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The increasingly frequent occurrence of urban heatwaves has become a 
significant threat to human health. To quantitatively analyze changes in heatwave 
characteristics and to investigate the return periods of future heatwaves in 
Wuhan City, China, this study extracted 9 heatwave definitions and divided them 
into 3 mortality risk levels to identify and analyze historical observations and 
future projections of heatwaves. The copula functions were employed to derive 
the joint distribution of heatwave severity and duration and to analyze the co-
occurrence return periods. The results demonstrate the following. (1) As the 
concentration of greenhouse gas emissions increases, the severity of heatwaves 
intensifies, and the occurrence of heatwaves increases significantly; moreover, a 
longer duration of heatwaves correlated with higher risk levels in each emission 
scenario. (2) Increasing concentrations of greenhouse gas emissions result in 
significantly shorter heatwave co-occurrence return periods at each level of 
risk. (3) In the 3 risk levels under each emission scenario, the co-occurrence 
return periods for heatwaves become longer as heatwave severity intensifies 
and duration increases. Under the influence of climate change, regional-specific 
early warning systems for heatwaves are necessary and crucial for policymakers 
to reduce heat-related mortality risks in the population, especially among 
vulnerable groups.
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1 Introduction

The sixth assessment report by the Intergovernmental Panel on Climate Change stated 
that the use of fossil fuels and unsustainable land use have contributed to global warming; the 
global average surface temperature between 2011 and 2020 has been reported to be about 
1.1°C hotter than the pre-industrial level, and the frequency of high heat episodes per 50-year 
period increased by 4.8 times (1). Expanding urban land use will encroach on ecological space 
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such as grasslands, cropland and unutilized land, and this 
unsustainable land-use competition will exacerbate the occurrence of 
heatwave events (2). Consistent with anthropogenically driven climate 
warming, the frequency and severity of extreme temperatures and 
heatwaves worldwide are expected to increase in the coming decades, 
posing pervasive threats to both human systems and ecosystems and 
generally having adverse effects on human physical and mental health, 
livelihoods, infrastructure, and a range of other global aspects (3). 
Almost half the global population is likely to be  exposed to life-
threatening temperature extremes annually by 2,100 (4). It was 
estimated that, in 43 countries globally from 2000 to 2019, 9.43% of 
deaths per year were attributable to temperatures that were either too 
low or too high, and excess deaths due to high temperatures accounted 
for 0.91% of the total (5). One of the most typical heatwaves of the 21st 
century was the 2003 heatwave in Central and Western Europe, which 
caused more than 70,000 deaths and illustrated the importance of 
heatwave disasters (6). Increase in the frequency and intensity of 
heatwaves also can lead to a rapid escalation in energy consumption. 
Extreme weather events such as droughts and heat waves exacerbate 
water scarcity by reducing water availability, deteriorating water 
quality and increasing sectoral water use (7). Additionally, the power 
sector is particularly vulnerable to climate change, and heatwaves 
increase the cooling demand, which affects residential, commercial, 
and industrial electricity demand (8). A case study in Shanghai found 
that a 1°C increase in global mean temperature could lead to a 36.1% 
surge in annual peak electricity use (9). Luo et al. (10) found that 
slowdown in the movement of heat waves in recent decades could 
increase the risk of reduced productivity of local ecosystems and 
increase consumption and capacity needs in the energy sector. 
Similarly, human health is affected by severe heatwaves. In China, a 
study found that the number of deaths caused by heatwaves has 
increased rapidly since 1979, and although factors such as population 
growth, an aging population, and rising baseline mortality rates have 
objectively contributed to the number of deaths caused by heatwaves, 
the rapid increase in the frequency of heatwaves has been the most 
significant contributing factor (11).

Currently, there is no consistent definition of heatwave, which is 
generally defined as consecutive days above a certain temperature 
threshold, but studies on heatwaves are mostly based on temperature 
indicators (or thresholds) and duration. China’s meteorological 
department defines a heatwave as 3 or more consecutive days with a 
daily maximum temperature exceeding 35°C (12), and the World 
Meteorological Organization defines a heatwave as a daily maximum 
temperature above 32°C on 3 or more consecutive days (13). However, 
the vulnerability of populations in different regions exposed to 
heatwaves varies according to long-term adaptation to the surrounding 
climate (14). Therefore, a consistent and standard definition of 
heatwaves is not well applied in China, which has a diverse range of 
climate types. Several studies have defined heatwaves using 
temperature percentiles that consider the local climatic characteristics 
as the thresholds. A heatwave health risk study in Australia defined 
heatwaves as 2 or more consecutive days on which the average 
temperature exceeds a particular percentile of the warm season 
average (15). A study on heatwaves in 31 provincial capital cities in 
China proposed a definition of a daily maximum temperature ≥ 92.5 
percentile for a duration ≥3 days (16). Yin et al. (17) collected the daily 
mean temperatures of 272 major cities in China from 2013 to 2015 
and then combined the 90th, 92.5th, 95th, and 97.5th percentiles and 

durations of 2, 3, and 4 days to construct 12 definitions of heatwaves; 
they then investigated the characterization of all 12 heatwave types 
and calculated the risk of mortality associated with each type for 
different subgroups of the population. In addition, heat wave events 
have spatial continuity, with heat wave propagation distances, 
movement speeds and directions changing over time (18). Recognizing 
the movement patterns and propagation cycles of heat waves can 
provide potential precursor signals, and understanding their 
co-evolution in both temporal and spatial dimensions is important for 
understanding heat wave prediction, mitigation and adaptation (10).

Researchers have described the conditions of heatwaves based on 
the characteristics of severity and duration, and those 2 characteristics 
play an important role in the heatwave frequency analyses used to 
develop comprehensive predictions. Given that a heatwave is a 
multivariate phenomenon, the recurrence interval of heatwave 
severity and duration could be  quite different, even if both 
characteristics were obtained from a single event (19, 20). Therefore, 
several studies have suggested using multivariate methods, especially 
copula functions with joint frequency analyses, to assess the severity 
and duration of heatwaves. In a study of heatwaves in the Yangtze 
River Delta, Xu et al. introduced a copula function to investigate the 
heatwave characteristics of 2 probabilistic models for a specific period 
(21). Mazdiyasni et al. (22) used a copula function to compare the 
intensity-epoch-frequency curves of heatwaves in 6 cities in the 
United States and to find heatwave hazards and their joint recurrence 
periods in different regions. Copula functions have been used to 
develop bivariate joint probability density functions based on the 
marginal probability distribution of each variable, which allow the 
heatwave characteristics and changes in future periods to be detected 
by combining them with climate change scenarios. Such functions can 
provide optimal management conditions for each region. Heatwaves 
pose a threat to urban economies and the health of residents, and the 
construction of a heatwave early-warning system can mitigate the 
health risks of populations exposed to heatwaves (23).

Dong et al. (24) proposed a heatwave health risk framework based 
on the Heat Climate Index and assessed its applicability to 177 
neighborhoods in Wuhan City, China. Similarly, Zhang et al. (25) 
combined high-temperature heatwave data and health risk data to 
develop an early warning model. The investigation of changes in 
heatwaves during a future period and the stratification of heatwave 
risks can facilitate the development of heatwave early warning systems. 
In China, the Meteorological Bureau issues heat warning signals by 
classifying heatwave grades based on the heatwave index (26), but it 
neglects the risk level in terms of the relationship between a heatwave 
and the mortality exposure response of the population. Thus, the 
analysis and prediction of heatwaves under future climate patterns 
provide a scientific foundation for the formulation of a rational 
national development strategy. A series of national and international 
articles has examined assessments of future temperature changes from 
new typical concentration pathway scenarios under multiple future 
climate models. Yun et al. (27) evaluated the simulated outcomes of 
27 climate models from the fifth Coupled Model Intercomparison 
Project (CMIP5) and considered the extent of warming in Asia under 
multiple emission pathways. In contrast, Brown et al. (28) developed 
a new statistical model to predict changes in heatwave intensity over 
time for 20 cities around the world using the RCP8.5 emissions 
scenario for 28 CMIP5 climate models. Few current studies have 
considered the frequency of heatwaves under future climate models, 
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and they all show that heatwave events will occur more frequently in 
the future, but they have not examined heatwave frequency in terms 
of heatwave features (29–31).

Therefore, based on daily maximum temperature data for Wuhan 
City from 1951 to 2017 and daily maximum temperature prediction 
data from 4 CMIP5 global climate models under 2 emission scenarios 
(RCP4.5 and RCP8.5) from 2031 to 2099, this study (1) constructs 
heatwave definitions for Wuhan by exploring the relationship between 
heatwaves and the mortality-exposure response of residents and 
combines those definitions to stratify the heatwave risk and to identify 
heatwave events with different risks; (2) fits the marginal distributions 
of historical heatwave characteristics in Wuhan and introduces a 
copula function to analyze the bivariate joint probability and 
co-occurrence return period; (3) predicts future heatwave 
co-occurrence periods in Wuhan, compares those predictions with 
historical heatwave events, analyzes changes in heatwave event 
characteristics, and provides a scientific basis for a response to climate 
change and risk management in Wuhan.

2 Study area and data sources

2.1 Study area

Wuhan is the capital of Hubei Province (29°58′N to 31°22′N, 
113°41′E to 115°05′E) and has a total area of 8569.15 km2 (Figure 1). 
Wuhan has a subtropical humid monsoon climate. Under the 
influence of tropical cyclones in the western part of the North Pacific 
Ocean, high temperatures are particularly likely to occur in the middle 
and lower reaches of the Yangtze River in east-central China (32). As 
the only supercity in that central region, Wuhan is a typical furnace 
city. In 2014, the maximum temperature in Wuhan reached 39.7°C. At 
the end of 2022, Wuhan had a resident population of 13.739 million 
and a gross domestic product of 1.89 trillion yuan. Because high 
temperatures cause death and economic losses (33), the need to 
analyze their characteristics in Wuhan and to develop plans to reduce 
their effects is urgent.

2.2 Data sources

This study uses daily maximum temperature data recorded at the 
Wuhan National Basic Meteorological Station (57494) from 1951–
2017. These historical observational data were sourced from the 
National Meteorological Data Center of the China Meteorological 
Network.1 The future data for this study are the daily maximum near-
surface air temperatures from 2007–2017 and 2031–2099 projected 
under 2 representative concentration pathways, RCP4.5 (medium 
emission scenario) and RCP8.5 (high emission scenario), for 4 CMIP5 
climate models.2 Table 1 provides basic information about the 4 global 
climate models. The “r1i1p1” ensemble was selected for the global 
climate models used in this study, and all models were re-gridded to 
0.5° × 0.5° resolution.

1 http://data.cma.cn/

2 https://esgf-node.llnl.gov/search/cmip5/

3 Methods

3.1 Definition-based heatwave stratification 
methods

Previous research combined temperature indicators, 
temperature thresholds, and durations to develop 45 definitions of 
heatwaves and to evaluate the effects of heatwave events on the 
mortality of Wuhan residents (34). In this study, 9 heatwave 
definitions were developed by combining 3 types of temperature 
thresholds and 3 durations, and then those definitions were 
divided into categories to represent low-, medium-, and high-
risk events.

3.2 Joint probability analysis based on 
copulas

In this study, 6 commonly used distribution functions were 
selected to fit the marginal distributions of heatwave characteristics: the 
lognormal (Logn), exponential (Exp), gamma, generalized extreme 
value (GEV), Weibull (Wbl), and generalized pareto (GP) distributions. 
These 6 distribution functions were used to fit the marginal 
distributions of heatwave duration. The marginal distributions of 
heatwave severity were fitted using the first 5 distribution functions.

Copula functions are multivariate joint distribution functions that 
concatenate multiple univariate marginal distributions. Copulas are 
mainly based on the bivariate joint distribution, as shown in Eq. (1):

 F x y C F x F yXY X Y, ,� � � � � � ��� ��  (1)

where X and Y are continuous variables, and C is the only copula 
function that fits the above equation. The variables of the copula 
function are the marginal distribution function of X, Y.

The copula functions used in this paper are the t copula, gaussian 
copula, Clayton copula, Gumbel copula, and Frank copula. The 
t copula has 2 parameters, and the rest of the copulas each have only 
1 parameter. Both the optimal copula function and the optimal 
marginal distribution function were selected using the Multivariate 
Copula Analysis Toolbox.

3.3 Co-occurrence return periods

Return periods can provide effective support for decision-making 
about heatwave prevention and management. They are classified as 
joint and co-occurrence return periods, and this study uses the latter. 
The heatwave co-occurrence return periods require that the heatwave 
severity and duration simultaneously exceed specific values, and their 
calculation is based on 2 univariate marginal distributions and a 
bivariate joint distribution (35), as shown in Eq. (2):
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where N is the length of the study time, and n is the number of 
heatwave events during the study time.

3.4 Global climate model assessment

Taylor diagrams assess the simulation capability of climate 
models (36) using the root mean square error (RMSE), correlation 
coefficient, and variance ratio (standard deviation), which are shown 
in Eqs. (3–6), respectively. Based on those indicators, a Taylor 
diagram can illustrate the matching ability of climate models with 
observations in terms of correlation, RMSE, and standard deviation, 
which intuitively reflects the matching performance between the 
simulated and observed data. Therefore, a Taylor diagram can 
comprehensively reflect the advantages and disadvantages of the 
simulation results of each model. In this paper, 4 global CMIP5 
climate models and 2 representative concentration paths, RCP4.5 and 
RCP8.5, were selected to simulate the climate of Wuhan for 
assessments by Taylor diagram analyses.
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where o and m are the observed and model-simulated data, 
respectively; o , m are the mean values of the observed and simulated 
data, and σo and σm are the standard deviations of the observed and 
simulated data. As R and σf become closer to 1 and the RMSE becomes 
closer to 0, the model simulation is understood to improve.

It is difficult to discern the match between simulation results 
and observations when the simulation results of different climate 
models are close to one another in the Taylor diagram. Thus, to 
more objectively assess the quality of the temperature simulation 
from each climate model, the comprehensive skill score S is 
introduced (36), as shown in Eq. (7):
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where R is the correlation coefficient between model simulation values 
and observations, σm is the standard deviation of the model simulation 

FIGURE 1

Geographical location of Wuhan.
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results, σo is the standard deviation of the observations, and R0 is the 
maximum value of the correlation coefficient between the model 
simulation results and observations.

4 Results

4.1 Definition and risk classification of 
heatwaves in Wuhan

CMIP5 is a multi-model simulation of historical and future climate 
under different greenhouse gas emission scenarios (37). It provides a 
better understanding of present and projected future climate change. 
Despite moderate biases in day time temperatures, the CMIP5 model 
performs better in terms of frequency for the actual simulated observed 
heat waves (38). To assess the consistency between the 4 global climate 
models and the temperature in Wuhan under the 2 representative 
concentration pathways, the model projection data and observation 
data for the overlapping period between the 2 datasets (2007–2017) 
were compared, as shown in the Taylor diagrams in Figure 2. The 
correlation coefficients between the simulated results and the observed 
data under both the RCP4.5 and RCP8.5 emission scenarios were 
concentrated around 0.8. The ratio of the standard deviation of the 
simulated results to the observations under the RCP4.5 emission 
scenario was concentrated around 1, whereas that under the RCP8.5 
emission scenario ranged from 1 to 1.06. The RMSE of the simulation 

results was centered at 0.62 under the RCP4.5 emission scenario and 
in the range of 0.58–0.63 under the RCP8.5 emission scenario.

In general, the simulation results of the 4 global climate models 
under the RCP4.5 emission scenario were clustered, which made it 
difficult to discern the applicability of each model. Under the RCP8.5 
emission scenario, the IPSL-CM5A-LR and MIROC5 models were 
better than the GFDL-ESM2M and HadGEM2-ES models in all 3 
metrics, but neither could be selected as optimal. Thus, the S-skill score 
was used to quantify the simulation quality of the 4 global climate models.

Table 2 demonstrates that under the RCP4.5 and RCP8.5 emission 
scenarios, the IPSL-CM5A-LR and MIROC5 models, respectively, best 
matched the Wuhan temperature observations. Under the RCP4.5 
emission scenario, the 4 models matched Wuhan’s air temperature with 
little discrepancy. Under the RCP8.5 emission scenario, in contrast, the 
MIROC5 model had the best performance, and the HadGEM2-ES 
model had the worst performance. Therefore, the IPSL-CM5A-LR 
model and MIROC5 model were selected for further analysis under 
the RCP4.5 and RCP8.5 emission scenarios, respectively.

To comprehensively demonstrate the association between mortality 
and heat waves, Zhang et al. (34) combined 5 temperature thresholds 
and 3 durations of the daily maximum temperature, minimum 
temperature, and mean temperature to develop 45 heatwave definitions 
for the selection of best definitions to capture the effects on 
non-accidental mortality in Wuhan. They found the intensity thresholds 
of the 95th percentile, 97.5th percentile, and 99th percentile of the daily 
maximum temperature, together with the duration ≥2 days, duration 
≥3 days, and duration ≥4 days had good predictive ability in assessing 
the total mortality effects of heatwaves among Wuhan residents. Based 
on the previous study, we selected the daily maximum temperatures 
recorded by Wuhan meteorological stations (57494) from 1951–2017 
and combined the corresponding 95th percentile, 97.5th percentile, and 
99th percentiles with durations of ≥2 days, 3 days, and 4 days to 
develop 9 heatwave definitions, as shown in Table 3. These criteria were 
used to detect historical and future heatwave events in this study.

Based on the 9 heatwave definitions extracted from the relationship 
between heatwave events and resident exposure mortality response in 
Wuhan, this paper proposes the heatwave mortality risk classification 
system shown in Figure 3. Low-risk heatwaves are events with a daily 

 
RCP4.5  RCP8.5 

A B

FIGURE 2

Taylor diagrams of 4 CMIP5 GCMs relative to observations under different emission scenarios in Wuhan, 2007–2017 (A) RCP4.5; (B) RCP8.5.

TABLE 1 Details of the CMIP5 global climate models.

ID Model Nation Resolution

(Longitude 
(°)  ×  Latitude (°))

1 GFDL-ESM2M USA 144 × 90

2 HadGEM2-ES UK 145 × 192

3 IPSL-CM5A-LR France 96 × 96

4 MIROC5 Japan 256 × 128
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maximum temperature between 35.2 and 36.2°C for 2 days or more, as 
indicated in green. Medium-risk heatwaves are events with daily 
maximum temperatures between 36.2 and 37.1°C for 2 days or more or 
daily maximum temperatures of 37.1°C and higher for 2 days, as 
indicated in orange. High-risk heatwaves are events with daily maximum 
temperatures of 37.1°C and higher for 3 days or more, as indicated in red.

4.2 Characterization of historical 
heatwaves in Wuhan based on copula 
functions

Based on those tiered risk criteria, the 2 characteristic variables of 
heatwave severity and duration were used to classify observed (1951–
2017) and predicted (2031–2099) heatwaves as low, medium, and high 
risk, as shown in Figure 4. In the different scenarios, the number of 
heatwave events increased significantly as the concentration of 
greenhouse gas emissions increased. The incidence of high-risk 

heatwaves increased exponentially, whereas the increase in the numbers 
of low-risk and medium-risk heatwave events was not obvious. Most 
of the scenarios showed that risk increases with heatwave duration. The 
number of heatwave occurrences differed among scenarios, with a 
decreasing trend in the observation period and RCP4.5 emission 
scenarios and an increasing trend in the RCP8.5 emission scenario.

In general, when the heatwave duration was shorter, the 
frequency increased. During the observation period, the maximum 
heatwave severity when the heatwave duration was 2d was 36°C and 
38.4°C for the low- and medium-risk categories, respectively, and 
when the heatwave duration was 3d, the maximum heatwave 
severity was 38.586°C for the high-risk category. In the RCP4.5 
scenario, the maximum heatwave severity when the heatwave lasted 
2d was 36.155°C and 40.315°C for the low-risk and medium-risk 
categories, respectively, and the maximum heatwave severity for the 
high-risk category was 41.93°C in a heatwave predicted to last 7d. 
In the RCP8.5 scenario, heatwaves that lasted for 2d had a maximum 
severity of 36.14°C and 41.26°C for the low-risk and medium-risk 
categories, respectively, and the maximum heatwave severity for the 
high-risk category was 41.97°C in a heatwave predicted to last 19d. 
In other words, except for the RCP4.5 and RCP8.5 high-risk 
category, heatwave severity was highest when the heatwave lasted 
for the shortest time. The severity of the most intense heatwaves 
also tended to increase within each risk level in the different 
scenarios, indicating that an increase in the concentration of 
greenhouse gas emissions would lead to more intense 
heatwave events.

The severity of the heatwaves in the historical period was fitted 
using 5 marginal distribution functions (Logn, Exp, Gamma, GEV, 
and Wbl). In fitting the duration, the GP distribution was added. The 
results of the fitting are shown in Table 4. The table indicates that the 
optimal marginal distributions for the severity (S) and duration (D) 
of heatwaves during the historical observation period were GEV and 
GP, respectively. These are both 3-parameter distributions and were 
estimated using the maximum likelihood estimation method.

Figure 5 compares the actual probability density distributions of 
the 2 characteristics of heatwaves with the optimal probability density 
distributions and shows that the distributions selected in this paper fit 
well with the actual characteristics of heatwaves.

The t copula of the elliptic copulas, the gaussian copula, and the 
Clayton copula, Gumbel copula, and Frank copula of the Archimedean 
copulas were selected to construct joint probability distribution 
functions of heatwave severity and duration for the different risk 
categories during the historical observation period. The parameters in 
the joint probability distribution functions of heatwave severity and 
duration were estimated using the maximum likelihood method. The 
goodness-of-fit tests were performed based on the maximum 
likelihood, AIC, BIC, and RMSE criteria, and the parameters and 
goodness-of-fit test results are shown in Table 5.

According to the criterion that a small RMSE indicates a good 
copula fit, the Clayton copula exhibited the best fit for a binary 
copula of heatwave severity and duration in the low-risk category. 
The RMSE of the gaussian copula was significantly smaller than 
the rest in the medium-risk category, where it was the optimal 
joint probability distribution of heatwave severity and duration. 
For the joint distribution of heatwave severity and duration in the 
high-risk category, the goodness-of-fit of the Gumbel copula was 
the best.

TABLE 2 Skill scores and rankings of the 4 CMIP5 GCMs in Wuhan under 
different emission scenarios, 2007–2017.

Model RCP4.5 (S/ranking) RCP8.5 (S/ranking)

GFDL-ESM2M 0.98/4 0.94/3

HadGEM2-ES 0.97/3 0.93/4

IPSL-CM5A-LR 0.99/1 0.97/2

MIROC5 0.98/2 0.99/1

Temperature 

threshold

*Green: low risk; Orange: medium risk; Red: high risk

Duration

2d 3d d 

[35.2, ) 

[36.2, ) 

 [ ,+

FIGURE 3

Heatwave mortality risk classification system.

TABLE 3 The 9 heatwave definitions in Wuhan, 1951–2017.

Heatwave 
definition

Temperature 
indicator

Relative 
temperature 
threshold

Duration

HW1

Daily maximum 

temperature

95th percentile 

(35.2°C)

≥2d

HW2 ≥3d

HW3 ≥4d

HW4
97.5th percentile 

(36.2°C)

≥2d

HW5 ≥3d

HW6 ≥4d

HW7
99th percentile 

(37.1°C)

≥2d

HW8 ≥3d

HW9 ≥4d
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Therefore, the Clayton copula, gaussian copula, and Gumbel 
copula functions were chosen to describe the 2-dimensional joint 
distribution of the severity and duration of low-, medium-, and high-
risk heatwaves, respectively. The joint probability density functions 

of the heatwave characteristics in the 3 risk categories are shown in 
Figure 6.

Based on the data of heatwave severity and duration at different 
risk levels in the historical observation period, the co-occurrence 

     Observation period-Low risk      Observation period -Medium 
risk

Observation period-High risk

     RCP4.5 -Low risk RCP4.5-Medium risk      RCP4.5-High risk

      RCP8.5-low risk       RCP8.5-Medium risk      RCP8.5-High risk

A B C

D E F

G H I

FIGURE 4

Scatterplots of heatwave severity and duration identified using different risk levels and RCP scenarios (A, D, G) low risk; (B, E, H) medium risk; (C, F, I) 
high risk.

TABLE 4 Marginal distributions of heatwave characteristics under different risk levels.

Risk level Characteristic Marginal distribution Parameters*

Low risk
S GEV [k,σ,μ] = [−0.29,0.17,35.53]

D GP [k,σ,μ] = [−0.64,3.86,0]

Medium risk
S GEV [k,σ,μ] = [0.27,0.25,36.56]

D GP [k,σ,μ] = [−0.34,2.93,0]

High risk
S GEV [k,σ,μ] = [0.07,0.28,37.66]

D GP [k,σ,μ] = [−0.43,6.27,0]

*k: shape parameter, σ: scale parameter, μ: location parameter.
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return periods of heatwave severity and duration were calculated 
according to Eq.

The vertical axis is heatwave severity. The co-occurrence return 
period curves constructed from the heatwave severities and durations 
were used to compare heatwave severities from different risk categories 

with the same durations and co-occurrence return periods. For instance, 
a heatwave event with a duration of 3 days or more and a 5-year 
co-occurrence return period corresponded to temperatures of 35.74°C, 
36.69°C, and 37.64°C, respectively, in the low-, medium-, and high-risk 
categories (see Figure 7).

Low risk

Medium risk

High risk

A

B

C

FIGURE 5

Comparison of the actual histograms and optimal probability density distributions of the 2 characteristics of heatwaves at 3 risk levels (A) Low risk; 
(B) Medium risk; (C) High risk.
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When the duration of a low-risk heatwave event was 2d, the 
maximum heatwave severity was 36°C, and the corresponding 
co-occurrence return period was 149 years. In other words, the 
co-occurrence return period for heatwave events with severity greater 
than or equal to 36°C and a duration of 2d or more was 149 years in 
the low-risk category. When the duration of a medium-risk heatwave 
event was 2d, the corresponding maximum heatwave severity was 
38.4°C, and its co-occurrence return period was 103.98 years. The 
maximum severity corresponding to a high-risk heatwave lasting 3d 
was 38.586°C, and the corresponding co-occurrence return period of 
the 2 characteristics was 50.6 years.

On the whole, as the heatwave severity and duration increased in 
each risk category, the co-occurrence return period gradually decreased, 
which meant that the probability of heatwave events increased.

4.3 Projection of future heatwave risks in 
Wuhan based on copulas

Table 6 shows the optimal marginal distributions for heatwave 
characteristics, i.e., severity (S) and duration (D), for the future period 

under the RCP4.5 and RCP8.5 emission scenarios. As in the historical 
observation period, the optimal marginal distributions fitted to the 
heatwave severity and duration in the low-, medium-, and high-risk 
categories were the GEV distribution and the GP distribution, 
respectively, and the parameters were again estimated using the 
maximum likelihood estimation method. Figure  8 compares the 
actual histograms of the 2 heatwave characteristics for the 2 emission 
scenarios and 3 risk levels with the optimal probability density 
distributions chosen. The performance was satisfactory, as in the 
historical observation period.

The t copula, gaussian copula, Clayton copula, Gumbel copula, 
and Frank copula were used to construct 2-dimensional joint 
distributions of heatwave severity and duration for the different risk 
levels under the RCP4.5 and RCP8.5 emission scenarios, and the 
parameter estimations were performed using the maximum likelihood 
estimation method. As in the historical observation period, the joint 
distributions were tested for goodness-of-fit using the max-likelihood, 
AIC, BIC, and RMSE criteria. The parameters and results of the 
goodness-of-fit tests are shown in Table 7.

Based on the criteria used to select the best 2-dimensional copula 
functions in the historical observation period, for the low- and high-
risk categories under the RCP4.5 emission scenario, the Frank copula 
fit best; for the medium risk under the RCP4.5 emission scenario, the 
gaussian copula was best fit. The gaussian copula also had the best fit 
for the low- and medium-risk categories under the RCP8.5 emission 
scenario, and the Gumbel copula fit best for the high risk category. The 
joint density functions of heatwave characteristics under the different 
scenarios and risk levels are shown in Figure 9.

The return periods of heatwaves with the 3 different risk levels 
under the RCP4.5 and RCP8.5 emission scenarios are shown in 
Figure  10. The characteristics of the co-occurrence return period 
curves are the same as during the historical observation period. The 
co-occurrence return period for each risk level in both emission 
scenarios tended to increase as heatwave severity intensified and 
heatwave duration lengthened, which matches the frequency 
characteristics of heatwaves in the historical observation period.

In the RCP4.5 emission scenario, the maximum heatwave severity 
in the low-risk category was 36.155°C when the heatwave lasted for 
2d, corresponding to a co-occurrence return period of 359.27 years. 
The maximum heatwave severity was 40.315°C when the heatwave 
lasted for 2d in the medium-risk category, which corresponded to a 
co-occurrence return period of 101.39 years for this type of event. The 
maximum heatwave severity for a high-risk heatwave event with a 
duration of 7 days was 41.93°C, corresponding to a co-occurrence 
return period of 57.74 years.

In the RCP8.5 emission scenario, the maximum heatwave severity 
(36.14°C) and duration (2d) in the low-risk category, maximum 
heatwave severity (41.26°C) and duration (2d) in the medium-risk 
category, and maximum heatwave severity (41.97°C) and duration 
(19d) in the high-risk category corresponded to co-occurrence return 
periods of 89.25, 68.5, and 51.88 years, respectively.

Compared with the co-occurrence return periods of the 3 heatwave 
risk levels in the historical observation period, the co-occurrence return 
periods of each heatwave risk gradually shortened as the concentrations 
of greenhouse gas emissions increased in the RCP4.5 and RCP8.5 
emission scenarios. This implies that longer and more intense heatwaves 
will occur more frequently as greenhouse gas levels continue to 
increase. For instance, the co-occurrence return period corresponding 

TABLE 5 Evaluation of copula parameters and goodness-of-fit tests for 
the different risk levels.

Risk 
level

Copula Parameters RMSE

Low risk

Gaussian
�� �

�

�
�

�

�
�

1 0 12

0 12 1

.

.

0.31

t
�� =

1 0 28

0 28 1
2442431

.

.
,

�

�
�

�

�
� �nu

0.26

Clayton α = 0.42 0.25

Frank α = 1.51 0.25

Gumbel α = 1.11 0.39

Medium 

risk

Gaussian
�� =

1 0 14

0 14 1

�
�
�

�
�

�

�
�

.

.

0.17

t
�� =

1 0 41

0 41 1
4669185

�
�
�

�
�

�

�
� �

.

.
,nu

0.25

Clayton α = 0.26 0.28

Frank α = −2.45 0.26

Gumbel α = 1 0.2

High risk

Gaussian
�� �

�

�
�

�

�
�

1 0 45

0 45 1

.

.

0.13

t �� �
�

�
�

�

�
� �

1 0 58

0 58 1
3 3649

.

.
, .nu 0.12

Clayton α = 1.35 0.19

Frank α = 3.74 0.13

Gumbel α = 1.58 0.11

*ρ and α are the linear correlation parameters in the copula, and nu is the degree of freedom.
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TABLE 6 Marginal distributions of heatwave characteristics under different scenarios and risk levels.

Emission scenario Risk level Characteristic Marginal distribution Parameters

RCP4.5

Low risk
S GEV [k,σ,μ] = [−0.27,0.2,35.59]

D GP [k,σ,μ] = [−0.16,2.75,0]

Medium risk
S GEV [k,σ,μ] = [0.41,0.37,36.69]

D GP [k,σ,μ] = [−0.59,2.98,0]

High risk
S GEV [k,σ,μ] = [0.1,0.68,38.27]

D GP [k,σ,μ] = [−0.11,5.96,0]

RCP8.5

Low risk
S GEV [k,σ,μ] = [−0.26,0.19,35.63]

D GP [k,σ,μ] = [−0.51,3.14,0]

Medium risk
S GEV [k,σ,μ] = [0.39,0.48,36.82]

D GP [k,σ,μ] = [−0.32,2.66,0]

High risk
S GEV [k,σ,μ] = [0.01,0.72,38.41]

D GP [k,σ,μ] = [−0.26,8.07,0]

*k: shape parameter, σ: scale parameter, μ: location parameter.

 Low risk  Medium risk  High risk

A B C

FIGURE 6

Joint probability density function plots of heatwave characteristics for the 3 risk levels (A) Low risk; (B) Medium risk; (C) High risk.

Low risk-co-occurrence return 
periods

Medium risk-co-occurrence 
return periods

High risk-co-occurrence return 
periods

A B C

FIGURE 7

Co-occurrence return period plots for heatwave severity and duration at the 3 risk levels (A) Low risk; (B) Medium risk; (C) High risk.
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to the most severe intensity and duration of a low-risk heatwave in the 
observation period was 149 years, whereas the return periods for a 
heatwave of the same intensity and duration in the RCP4.5 and RCP8.5 
scenarios were 34.81 years and 14.87 years, respectively. For a medium-
risk heatwave event, the co-occurrence return period corresponding to 
the most severe intensity and duration in the observation period was 
103.98 years, whereas in the RCP4.5 and RCP8.5 scenarios, it was 
23.95 years and 9.10 years, respectively. Likewise, the co-occurrence 
return period corresponding to the maximum heatwave intensity and 
duration for a high-risk event in the observation period was 50.6 years, 
and it was 1.34 years and 0.56 years in the RCP4.5 and RCP8.5 scenarios, 
respectively. All 3 scenarios show that increased greenhouse gas 
emissions lead to more frequent heatwaves.

5 Conclusion and discussion

Global climate change is leading to increasing heat waves in major 
cities, with serious impacts on human health and life on Earth (39). 
Traditional meteorological warnings are based on the strength of the 
heat signal and do not consider the possible physical health risks 

associated with heat exposure. A heat-health warning system has been 
shown to effectively reduce premature deaths caused by heatwaves and 
is only in use in a few high-income countries (40). There is an urgent 
need to consider the potential health risks due to heat exposure in the 
heatwave definition, classification, and warning systems for the health 
protection of vulnerable populations in most low-income and middle-
income countries. Therefore, in this study, nine heat wave definitions 
that can well capture the effects on non-accidental mortality of 
heatwaves in Wuhan were introduced and classified into low, medium, 
and high risk levels to investigate the historical and future likely 
changes of heatwave risks. Copula functions were used to analyze the 
joint probability distributions of heatwave severity and duration and 
to project the future heatwave co-occurrence interval.

Daily maximum near-surface air temperature projections based 
on 4 CMIP5 climate models under RCP4.5 and RCP8.5 scenarios 
were collected for future heatwave risk assessment. Due to the 
complexity of the climate system and the differences in the physical 
processes integrated with the model, the simulation results may differ 
from actual observations and between models. Therefore, it is 
necessary to conduct a comprehensive and quantitative evaluation of 
the model products before making predictions about future climate. 

Low risk-S Low risk-D Low risk-S Low risk-D

Medium risk-S Medium risk-D Medium risk-S Medium risk-D

High risk-S High risk-D High risk-S High risk-D
A. RCP4.5 B. RCP8.5

A B C D

E F G H

I J K L

FIGURE 8

Comparison of the actual histograms and optimal probability density distributions of the 2 heatwave characteristics (S was severity, D was duration) 
under 2 emission scenarios and 3 risk levels. (A-D) Low risk; (E-H) Medium risk; (I-L) High risk.
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TABLE 7 Evaluation of copula parameters and goodness-of-fit tests under different emission scenarios and risk levels.

Risk level Copula Parameters* RMSE

RCP4.5

Low risk
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.
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Clayton α = 0.39 0.26

Frank α = −2.83 0.24

Gumbel α = 1 0.25
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�
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�

�

�
�
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.

.
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t
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�
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.

.
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Clayton α = 1.58 0.35
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Gumbel α = 1.62 0.19

RCP8.5

Low risk
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�� �

�
�
�
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�

1 0 07
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.

.

0.16
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0 26 1
12 2447

.

.
, .nu 0.16

Clayton α = 0.17 0.18

Frank α = −1.39 0.17

Gumbel α = 1 0.17

Medium risk
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.
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t
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.
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Clayton α = 0.32 0.5
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Gumbel α = 1 0.56
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Clayton α = 1.05 0.34

Frank α = 3.46 0.15

Gumbel α = 1.47 0.13

*ρ and α are the linear correlation parameters in the copula function, and nu is the degree of freedom.
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Low risk    Medium risk      High risk
A. RCP4.5

   Low risk    tMedium riskt   High risk
B. RCP8.5

A B C

D E F

FIGURE 9

The joint probability density functions of heatwave characteristics under different scenarios and risk levels (A-C) RCP4.5, (D-F) RCP8.5.

     Low risk -co-occurrence return 
periods

      Medium risk-co-occurrence
return periods

      High risk-co-occurrence return 
periods

A. RCP4.5

      Low risk-co-occurrence return 
periods

      Medium risk-co-occurrence 
return periods

      High risk-co-occurrence return 
periods

B. RCP8.5

A B C

D E F

FIGURE 10

Co-occurrence return period plots of heatwave intensity and duration for 3 risk levels and 2 scenarios (A-C) RCP4.5; (D-F) RCP8.5.
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The Taylor diagrams and the S-skill score were used to evaluate the 
performances of four GCMs in simulating temperature variables in 
Wuhan. The results showed that CMIP5 models had satisfying 
performance in reproducing observed characteristics of temperature 
extremes in Wuhan, and the IPSL-CM5A-LR and MIROC5 were the 
best-fitted models under the RCP4.5 and RCP8.5 emission scenarios, 
respectively, with a high S-skill score of 0.99.

The identification of heatwave events in the 3 risk categories 
during the observation and future periods found that (a) the 
frequency of heatwave events increased along with increasing 
concentrations of greenhouse gas emissions; (b) the frequency of 
heatwave events in the high-risk category increased significantly; 
(c) the frequency of heatwave events in the low-risk category 
increased but not significantly. Overall, the co-occurrence period 
gradually got longer with increasing heatwave intensity and 
heatwave duration at all risk levels. Compared to RCP4.5, the return 
period for each risk category of heatwave became progressively 
shorter under the RCP8.5 scenario, leading to more frequent 
heatwaves. This paper recommends that policymakers prioritize 
responses to extreme heat events and implement public health 
measures to reduce the health risks associated with local heatwaves. 
In addition, this study provides warnings for cities with climates 
similar to that of Wuhan, China, and provides useful references for 
facing heat disaster risks.
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