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Background: Emerging infectious diseases pose a significant threat to global

public health. Timely detection and response are crucial in mitigating the spread

of such epidemics. Inferring the onset time and epidemiological characteristics

is vital for accelerating early interventions, but accurately predicting these

parameters in the early stages remains challenging.

Methods: We introduce a Bayesian inference method to fit epidemic models

to time series data based on state-space modeling, employing a stochastic

Susceptible-Exposed-Infectious-Removed (SEIR) model for transmission

dynamics analysis. Our approach uses the particle Markov chain Monte Carlo

(PMCMC) method to estimate key epidemiological parameters, including the

onset time, the transmission rate, and the recovery rate. The PMCMC algorithm

integrates the advantageous aspects of both MCMC and particle filtering

methodologies to yield a computationally feasible and e�ective means of

approximating the likelihood function, especially when it is computationally

intractable.

Results: To validate the proposed method, we conduct case studies on COVID-

19 outbreaks in Wuhan, Shanghai and Nanjing, China, respectively. Using early-

stage case reports, the PMCMC algorithm accurately predicted the onset time,

key epidemiological parameters, and the basic reproduction number. These

findings are consistent with empirical studies and the literature.

Conclusion: This study presents a robust Bayesian inference method for the

timely investigation of emerging infectious diseases. By accurately estimating the

onset time and essential epidemiological parameters, our approach is versatile

and e�cient, extending its utility beyond COVID-19.

KEYWORDS

Bayesian inference, emerging infectious disease (EID), epidemiological characteristics,

Particle Markov chain Monte Carlo, SEIR compartmental model

Background

The spread of infectious diseases has always been a major concern for public health

and economic stability. Identifying epidemiological characteristics such as the onset time

(i.e., the date of appearance of patient zero), the basic reproduction number, the latent

period, and the infectious period in the early stages of an epidemic is essential for effective
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disease intervention and control. However, accurately predicting

these factors is a difficult task (1, 2). The complexity of

epidemiological dynamics is largely due to its stochastic nature,

which is affected by various factors such as demographic

characteristics (3), environmental conditions (4, 5), and human

behaviors (6–8). Furthermore, indirect and subjective elements

further complicate this process. For example, measurement errors,

often caused by human activities, can lead to under-reporting or

inaccuracies in the data. This problem is especially pronounced in

the early stages of an epidemic, when surveillancemethods and case

reporting systems are still being developed and improved (9).

In epidemiological research, compartmental models have been

widely used to simulate the transmission of infectious diseases,

organizing the population into categories such as susceptible,

infectious, and recovered (10). One significant benefit of these

models is their ability to provide preliminary insights into the

pace of disease spread, even when observational data is scarce in

the initial phases of an epidemic (11, 12). Although beneficial,

the deterministic nature of traditional compartmental models

often oversimplifies the complexity of the dynamics of real-world

diseases. To better capture the intricacies of epidemic spread,

such as randomness and non-linear interactions, researchers

have developed a range of stochastic compartmental models (13,

14). The early stages of an outbreak, marked by uncertain

transmission mechanisms and flawed monitoring systems that

produce incomplete data, emphasize the importance of stochastic

models tomore effectively simulate the uncertainties and variability

of epidemic spread (15).

To estimate the onset time and explore epidemiological

characteristics in the early stages of emerging infectious diseases, we

simulate the dynamics of disease transmission and the observation

of infected cases on the basis of state-space modeling. Specifically, a

stochastic Susceptible-Exposed-Infectious-Removed (SEIR) model

is used as the disease transmission process model, while a

probabilistic distribution is used as the case detection observation

model. In doing so, epidemiological parameters, as well as the

onset time of the outbreak, can be inferred by fitting the state-

space model to the time series of observed cases using a Bayesian

inference approach. The integration of real-time data adjustments

and machine learning algorithms could improve the accuracy of

predictions, even with limited and imperfect data available in the

early stages of an epidemic (16, 17). Specifically, in this paper, we

adopt the particle Markov chain Monte Carlo (PMCMC) method

to infer epidemiological parameters in the state-space model (18).

The PMCMC leverages the strength of Markov chain

Monte Carlo (MCMC) in efficiently exploring high-dimensional

parameter spaces and the ability of particle filters to handle the

underlying dynamics of disease transmission, making it possible

to accurately estimate parameters in intricate, non-linear epidemic

Abbreviations: COVID-19, Coronavirus Disease 2019; SEIR, Susceptible-

Exposed-Infectious-Removed; MCMC, Markov chain Monte Carlo; PMCMC,

Particle Markov chain Monte Carlo; SMC, Sequential Monte Carlo; CI,

Credible Interval; NHC, National Health Commission of the People’s Republic

of China; JSCH, Jiangsu Commission of Health; CCDC, Chinese Center

for Disease Control and Prevention; NBS, National Bureau of Statistics; CI,

Credible Interval.

models with latent variables or unobserved states. The MCMC

component constructs a Markov chain that has the target posterior

distribution of themodel parameters as its equilibrium distribution.

Through iterative sampling, MCMC explores the parameter space,

generating a sequence of parameter values. Meanwhile, the particle

filter component is used to simulate a set of potential solutions

(particles) that evolve over time, considering the observed data.

Each particle represents a possible state of the system being

modeled, and its weight is adjusted on the basis of how well it fits

the observed data. The particle filter is used within each iteration

of the MCMC algorithm to provide an estimate of the likelihood

for the current set of parameters. This likelihood estimation is

crucial for the MCMC to decide whether to accept or reject the new

parameter values. The synergy between MCMC and particle filters

in PMCMC leverages the strength of MCMC to efficiently explore

high-dimensional parameter spaces and the ability of particle filters

to handle the underlying dynamics of disease transmission with

latent variables or unobserved states, especially for newly emerging

infectious diseases.

In this study, we first validate the efficacy of the PMCMC

algorithm in determining the epidemiological parameters of

infectious diseases through synthetic experiments. Then we apply

the proposed model and algorithm to real-world case studies, that

is, to conduct retrospective investigations on COVID-19 outbreaks

inWuhan, Shanghai and Nanjing, China, respectively. We estimate

key epidemiological parameters for each outbreak, including the

basic reproduction number, the latent period, the infectious period,

and the onset time. We corroborate the accuracy of our results

by comparing them with existing research and survey data. This

comparison not only underscores the effectiveness of our approach,

but also highlights the potential of our model in addressing future

emerging infectious disease outbreaks.

Methods

State-space modeling of epidemiological
dynamics

Because epidemiological dynamics are inherently stochastic

and can be influenced by various factors (e.g., genetics,

environmental factors, and social behavior), we introduce

noise associated with variability in the transmission rate in

a Susceptible-Exposed-Infectious-Removed (SEIR) model to

simulate epidemic dynamics forward in time:

St+1 = St − (1+ Fξ )β
St

N
It

Et+1 = Et + (1+ Fξ )β
St

N
It − αEt

It+1 = It + αEt − γ It

Rt+1 = Rt + γ It

(1)

where St , Et , It , and Rt represent the number of susceptible,

exposed, infectious, and removed individuals at the time t, N is the

population size, the noise term ξ is a normal random variable with

mean equals zero and variance equals one, and F is a constant noise

magnitude. Because the main focus of our study is on the early
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stages of an epidemic, we assume that the total population size is

constant, that is, N = St + Et + It + Rt at any time t. Furthermore,

the transmission coefficient β measures the probability that an

infectious person will transmit a disease to a susceptible person

during a single contact, multiplied by the average number of

contacts per person per unit of time. The symbol α = 1/DE is

the rate at which individuals move from the latent stage to the

infectious stage, whereDE represents themean latent period, that is,

the average time between infection and the onset of infectiousness.

The symbol γ = 1/DI represents the recovery rate, where DI is

the mean infectious period [i.e., the serial interval minus the mean

latent period (19)]. Consequently, the basic reproduction number

R0 of the SEIR model can be determined as R0 = β/γ . Since

we focus solely on the epidemiological characteristics of infectious

diseases in their early stages, it is reasonable to assume that the

parameters mentioned above (i.e., β , DE, and DI) remain constant

during this period.

In this paper, we use a general statistical framework to

infer epidemiological parameters, especially the onset time of an

emerging epidemic, by fitting stochastic epidemic models to the

time series of case report data based on state-space modeling. State-

space models (SSMs) consist of a process model and an observation

model. The process model describes the underlying dynamics of the

state variables xt (that is, unknown latent variables) as a Markov

process with a set of model parameters θ for all time points t in

{1, · · · ,T}: xt ∼ p(xt|xt−1, θ). Specifically, we use the SEIR model

mentioned above (i.e., Equation 1) as the process model for the

underlying transmission dynamics of an infectious disease with

state variables xt = {St ,Et , It ,Rt}. By setting the onset time of an

epidemic (i.e., d days before the first reported case), we can simulate

the state variables xt and track the cumulative number of infected

individuals over time, i.e., Ct+1 = Ct + (1 + Fξ )βStIt/N. In other

words, the number of new infections is 1ct = (1+ Fξ )βStIt/N.

On the other hand, the observation model in SSMs relates the

observed data (time series of reported cases) to the underlying

process model. If we assume that only a proportion ρ of newly

infected cases is detected and the observation error follows a

normal distribution, then the probability of observing zt cases at

a specific time t can be expressed using the following observation

model (16):

p(zt|1ct) = N (zt|ρ1ct , τρ1ct),

where N (·) is a normal distribution with mean µ = ρ1ct and

observation variance σ 2 = τρ1ct , and a scaling parameter τ . In

this case, the model parameters θ contain all the parameters of the

SEIR model (i.e., α, β , γ , and d) as well as the observation model

parameters ρ and τ . Table 1 provides a summary of all parameters

and their descriptions used in the state-space model. In summary,

the observation model can be described as follows:

zt ∼ p(zt|xt , θ).

It is important to note that our assumptions rely on the

reporting of confirmed cases with the same day, with no delays

exceeding one day. Examining the impact of delayed case reporting

on the inference of epidemiological parameters is a more intricate

challenge that we plan to tackle in future studies.

TABLE 1 Parameters and descriptions of the proposed state-space model.

Parameters Descriptions Values

α The transition rate from latent

stage to infectious stage

α = 1/DE

DE The mean latent period To be estimated

γ The recovery rate γ = 1/DI

DI The mean infectious period To be estimated

β The transmission rate β = R0/γ

R0 The basic reproduction

number

To be estimated

d The number of days before

the first confirmed infection

To be estimated

ρ A parameter in the

observation model

To be estimated

τ A scaling parameter in the

obervation model

To be estimated

θ The set of model parameters θ = {R0 ,DE ,DI , d, ρ, τ }

xt The simulation output of the

SEIR model at time t

Hiddena

zt The number of observed new

infections at time t

Observed casesb

N The population size NBSc

aThe simulated time series based on the SEIR model (i.e., Equation 1) with given parameters

in θ . bThe time series of reported cases of COVID-19 in Wuhan were obtained from (20).

The time series of reported COVID-19 cases in Shanghai and Nanjing were obtained from

National Health Commission of the People’s Republic of China (NHC: http://www.nhc.

gov.cn/xcs/xxgzbd/gzbd_index.shtml) and Jiangsu Commission of Health (JSCH: http://wjw.

jiangsu.gov.cn/) cThe population size in this study is obtained from the National Bureau of

Statistics (NBS).

Bayesian inference with Markov chain
Monte Carlo method

To fit the state-space model to time series of observed data

z1 :T , we use a Bayesian inference approach. Given the time series

of reported cases z1 :T , the posterior density of the parameter θ and

the latent states x1 :T can be computed as follows:

p(θ , x1 :T |z1 :T) =
p(z1 :T , x1 :T |θ)p(θ)

p(z1 :T)
, (2)

where p(z1 :T , x1 :T |θ) is the likelihood of observed data and latent

states given the model parameters θ , p(θ) is the prior distribution

of θ , and p(z1 :T) is the marginal likelihood or evidence. Because

the posterior density is computationally intractable, an alternative

approach is to use theMCMCmethod to generate samples from the

joint posterior distribution of θ and x1 :T (21). These samples can

then be used to estimate summary statistics such as posterior mean

or credible intervals. Initially, given the current value of θ and x1 :T ,

new values for θ∗ and x∗1 :T are sampled based on the density of the

proposal q(θ∗, x∗1 :T |θ , x1 :T). Then, θ and x1 :T will be updated by

the new values θ∗ and x∗1 :T with probability:

min{
p(θ∗, x∗1 :T |z1 :T)

p(θ , x1 :T |z1 :T)

q(θ , x1 :T |θ
∗, x∗1 :T)

q(θ∗, x∗1 :T |θ , x1 :T)
, 1}, (3)
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where the posterior probability p(θ∗, x∗1 :T |z1 :T) is evaluated by

computing p(z1 :T , x1 :T |θ)p(θ) in Equation (2).

Based on the MCMC method, a sequence of samples will be

generated to simulate the underlying epidemic dynamics, with

the proposal density q(θ∗, x∗1 :T |θ , x1 :T) determining the next state

of the Markov chain and affecting the efficiency and accuracy

of the method; however, finding an efficient proposal density for

MCMC involves a balance between proposing accepted moves

and exploring the distribution, which is challenging for the

non-linear epidemic models we introduced in this study (22).

Moreover, it is also difficult or impossible to evaluate the likelihood

p(z1 :T , x1 :T |θ) in Equation (2) when the exact infection times

are unknown (23). In this study, we first generate a new value

for θ from the proposal density q(θ∗|θ) and then sample x∗1 :T
independently from p(x1 :T |θ

∗, z1 :T) using a particle filtering

algorithm. In this case, the proposal density can be defined as

follows:

q(θ∗, x∗1 :T |θ , x1 :T) = q(θ∗|θ)p(x∗1 :T |θ
∗, z1 :T).

The acceptance rate in Equation (3) can then be reformulated

as follows:

p(θ∗, x∗1 :T |z1 :T)

p(θ , x1 :T |z1 :T)

q(θ , x1 :T |θ
∗, x∗1 :T)

q(θ∗, x∗1 :T |θ , x1 :T)

=
p(x∗1 :T |θ

∗, z1 :T)p(θ
∗|z1 :T)

p(x1 :T |θ , z1 :T)p(θ |z1 :T)
·
q(θ |θ∗)p(x1 :T |θ , z1 :T)

q(θ∗|θ)p(x∗1 :T |θ
∗, z1 :T)

=
p(x∗1 :T |θ

∗, z1 :T)p(z1 :T |θ
∗)p(θ∗)/p(z1 :T)

p(x1 :T |θ , z1 :T)p(z1 :T |θ)p(θ)/p(z1 :T)

·
q(θ |θ∗)p(x1 :T |θ , z1 :T)

q(θ∗|θ)p(x∗1 :T |θ
∗, z1 :T)

=
p(z1 :T |θ

∗)p(θ∗)q(θ |θ∗)

p(z1 :T |θ)p(θ)q(θ∗|θ)
.

Accordingly, the acceptance probability is given by:

min{
p(z1 :T |θ

∗)p(θ∗)q(θ |θ∗)

p(z1 :T |θ)p(θ)q(θ∗|θ)
, 1}, (4)

where the marginal likelihood p(z1 :T |θ
∗) can be estimated by the

following particle filtering algorithm.

Particle filtering algorithm for marginal
likelihood estimate

The PMCMC algorithm is an advanced version of the MCMC

method that combines the benefits of particle filtering and MCMC

techniques to create a more efficient proposal density (16, 18).

This is achieved without the need for analytical computation

of the likelihood p(z1 :T , x1 :T |θ) in Equation (2). In particular,

the particle filtering algorithm employed in PMCMC allows for

the numerical approximation of p(x1 :T |θ , z1 :T) by simulating

unknown trajectories of state variables x1 :T from the process

model. The key is to update particles sequentially over time so that

at any time t, the weighted particles provide an approximation to

the density p(x1 :T |θ , z1 :T). It allows for more efficient exploration

of the posterior distribution, especially in high-dimensional and

complex models, and can lead to faster convergence and improved

accuracy of the estimates.

In the PMCMC algorithm, a number of J particles are chosen

to simulate the trajectories of the state variables. The initial values

of the model parameters in θ are first generated and arbitrarily

assigned to these particles. For each particle j, we simulate the

process model for d days (from time t = −d + 1 to t = 0)

and obtain the initial states of the variable x
j
1. Since our primary

objective is to estimate epidemiological parameters based on the

time series of reported cases, here the state variable x1 :T refers to

the number of affected individuals during the time period from

time t = 1 to T. After updating the state of the particles at time

t, each particle is assigned a weight w
j
t = p(zt|x

j
t , θ), which is

simply the probability of observing the data zt given the state of

the particle. The conditional marginal likelihood p(zt|z1 : t−1, θ) can

then be estimated as:

p̂(zt|z1 : t−1, θ) =
1

J

J
∑

j=1

w
j
t .

By the law of total probability, the marginal likelihood of the

entire series of observations z1 :T given θ can be approximated as:

p̂(z1 :T |θ) =

T
∏

t=1

p̂(zt | z1 : t−1, θ) =

T
∏

t=1

(
1

J

J
∑

j=1

w
j
t).

In doing so, we can evaluate the acceptance probability in

Equation 4 to perform MCMC sampling for θ∗ and x∗1 :T .

After each time step t, particles are resampled using bootstrap

filtering based on their normalized weight:

w̄
j
t =

w
j
t

∑J
i=1 w

i
t

.

Assume that the resampled parent index of the particle j is k

at time t, then reset x
j
t−1 = xkt−1 and propagate the particles by

simulating the process model to the next observation time t. In

doing so, the ancestry of the particles will be tracked so that a single

trajectory (i.e., x∗1 :T) that represents the path of a single particle

can be sampled. In summary, the particle filtering algorithm allows

us to calculate the marginal likelihood p̂(z1 :T |θ) and generate

samples of x∗1 :T from the state-space model. The algorithm must

be executed for a minimum of M steps until all the parameters

and the latent variables have converged. The pseudocode for the

proposed PMCMC algorithm is described in Algorithm 1. The

datasets and code for this study are available at the following

GitHub link: https://github.com/Nanjing-Tech-University-CSIC/

Bayesian-Inference-for-Emerging-Infectious-Diseases.

Synthetic experiments

In this section, we evaluate the performance of the proposed

model and the PMCMC algorithm by conducting a set of synthetic

experiments. We first generate time series of observation data

z1 :T based on the proposed state-space model with predefined

parameters θ . We then apply the PMCMC algorithm to these

synthetic data to estimate the parameters θ . This process involves
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Input: Number of iteration M, number of particles J,

prior distribution p(θ) θ = {R0,DE ,DI , d, ρ, τ }, proposal

distribution q(θ∗|θ), observed cases z1 :T, and the

time length of observed cases T

Output: Drawn samples of parameters 2 and inferred

states X∗

Initialize θ based on p(θ), 2[0]← θ

for m = 1→ M do

Draw new parameter from proposal distribution

θ∗ ← q(θ∗|2[m− 1])

Initialize particles and their normalized weights

such that
∑

j w̄
j
t=1 = 1

for t = 2→ T + d do

Resampling particles such that p(A
j
t−1) = w̄

j
t−1

Propagate particles by simulating the process

model based on Equation (1)

if t ≥ d then

Calculate the weight of the particles

w
j
t ← N

(

zt |ρ1x∗t , τρ1x∗t
)

.

Normalize the particle weight w̄
j
t = w

j
t/

J
∑

j=1
w
j
t

end if

end for

Sample x∗1 :T by tracing the lineage trajectory

backwards through time

Calculate accept probability ξ based on

Equation (4)

Generate a random number η ∼ U (0, 1)

if η ≤ ξ then

2[m]← θ∗

X∗[m]← x∗1 :T
else

2[m]← 2[m− 1]

X∗[m]← X∗[m− 1]

end if

end for

Algorithm 1. Pseudo-code for particleMarkov chainMonte Carlomethod.

running the PMCMC algorithm on the generated time series

z1 :T , with the aim of recovering the predefined parameters. The

effectiveness of our model and the PMCMC algorithm is assessed

by comparing the estimated parameters with the original values of

θ used in data generation. This comparison allows us to evaluate

the precision of our approach in parameter estimation, as well

as its robustness in handling synthetic datasets that mimic real-

world epidemic scenarios. Through these experiments, our aim

is to demonstrate the capability of our model and the PMCMC

algorithm in reliably inferring key epidemiological parameters,

an essential step toward validating their practical applicability in

real-world epidemic analysis.

Experimental settings

We initiate our study by simulating the stochastic SEIR

model over time, using a set of predetermined parameters θ ,

including R0 = 2.2, DE = 5.2, DI = 2.7, ρ = 1, and

τ = 0. In this context, setting ρ = 1 implies that every

new infection is promptly identified. These initial parameters are

selected based on information from existing studies, as mentioned

by Li et al. (20). We also assume that the onset time of the

epidemic occurs d = 10 days before the observation of the

first infectious case. The simulation produces a series of data

points that represent the progression of infections over time.

To align the model more closely with real-world scenarios,

where infection counts are integral values, we round the model

output to the nearest integer. These rounded values, which

form an integer-based time series, are subsequently fed into our

observation model. Our analysis primarily centers on this integer

time series, particularly examining the data post-emergence of

initial infections.

With respect to the PMCMC algorithm, we assign the non-

informative uniform prior distributions to the model parameters

to be estimated in order to minimize the effects of the priors on the

posterior results. Specifically, we set R0 ∼ U (0, 4), DE ∼ U (0, 10),

DI ∼ U (0, 6) and d ∼ U (0, 20). The initial value of each parameter

in θ is generated randomly on the basis of its prior distribution.

The proposal distribution for each parameter is set as follows:

q (R0 | R0) = N (R0 | R0, 0.2), q (DE | DE) = N (DE | DE, 0.5),

q
(

D∗I | DI

)

= N (DI | DI , 0.5) and q
(

d | d
)

= N
(

d | d, 0.5
)

. We

execute the PMCMC algorithm for 50,000 iterations, discarding

the first 5,000 as burn-in. We then use the last 90% iterations

to calculate the posteriors for each parameter and their 95%

credible intervals.

Experimental results

Inference accuracy of model parameters
Initially, we evaluated the accuracy of our parameter

inference method. Posterior density estimates for unknown

model parameters θ are shown in Figure 1. The horizontal axis

represents the range of parameter values, while the vertical

axis represents the frequency of samples from the posterior

distribution generated by the PMCMC algorithm. The mean

estimate is shown as a red dotted line, the 95% credible interval

(CI) is represented by the green region, and the true value is

shown as a black line. Our predictive analysis yields the following

mean estimates with the corresponding 95% credible intervals

(CIs): R0 = 2.17 (95% CI: [1.66, 2.73]), DE = 4.61 (95% CI:

[1.85, 7.24]), DI = 2.43 (95% CI: [1.00, 4.04]), d = 10.48 (95%

CI: [7.30, 13.81]), ρ = 0.98 (95% CI: [0.77, 1.16]), τ = 0.09

(95% CI: [0.03, 0.25]). The estimated model parameters closely

match their true values, and all estimates fall within their

respective 95% CIs. Figure 4A displays the fitting outcomes of the

proposed model and algorithm. The coefficient of determination

(R2) is 0.98, suggesting a strong resemblance between the

fitting curve and the actual data. These results highlight

the accurate estimation of key epidemiological parameters

from limited epidemic data using our model and algorithm,

demonstrating their effectiveness in understanding early-stage

epidemic dynamics.
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FIGURE 1

Posterior density estimates for unknown model parameters in synthetic experiments. The horizontal axis represents the range of parameter values,

while the vertical axis represents the frequency of samples from the posterior distribution generated by the PMCMC algorithm. The mean estimates

are shown as red dotted lines, the 95% CIs are represented by the green regions, and the true values are shown as black lines.

FIGURE 2

Posterior density estimate for the onset time based on observational

time series of varying lengths T. The red dotted line indicates the

mean estimate of outcomes, while the black region highlights the

ground-truth value.

Impact of the length of the observational time
series

In the early stages of an epidemic, accurately determining

epidemiological parameters from brief time series is key to quickly

developing effective preventive measures. Therefore, it is vital

to assess how the length of the observational time series affects

the inference results. In our synthetic tests, we explored how

various lengths of observational time series impact the precision of

determining an epidemic’s onset time. Figure 2 shows the posterior

density estimates of the onset time d for different lengths of the

observational time series T = 7, 8, 9, and 15. The red dotted lines

indicate the mean estimates of outcomes, while the black regions

highlight the actual values of the ground truth. We observed

that longer time series generally yield more precise predictions.

In particular, with just 8 days of data, the prediction accuracy

is already commendably high, suggesting that our approach can

deliver reliable results even with relatively short time series.

Robustness of the proposed model and algorithm
Due to various factors, such as incomplete surveillance systems,

there is a tendency for observed data to be underestimated in

the early stages of an epidemic. In such scenarios, it becomes

particularly crucial to evaluate the robustness of our model and

algorithm. In this paper, we introduced the parameter ρ in our

observation model to represent the probability of detecting newly
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FIGURE 3

The estimation error of the onset time d under di�erent settings of

detection probability ρ.

A B

C D

FIGURE 4

The fitting results of the proposed model and algorithm with respect

to the ground-true time series. (A) Synthetic data, (B) COVID-19

data in Nanjing, (C) COVID-19 data in Wuhan, and (D) COVID-19

data in Shanghai.

infected cases. Here, we aim to assess how changes in detection

probability ρ affect our model’s ability to accurately determine the

onset time of an epidemic. Figure 3 shows the absolute error (days)

with respect to the onset time d under different settings of ρ. It can

be found that as the value of ρ decreases, the difference between

the estimation error also decreases. However, it is important to

note that when the detection rate reaches around 70%, our method

can achieve satisfactory prediction results. It demonstrates how

our model maintains its effectiveness and accuracy in predicting

the onset time of an epidemic, even under varying detection

probabilities, reinforcing the reliability of our findings in practical

scenarios. This result offers valuable support for the credibility of

the outcomes obtained from our real-world case studies in the

following section.

Real-world case studies

In this section, we use the state-space model and the PMCMC

algorithm to conduct retrospective studies onCOVID-19 outbreaks

in Wuhan, Shanghai and Nanjing, China. The objective is to

employ Bayesian inference techniques to accurately model and

understand the spread of infectious diseases in its early stages,

thus improving our ability to predict, manage, and mitigate future

outbreaks effectively.

The COVID-19 outbreak in Wuhan, China

The COVID-19 outbreak in Wuhan, China, in December

2019, marked a pivotal moment in the global progression of

the disease. The virus, later identified as SARS-CoV-2, quickly

overwhelmed Wuhan’s healthcare infrastructure, signaling a major

public health emergency. Characterized by efficient human-to-

human transmission, the virus led to an exponential increase

in cases. Despite the government having promptly implemented

unprecedented control measures, including a thorough lockdown

and extensive travel restrictions, these efforts failed to prevent

further spread of the epidemic, ultimately resulting in incalculable

losses. TheWuhan outbreak underscored the urgent need for global

awareness and response strategies, which led to international efforts

to understand the epidemiological and biological characteristics

of the virus. Our objective is to conduct retrospective analyzes

and draw on lessons from previous outbreaks, thus fortifying our

ability to predict, control, and reduce the impact of future infectious

threats.

We perform analysis on the initial 124 confirmed cases in

Wuhan, documented by Li et al. (20), which spanned 30 days

from December 8th, 2019 to January 6th, 2020. The population

size of Wuhan is set at 11,000,000. Figure 5 shows the estimates of

unknown epidemiological parameters for the COVID-19 outbreak

in Wuhan, China. The mean estimations and their 95% CIs for

the parameters are: R0 = 2.86 (95% CI: [1.95, 4.34]), DE =

6.22 (95% CI: [2.28, 10.46]), DI = 3.58 (95% CI: [1.25, 6.49]),

d = 4.87 (95% CI: [0.46, 11.47]), ρ = 1.00 (95% CI: [0.70,

1.41]), τ = 1.38 (95% CI: [0.67, 2.84]). There is no doubt that

it is quite challenging to validate the accuracy of these findings

using epidemiological or empirical methods. However, it should

be noted that some of our results exhibit a remarkable alignment

with those reported in existing research (20, 24, 25). For example,

Li et al. determined that the value of R0 was 2.2 (95% CI: [1.4,

3.9]) and reported that the mean incubation period was 5.2 days

(95% CI: [4.1, 7.0]) (20); Pan et al. calculated that the effective
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FIGURE 5

Posterior density estimates of unknown model parameters for the COVID-19 outbreak in Wuhan, China. The horizontal axis represents the range of

parameter values, while the vertical axis represents the frequency of samples from the posterior distribution generated by the PMCMC algorithm. The

mean estimates are shown as red dotted lines, the 95% CIs are represented by the green regions.

reproduction number fluctuated around 3.0 before January 26,

2020 (24); Read e al. estimate a basic reproductive number of 3.11

(95% CI: [2.39, 4.13]) using a transmission model (25). All these

findings corroborate the inference results drawn in this study. In

addition, the fitting results depicted in Figure 4C demonstrate that

the fitting curve closely approximates the actual observation data,

with the coefficient of determination R2 of 0.86.

The COVID-19 epidemic in Shanghai, China

In March 2022, Shanghai experienced a significant wave of

COVID-19 cases, which presented new challenges to the public

health system of the city. The surge in infections was attributed

to the emergence of a highly transmissible Omicron variant of

the virus. This wave of the epidemic in Shanghai can be traced

back to March 1st, 2022. On that day, during a press conference

on COVID-19 prevention and control in Shanghai, a locally

transmitted case was reported ([https://china.huanqiu.com/article/

470y1untEKO]). The community cultural activity center where

the case was identified was classified as a medium-risk area. As

the trace of the epidemic progressed, it was determined that

the outbreak originated in the Xuhui district. This area served

as a centralized quarantine facility for incoming travelers, where

abnormal results were detected during routine nucleic acid tests

for staff members. The viral strain responsible for this outbreak

is highly contagious and extremely covert, leading to a significant

number of asymptomatic carriers. Ultimately, this resulted in the

explosive spread of the epidemic.

For the retrospective analysis of the epidemic in Shanghai,

we gather the incidence data of the first 10 days as reported by

the NHC (http://www.nhc.gov.cn/xcs/xxgzbd/gzbd_index.shtml).

The data covers the period from March 1st, 2022 to March 10th,

2022. The population size is established at 24,900,000. Figure 6

shows the posterior density estimates of unknown epidemiological

parameters. The mean estimations and 95% CIs for the parameters

are estimated as: R0 = 4.34 (95% CI: [2.28, 7.03]), DE = 3.67

(95% CI: [0.96, 7.36]), DI = 6.17 (95% CI: [2.31, 9.61]), d = 8.85

(95% CI: [2.17, 18.77]), ρ = 1.00 (95% CI: [0.78, 1.21]), τ = 1.58

(95% CI: [0.53, 3.53]). Similar to the case study of the COVID-19

epidemic in Wuhan, we find that our results are consistent with

the epidemiological characteristics of the Omicron variant, which

is evident and supported by the literature (26, 27). For example,

Cai et al. estimated that R0 of the Omicron BA.2 variant was 3.9

at the beginning of the 2022 outbreak in Shanghai (26); Wu et al.

determined that themean incubation period of COVID-19 was 3.42

days (95% CI: [2.88, 3.96]) for the Omicron variant through meta-

analysis (27). Furthermore, Figure 4D shows how well our model

and algorithm fit compared to actual observations. It can be found

that the coefficient of determination R2 is 0.62, which is much

lower than the result of our synthetic experiment (R2 = 0.98).

The rationale behind this is that the inference of model parameters

is based on only nine days of observation data, during which the
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FIGURE 6

Posterior density estimates of unknown model parameters for the COVID-19 epidemic in Shanghai, China. The horizontal axis represents the range

of parameter values, while the vertical axis represents the frequency of samples from the posterior distribution generated by the PMCMC algorith.

The mean estimates are shown as red dotted lines, the 95% CIs are represented by the green regions.

data exhibited significant fluctuations in the initial phase of the

epidemic.

The COVID-19 epidemic in Nanjing, China

In July 2021, Nanjing experienced a COVID-19 outbreak

primarily attributed to the introduction of the virus via an

international flight. The origin of the outbreak was first identified at

Nanjing Lukou International Airport. It was reported that cleaners

who had worked on a flight that arrived on July 10th, 2021 from

Russia were infected with the virus. Despite stringent control

measures in place, the virus quickly spread through the airport,

affecting both staff and passengers. This incident led to subsequent

local transmissions in Nanjing and spread to several other cities in

China, causing a significant increase in COVID-19 cases.

For retrospective analysis, we collect the incidence data for the

initial 8 days from JSCH (http://wjw.jiangsu.gov.cn). The data span

from July 20th, 2021 to July 27th, 2021. The population size of

Nanjing is set at 9,650,000. Figure 7 shows the estimation results of

unknown epidemiological parameters. The mean estimations and

95% CIs for the parameters are estimated as R0 = 5.29 (95% CI:

[3.52, 7.19]), DE = 3.49 (95% CI: [1.01, 6.89]), DI = 3.92 (95%

CI: [1.26, 7.19]), d = 9.48 (95% CI: [4.46, 18.22]), ρ = 1.00 (95%

CI: [0.81, 1.20]), τ = 3.98 (95% CI: [1.84, 6.53]). The findings

of our study align well with the epidemiological characteristics

of the Delta variant, as reported in previous studies (27–29).

For example, Wu et al. have shown through a meta-analysis that

the mean incubation period of COVID-19 was 4.41 days (95%

CI: [3.76, 5.05]) for the Delta variant (27); Zhang et al. have

shown that the mean incubation period is 4.4 days [95% CI: [3.9,

5.0] for the Delta variant epidemic in Guangzhou, China (29).

Compared to the results mentioned above, the estimated value of

DE for Nanjing is slightly shorter. The reason is that the Nanjing

outbreak originated at the airport, where stricter control measures

were in place, allowing potential cases to be quickly identified by

nucleic acid testing. Meanwhile, the effectiveness of our approach

in capturing the dynamics of the outbreak is visually depicted in

Figure 4B, with an R2 value of 0.78. Furthermore, our findings also

indicate that the onset of the epidemic occurred 9.48 days prior

to the first reported case, pinpointing the date to July 10th, 2021.

Epidemiological investigations have revealed that this outbreak in

Nanjing was indeed triggered by a flight on this specific date.

This observation further validates the efficacy of our algorithm in

accurately determining critical epidemiological characteristics.

Discussion

In the face of the ongoing emergence of infectious diseases that

cause considerable economic and health damage, it is essential to

accurately and quickly identify the date of onset of patient zero

and other key epidemiological parameters. Accurate estimation is

crucial for quickly isolating individuals involved in the outbreak,

curtailing the further spread of the disease (30), forming timely
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FIGURE 7

Posterior density estimates of unknown model parameters for the COVID-19 outbreak in Nanjing, China. The horizontal axis represents the range of

parameter values, while the vertical axis represents the frequency of samples from the posterior distribution generated by the PMCMC algorith. The

mean estimates are shown as red dotted lines, the 95% CIs are represented by the green regions.

policies, and effectively mitigating the adverse impacts of the

epidemic (31). In this study, we develop a Bayesian inference

method to provide an accurate estimate of key epidemiological

parameters of an epidemic, including the basic reproduction

number R0, the latent period DE, and the infectious period DI ,

even with noisy and limited observation data. Specifically, a state-

space model is proposed to simulate the stochastic and non-linear

dynamics of epidemics, while the PMCMC algorithm is used to

infer the underlying epidemiological parameters.

Through synthetic experiments, we have validated the efficacy

of the proposed state-space model and the PMCMC algorithm

in accurately estimating model parameters. For example, when

estimating the onset time (d) against the actual value of d = 10

with different lengths of observational time series (T), we have

obtained the following results: d = 11.43 for T = 7, d = 10.74

for T = 8, d = 10.45 for T = 9, and d = 10.44 for T = 15. In

particular, with an 8-day observational series, the estimation error

for the onset time is <1 day. Moreover, we have also evaluated

the robustness of our model and algorithm by examining the

estimated onset time in different settings of observation probability

ρ. We have found that even when the probability reaches around

70%, the estimation error is <1 day. All these experimental

results validate the effectiveness of our approach in understanding

the epidemiological characteristics of an infectious disease in its

early stages of transmission, demonstrating its potential utility in

investigating and managing future outbreaks.

The complexity of epidemic dynamics in the real world far

exceeds that of synthetic studies. Conducting retrospective analyses

on COVID-19 outbreaks in Wuhan, Shanghai and Nanjing, China,

offers deeper insights into actual epidemic patterns. For these case

studies, we have used incidence data that span varying lengths

to infer key epidemiological parameters. Although the stochastic

SEIR model is sensitive to the initial values of parameters, our

study begins by assigning non-informative uniform priors to these

parameters. Through Bayesian inference, we generally calculate the

posterior distributions of the parameters, regardless of the initial

configurations of the model parameters. We have observed that the

more days of epidemic data we collected, the better our method fits

to the real data, as indicated by higher values of R2. For example, in

analyzing the Wuhan outbreak with 30 days of data, we achieved

an R2 of 0.86, significantly higher than that of Shanghai (R2 =

0.62) and Nanjing (R2 = 0.78), which are based only on the

first 10 and 8 days of outbreak data, respectively. In addition, the

quality of the data significantly influences the inference outcomes,

especially in the early stages of an epidemic. As shown in Figure 4,

the quality of the data for Shanghai and Nanjing is not ideal,

leading to comparatively lower fitting results. This underscores

the critical role that data quality plays in accurately modeling

and understanding epidemic trends. To increase the R2 value, one

feasible approach is to improve data quality by strengthening the

disease surveillance system. Another is to collectmore data to better

characterize the transmission dynamics.
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Even with limited early-stage data, retrospective analysis using

the proposed model and algorithm yields results of practical

significance. For example, our analysis of early Wuhan outbreak

data deduced a basic reproduction number R0 = 2.86 (95% CI:

[1.95, 4.34]), which is consistent with existing research findings (20,

24, 25). Furthermore, our analysis of the initial data from

the Shanghai outbreak led to the deduction of epidemiological

parameters that are consistent with the characteristics of the

Omicron variant (26, 27). Regarding the onset time of the Wuhan

and Shanghai outbreaks, there is no widely accepted evidence to

verify our inferred results. However, in the case of the Nanjing

epidemic, we have managed to determine the date of patient zero’s

initial presence as July 10th, 2021, based on the data collected

during the first 8 days of the outbreak. Our analytical results are

fully consistent with the findings of epidemiological investigation,

which demonstrates the applicability and relevance of our approach

in understanding the dynamics of epidemics in the real world.

It is important to note that the epidemiological parameters can

vary between different cities and time periods. One contributing

factor is the diversity of disease intervention policies as the

epidemic progresses in each city. In addition, the virus itself

evolves and exhibits different characteristics during different

transmission periods (32). For example, the Delta variant was

prevalent in Nanjing (33), while Shanghai experienced the spread

of the Omicron strain (34). Despite analyzing identical strains

of SARS-CoV-2, there may be minor variations between our

estimates and those found in reference studies, which can be

ascribed to the constrained dataset employed in our analysis.

However, by employing the Bayesian inference approach, the

PMCMC algorithm is able to provide posterior densities for

epidemiological parameters, along with 95% CIs. Despite minor

discrepancies, all the estimated values of the reference studies fall

within the range of these 95% CIs, indicating the robustness of

our approach.

In summary, the proposed method has shown potential in

uncovering early-stage epidemiological parameters and estimating

the initial emergence of patient zero. However, there are notable

limitations in our current approach. First, we assume that there

is no delay in reporting cases and that epidemiological parameters

remain constant over time. Although it is plausible to assume stable

epidemiological parameters during the early stages of an epidemic,

delayed reporting of confirmed cases could lead to varied inference

outcomes. To address this issue, improvements in the monitoring

system might be required. Second, our model does not account

for the impact of asymptomatic COVID-19 infections, which

blur the lines between exposed and infected states. Introducing a

compartment for asymptomatic cases could improve the precision

of our modeling. Third, while we used the SEIR model, it

does not fully account for critical factors such as demographic

variations, population movement, and isolation measures, all of

which are vital in epidemic dynamics. A more holistic model

that includes these elements would improve our understanding of

epidemics. Finally, the predictive accuracy of our method might

decrease with shorter data series or inaccurate data. Therefore,

future research should focus on improving the assessment of

transmission risks using limited and possibly imperfect data, as well

as improving predictions by incorporating additional knowledge

and data sources.

Conclusion

In this study, we have proposed a Bayesian inference approach

to explore the essential epidemiological parameters of emerging

infectious diseases.We began by simulating the stochastic and non-

linear dynamics of an epidemic using state-space modeling. We

then introduced the particle Markov chainMonte Carlo (PMCMC)

method to infer the underlying epidemiological parameters,

including the basic reproduction number, the latent period, the

infectious period, and the onset time (marked by the appearance

of the patient zero). Having validated the effectiveness of the

proposed model and algorithm through synthetic experiments, we

subsequently applied them to real-world case studies, such as the

COVID-19 outbreaks in Wuhan, Shanghai and Nanjing, China.

The results have indicated that the proposed model and algorithm

can accurately estimate key model parameters and successfully

predict the future trend of the outbreak. In conclusion, our

approach has shown the potential to be valuable in improving

our understanding of the transmission dynamics of emerging

epidemics, thus facilitating better responses to health crises and

mitigating their adverse impacts.
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