05 was considered to have a 
mixture effect.

2.6 ML model strategies

We conducted a study to investigate the impact of phenol exposure 
on eGFR. To accomplish this, we divided our research data into two 
parts: 80% for training and 20% for testing. We employed five distinct 
ML models, namely Adaptive Boosting (AdaBoost), Support Vector 
Machine (SVM), RF, Decision Tree (DT), and K-Nearest Neighbors 
(KNN), to analyze the data. In general, AdaBoost is highly accurate for 
training data, but it may sacrifice accuracy with unbalanced datasets 
and increase computational time (20). SVM, effective for non-linear 
and high-dimensional data, remains relatively unaffected by the nature 
of the data (21). RF excels in analyzing high-dimensional data and is 
robust against noise, but its time complexity escalates with larger 
datasets (22). DT stands out for its ease of understanding and capacity 
for visual analysis, but it’s susceptible to overfitting (23). Lastly, KNN 
is notable for its accuracy, outlier insensitivity, and simplicity, though 
it also suffers from high time complexity (24). Each model was chosen 
for its unique characteristics and potential in eGFR regression. We used 
a set of features that included population baseline characteristics, 
electronic health records, and the concentration level of environmental 
phenols to train five ML models from sci-kit learn on United States 
NHANES datasets. The models were trained using 17 features training 
datasets. Since the outcome characteristics are continuous variables, 
we  evaluated the ability of the ML model through regression to 
generalization using the mean average error and the coefficient of 
determination to achieve the best model fitting effect. This measure 
indicates how effective the regression is in predicting outcomes to 
select a better interpretable model, quantifying how well the 
independent variables in the regression model explain the variation in 
the dependent variable (25, 26).

During the training phase, we used the designated training sets to 
fine-tune these five ML models. The testing sets were then utilized to 
evaluate their effectiveness. We assessed each model’s distinct features to 
identify the most appropriate one for kidney detection. To achieve this, 
we have employed three widely-used evaluation metrics: Mean Squared 
Error (MSE), Mean Absolute Error (MAE), and the coefficient of 
determination. These metrics, when combined, provide a holistic view of 
our models’ accuracy and explanatory power. MSE quantifies the average 
squared difference between predicted and actual values, offering insight 
into the magnitude of errors. Conversely, MAE measures the average 
absolute difference, offering a more intuitive interpretation of the average 
prediction error. The coefficient of determination represents the 
proportion of variance in the target variable explained by the model, 
ranging from 0 (no explanatory power) to 1 (perfect prediction). By 
combining these metrics, we aim to provide a comprehensive evaluation 
of our models’ performance. Additionally, we applied shapley additive 
explanations (SHAP) values to elucidate the chosen model, focusing on 
impact factors associated with eGFR in participants from 2013 to 2016 
(27, 28). This method has been widely used in many medical 
prediction models.

3 Results

3.1 Characteristics of the study population

Table 1 shows the general demographic characteristics of the 3,371 
subjects, evenly distributed across gender, age groups (male (50.6%); 
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20–39 (33.5%), 40–59 (33.9%), and 60–79 (32.6%)). The eGFR of total 
population was 94.59 ± 23.62 mL/min/1.73 m2 (mean ± standard 
error), with high eGFR appeared to be  more likely to be  female, 
Mexican American, have a lower BMI and have no underlying medical 
conditions. However, there were no significant differences in eGFR 
levels among the various groups of marital status, education level and 
alcohol consumption.

3.2 Phenolic substance concentration in 
urine

Table 2 presents descriptive statistics of geometric means and 
geometric standard deviations of eGFR and environmental phenols 
levels. Among all the subjects, the geometric means of eGFR level was 
90.94 ng/mg creatinine, and the medians was 96.22 ng/mg creatinine. 

TABLE 1 Demographic and socio-behavioral characteristics and eGFR of the study population.

N (%) eGFR (mL/min/1.73  m2)a p-valueb

Total 3,371 (100) 94.59 (23.62)

Gender 0.004

  Male 1,580 (46.9) 92.91 (22.33)

  Female 1791 (53.1) 96.08 (24.61)

Age (year) <0.001

  20–39 1,128 (33.5) 112.45 (17.52)

  40–59 1,143 (33.9) 95.77 (17.36)

  60–79 1,100 (32.6) 75.06 (19.29)

Race/ethnicity <0.001

  Mexican American 513 (15.2) 100.03 (22.58)

  Other Hispanic 377 (11.2) 95.55 (20.60)

  Non-Hispanic White 1,243 (36.9) 88.00 (22.51)

  Non-Hispanic Black 733 (21.7) 99.02 (27.07)

  Other groups 505 (15.0) 98.17 (20.09)

Educational level 0.225

  Below high school 770 (22.8) 93.44 (24.28)

  High school 746 (22.1) 95.33 (24.54)

  Above high school 1855 (55.1) 94.78 (22.95)

Body mass index <0.001

  <25 kg/m2 935 (27.7) 97.66 (23.80)

  >25 to <30 kg/m2 1,102 (32.7) 91.97 (23.37)

  >30 kg/m2 1,334 (39.6) 94.61 (23.45)

Poverty: income ratio 0.009

  ≤1 682 (20.2) 97.61 (25.66)

  >1 2,689 (79.8) 93.83 (23.01)

Marital status 0.422

  Married/living with partner 2020 (59.9) 94.34 (21.76)

  Widowed/divorced, separated/never married 1,351 (40.1) 94.97 (26.15)

Drinking 0.23

  Yes 2,176 (64.6) 94.72 (22.80)

  No 1,195 (35.4) 94.37 (25.05)

Hypertension <0.001

  Yes 1,266 (37.6) 83.40 (24.32)

  No 2,105 (62.4) 101.33 (20.42)

Diabetes <0.001

  Yes 459 (13.6) 83.17 (25.76)

  No 2,912 (86.4) 96.40 (22.75)

aMean (Standard Deviation). bP-value was tested by Chi-square test or analysis of variance.
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The highest and lowest geometric mean values among environmental 
phenols are BP3 and BPF respectively, with contents of 17.50 ng/mg 
creatinine and 0.42 ng/mg creatinine.

3.3 Association between eGFR and 
environmental phenols

Table 3 summarizes the association of 6 environmental phenols 
with eGFR in linear regression models adjusted for covariates 
including general characteristics and medical conditions. We found 
that the concentrations of TCS and BPS in urine were positively 
correlated with eGFR, and the correlation coefficients were β = 0.010 
(p = 0.026) and β = 0.007 (p = 0.004) respectively. No statistically 
significant associations were found between eGFR levels and other 
environmental phenols. It should be noted that beta coefficients of 
predictors were relatively small because we  applied 
log-transformation with base e on all continuous 
variable concentrations.

In sensitivity analyses, when additionally adjusting for marital 
status, educational level, and alcohol drinking, the overall results were 
consistent with our main analysis, although minor changes were 
observed (Table S1). When QGC was used to explore the association 
between combined exposure to environmental phenols and eGFR, 
there was no evidence of a combined exposure effect (p value = 0. 069; 
Supplementary Figure S2).

3.4 Testing the ML models’ performance in 
predicting eGFR

We apply the trained model to the test set and summarize the key 
evaluation and interpretable metrics in Table 4. The RF model has the 
best mean absolute error (MAE) performance (MAE: 0.621) which 
was significantly better compared to the corresponding MAE values 
in the other 4 models. However, DT (MAE: 1.77), AdaBoost (MAE: 
3.60), and KNN (MAE: 8.25) also demonstrated good performance in 
prediction eGFR. Moreover Table  4 represents the general 
performance of the models under evaluation. The Coefficient of 
determination (0.998) of RF showed the best discriminate on ability 
among all five ML models. SVM (0.784) and KNN (0.799) have 
comparable performance on coefficient of determination scores. 
Finally, comprehensive analysis based on the features demonstrates 
that RF has the highest precision and resilience for predicting eGFR.

3.5 Visualization of feature importance

SHAP was utilized to graphically demonstrate the specified features’ 
impact on eGFR in the RF model. Figure  1A shows a graphical 
representation of specified features on eGFR in the RF model. This SHAP 
dot plot shows the influence of each variable in the ML model on 
predicting eGFR in the test datasets. SHAP value indicate Urinary 
Bisphenol S (1.38), Urinary Bisphenol F (0.97), 2,5-dichlorophenol (0.87), 

TABLE 3 Association of urinary environmental phenols with eGFR (mL/min/1.73  m2) in regression model (n  =  3,371).

Categories β (95%CI) P-value

BPA −0.007 (−0.015, 0.001) 0.098

BPS 0.009 (0.003, 0.015) 0.008

BPF −0.004 (−0.014, 0.005) 0.365

BP3 0.004 (−0.001, 0.010) 0.054

TCS 0.007 (0.003, 0.011) 0.004

2,5-DCP 0.001 (−0.004, 0.005) 0.933

2,4-DCP 0.005 (−0.002, 0.013) 0.149

The association was adjusted for gender, age, race/ethnicity, poverty: income ratio, body mass index, hypertension, and diabetes. Creatinine-corrected urinary ambient phenols and eGFR were 
log-transformed.

TABLE 2 Distribution of eGFR and environmental phenols in urine of the general United States population (n  =  3,371).

Categories Geometric Percentile

Meana 25th 50th 75th

eGFR 90.94 (90.00, 91.88) 79.83 96.22 111.21

BPA 1.18 (1.14, 1.22) 0.67 1.11 1.96

BPS 0.52 (0.50, 0.54) 0.23 0.47 1.04

BPF 0.42 (0.40, 0.44) 0.16 0.33 0.81

BP3 17.50 (16.28, 18.82) 4.40 13.42 54.47

TCS 7.71 (7.22, 8.24) 1.72 4.63 22.72

2,5-DCP 4.30 (4.00, 4.61) 0.99 2.76 12.77

2,4-DCP 0.72 (0.69, 0.76) 0.30 0.56 1.32

aG-Mean (95 %CI). Environmental phenols in urine corrected using urinary creatinine (ng/mg creatinine).
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Urinary Triclosan (0.78), Urinary Benzophenone-3 (0.60), Urinary 
Bisphenol A (0.59) and 2,4-dichlorophenol (0.47) make negative 
contributions to the model. In addition, the plot shows old, hypertension, 
female are associated with negative effect of eGFR. Further, we applied 
SHAP interaction analysis to select 1,000 study participants randomly 
from the dataset. The bar chart on the Supplementary Figure S3 represents 
the influence of each feature on the RF model. It is the tremendous 
contribution of age effect on eGFR. The BPS is the most critical exposure 
in eGFR. We also transposed the matrix of SHAP values to the correlation 
plot with samples arranged based on hierarchical clustering by values; the 
correlation between BPF and age represents the whole age range effect on 
the eGFR; the BPS exposure has a negative effect on eGFR when age 
increase (Supplementary Figure S4).

3.6 Interpretation of personalized 
predictions

The decision plot in Figure  1B showcases each participant’s 
contribution to the outcome. Each line represents the predicted outcome 
value across the range of a specific feature, holding all other features 
constant. Age, a standout feature in our analysis, emerged as the most 

impactful. It demonstrates a clear positive association with the predicted 
outcome, suggesting that the model’s output value also tends to decrease 
as age increases. This underscores the significant role of age in our 
predictive model. Several other features, including BPS, Race, Gender, 
Hypertension, BPF, and 2,5-DCP, also exhibited notable influence, with 
varying degrees of positive and negative associations. This complexity in 
their influence adds depth to our analysis and underscores the need for a 
nuanced understanding of these features. The remaining features 
(Triclosan, BPA, BP3, 2,4-DCP, Education, Drink, BMI, Marital, Diabetes, 
and PIR) showed minimal individual impact on the predicted outcome, 
as the relatively flat ICE lines indicated. The computed features are 
arranged in descending order of importance over the plotted observations. 
All the lines converge at a common point, which is 94.375.

4 Discussion

In our research, we examined the use of a transparent ML technique 
in predicting eGFR based on environmental phenols’ exposure between 
2013 and 2016, using data from the US NHANES. We evaluated five ML 
models and found that the RF model was the most effective, and 
therefore selected it for eGFR prediction. The RF model performed 

TABLE 4 Comparison of model evaluation metrics among five ML models.

Methods Mean squared error Mean absolute error Coefficient of determination

Random forest 0.680 0.621 0.998

KNN 116.516 8.246 0.779

AdaBoost 20.635 3.604 0.961

Decision tree 213.452 11.772 0.605

SVM 122.211 7.663 0.783

KNN, K-Nearest Neighbors; AdaBoost, Adaptive Boosting; SVM, Support Vector Machine.

FIGURE 1

The SHAP summary and decision plot. (A) The dot SHAP value plot of participants’ features value effect on the eGFR. (B) The SHAP logic decision plot 
of participants’ features in person.
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exceptionally well with an R score of 0.998, indicating high efficiency and 
stability for the regression model, and it showed a lower error rate of 0.68. 
We also employed the SHAP game theory approach to highlight each 
feature’s importance in the model, and the decision plot confirmed the 
RF model’s accuracy and robustness. In summary, our study suggests 
that the RF model, along with environmental phenols’ exposure data, has 
significant potential in predicting eGFR.

The NHANES, a cornerstone in US public health research, provides 
comprehensive and representative health and nutritional status data. It is 
imperative to consider both its methodological strengths and limitations. 
The survey’s comprehensive data collection strategy, combining 
interviews with physical examinations, offers a robust and detailed 
assessment of the health and nutritional status of the US population (29). 
This approach not only enhances the depth of the data but also 
contributes to its reliability and validity. Additionally, NHANES employs 
a sophisticated, multi-tiered probability sampling methodology, resulting 
in a sample that accurately reflects the broader US civilian 
non-institutionalized population. This approach enhances the 
applicability of its discoveries. Moreover, the survey’s structure supports 
longitudinal research, granting valuable perspectives into the ever-
changing landscape of health and nutrition (30).

However, its effectiveness could be improved by high costs, potential 
biases, and time-consuming data collection and analysis processes (31). 
Integrating ML methodologies offers a transformative opportunity to 
address these challenges and enhance the utility of NHANES. ML 
algorithms’ ability to efficiently analyze large datasets can reveal intricate 
patterns and correlations, offering more profound insights into public 
health trends and facilitating more accurate predictive modeling. This 
enhancement is pivotal for refining public health strategies and ensuring 
timely responses to health crises. Simultaneously, the application of ML 
can mitigate NHANES’s logistical and financial constraints by 
automating data processing tasks, thus improving cost-effectiveness (32). 
ML’s proficiency in handling missing data also bolsters the dataset’s 
robustness, enhancing the survey’s reliability. Furthermore, ML can 
identify and correct sampling biases, ensuring broader applicability and 
representativeness of the findings (33).

Our methodology involved training and evaluating ML models 
using this extensive dataset, focusing particularly on assessing individual 
exposure to environmental phenols through urinary analysis. To 
enhance the robustness of our models against potential biases arising 
from temporal changes in phenols exposure levels, we excluded the 
average exposure data of study participants from the training dataset. 
This approach ensures that the models are not influenced by the 
downward trend in exposure following the legislative ban and increased 
public awareness (34, 35). Consequently, our models provide a more 
stable and reliable analysis of bisphenol exposure’s impact on health, 
unaffected by external temporal factors.

We employed five ML methods to predict eGFR based on 
environmental phenols exposure, which have been previously shown to 
be effective in predicting various diseases in other contemporary ML 
studies (36–38). Then, we conducted a comprehensive assessment of the 
predictive capabilities of the ML models, by utilizing test datasets to 
evaluate each model’s discrimination abilities. Our findings revealed that 
the R score of the RF model was 0.998, indicating good stability for our 
model for all range exposure level of environmental phenols. Other 
models, however, are less impressive. KNN suffers from high 
computational cost in large datasets as it requires computing and 
comparing distances for all data points during prediction (39). SVM 

perform poorly and are computationally intensive with large datasets or 
datasets with a high number of features, due to their reliance on solving 
quadratic programming problems (40). DT are prone to overfitting, 
especially with complex datasets, as they tend to learn too much from the 
training data, including its noise and outliers (41). AdaBoost can 
be sensitive to noisy data and outliers, as it tends to focus excessively on 
hard-to-classify instances, which can decrease its overall performance 
(42). At last, the RF model exhibited the highest classification robustness. 
Specifically, the discrimination characteristics provided a comprehensive 
indication of the ML models’ performance. We recognized the challenge 
of accurately comprehending the ML methodology and visually 
presenting the identity results in a practical way. We made the decision 
to incorporate SHAP values in combination with the RF model to 
achieve the most efficient means of assessing identity impact and 
improving interpretability. A negative SHAP value indicates that the 
feature’s associated values resulted in a lower eGFR value, while a positive 
SHAP value suggests a higher value. The SHAP by tree-regressor 
explainer is a helpful tool that assists individuals in visualizing the 
model’s regression process (43).

The results obtained by applying SHAP values are consistent with the 
results of earlier studies. A study using the Korean National 
Environmental Health Survey found that BPA and eGFR showed a 
significant negative correlation (44). A joint effect model based on 
quantile g calculations showed that quartile increases in EDC mixtures 
corresponded to decreases in eGFR, with BPA identified as the major 
contributor to this effect (45). However, some studies have reported a 
positive correlation between BPA and eGFR, which is contrary to the 
observations of this study (46). This may be because a decrease in eGFR 
is accompanied by a decrease in the excretion of chemicals in the urine, 
thus producing conflicting results (47, 48). For BPF, its impact on eGFR 
has not yet been found at the population level, but a result based on 
metabolomics and lipidomics shows: BPF exposure will disrupt the 
metabolome and lipid profile of the liver and kidneys, causing renal 
tissue membrane homeostasis and cell dysfunction by disrupting 
biosynthesis and glycolysis metabolism in liver and kidney tissues, 
thereby causing renal function damage (49). In addition, results from a 
rat experiment showed that genetic background modifies the effect of 
BPF exposure on kidney weight (50). When linear regression analysis 
was applied, we observed a positive correlation between BPS and TCS 
and eGFR, an observation that suggests these chemicals may have a 
protective effect. A study that also used NHANES data showed that the 
excretion of triclosan in urine decreased with the decline of renal 
function (48), which was similar to the observations of this study. In fact, 
TCS is a common broad-spectrum antibacterial agent that inhibits the 
growth of bacteria, fungi and some viruses by inhibiting bacterial fatty 
acid synthesis (51). This may be one of the reasons for its protective effect 
on the kidneys. Previous studies have found that exposure to BPS affects 
the oxidative stress, cell viability, apoptosis levels and catalase (CAT) 
activity of mouse kidney cells, thereby causing kidney damage (13, 52). 
However, this study focuses on the general population. The exposure 
level of BPS in urine is low, which may produce a toxic hormesis effect 
on the body (53). Therefore, the potential effects of BPS and TCS on 
renal function still require further study.

It’s crucial to recognize that our validation approach was limited by 
a cross-sectional design, preventing us from establishing a causal link 
between environmental exposure and eGFR decline. However, the 
potential of future studies utilizing longitudinal data and prospective 
designs to confirm the temporal relationship observed in this study is 
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truly intriguing. Further validation of our findings could be robustly 
achieved through a prospective cohort study, incorporating repeated 
measurements of environmental phenol exposure and eGFR over an 
extended period. This comprehensive approach would provide a more 
robust assessment of the temporal relationship between exposure and 
kidney function decline. While our analysis diligently controlled for 
several potential confounders, it’s crucial to underscore the potential 
impact of unmeasured factors. For instance, dietary habits, a known 
contributor to both environmental phenol exposure and kidney health, 
were not fully captured in our study (54). The inclusion of detailed 
dietary assessments in future research could be instrumental in clarifying 
the independent role of environmental phenols, thereby enriching our 
understanding of their effects on kidney health. An alternative 
explanation could involve genetic factors influencing both individual 
susceptibility to phenol toxicity and predisposition to kidney disease. 
Future studies investigating gene–environment interactions, particularly 
those involving genes implicated in phenol metabolism and organ 
function, such as 16S rRNA, could provide valuable insights (55).

Since the United States Food and Drug Administration announced 
legislation to ban BPA in 2012, public health has attached great 
importance to the impact of BPA and its substitutes on the population. 
Initially, concerns grew over BPA’s estrogen-mimicking properties, which 
have been linked to a variety of health problems, including endocrine 
disruption and developmental issues. Therefore, BPS and BPF have 
become alternatives to BPA (56). However, recent scientific scrutiny 
reveals that BPS and BPF share a striking chemical similarity to BPA, 
casting doubt on their safety (57). Detailly, like BPA, both BPS and BPF 
exhibit estrogenic activity, potentially leading to similar adverse health 
effects (58). However, with the deepening of research, the complex 
nonlinear relationship between independent variables and outcomes has 
posed great challenges to the application of traditional linear statistical 
methods, and the impact of synergistic effects between independent 
variables is still a controversial issue. In this study, we use a SHAP game 
theory approach to highlight the importance of each selected feature in 
the model, using a combination of traditional statistics and machine 
learning. A better fitting effect was achieved, and the potential impact of 
environmental phenol exposure on eGFR was also explored. In the 
coming years, the introduction of machine learning algorithms in 
medicine will provide professionals with more comprehensive insights, 
allowing them to make more informed decisions.

5 Conclusion

In the research conducted, the RF algorithm demonstrated 
effectiveness, precision, and resilience when exploring the links 
between phenols exposure and estimated eGFR in participants of the 
United States NHANES from 2013 to 2016. The findings indicate that 
BPA, BPF, and BPS are inversely associated with eGFR.
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