
Frontiers in Public Health 01 frontiersin.org

Automatic speech analysis for 
detecting cognitive decline of 
older adults
Lihe Huang 1,2, Hao Yang 2,3, Yiran Che 1,2 and Jingjing Yang 1,2*
1 School of Foreign Studies, Tongji University, Shanghai, China, 2 Research Center for Ageing, Language 
and Care, Tongji University, Shanghai, China, 3 School of Aerospace Engineering and Applied 
Mechanics, Tongji University, Shanghai, China

Background: Speech analysis has been expected to help as a screening tool 
for early detection of Alzheimer’s disease (AD) and mild-cognitively impairment 
(MCI). Acoustic features and linguistic features are usually used in speech analysis. 
However, no studies have yet determined which type of features provides better 
screening effectiveness, especially in the large aging population of China.

Objective: Firstly, to compare the screening effectiveness of acoustic features, 
linguistic features, and their combination using the same dataset. Secondly, 
to develop Chinese automated diagnosis model using self-collected natural 
discourse data obtained from native Chinese speakers.

Methods: A total of 92 participants from communities in Shanghai, completed 
MoCA-B and a picture description task based on the Cookie Theft under the 
guidance of trained operators, and were divided into three groups including AD, 
MCI, and heathy control (HC) based on their MoCA-B score. Acoustic features 
(Pitches, Jitter, Shimmer, MFCCs, Formants) and linguistic features (part-of-
speech, type-token ratio, information words, information units) are extracted. 
The machine algorithms used in this study included logistic regression, random 
forest (RF), support vector machines (SVM), Gaussian Naive Bayesian (GNB), and 
k-Nearest neighbor (kNN). The validation accuracies of the same ML model using 
acoustic features, linguistic features, and their combination were compared.

Results: The accuracy with linguistic features is generally higher than acoustic 
features in training. The highest accuracy to differentiate HC and AD is 80.77% 
achieved by SVM, based on all the features extracted from the speech data, 
while the highest accuracy to differentiate HC and AD or MCI is 80.43% achieved 
by RF, based only on linguistic features.

Conclusion: Our results suggest the utility and validity of linguistic features in 
the automated diagnosis of cognitive impairment, and validated the applicability 
of automated diagnosis for Chinese language data.
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1 Introduction

The issue of diagnosing Alzheimer’s disease has garnered 
considerable attention from scholars. However, given the challenges 
associated with traditional biomarker screening, some researchers 
have attempted to use machine learning techniques to analyze the 
speech of older adults as a novel automated screening tool. The 
features used in machine learning can be concluded into acoustic set 
and linguistic set.

1.1 AD diagnosis

Alzheimer’s disease is a neurodegenerative condition characterized 
by the progressive decline of cognitive function, such as executive 
function, inference ability, memory, etc., making it a prominent cause 
of mortality among the older population (1). Despite considerable 
research endeavors dedicated to developing disease-modifying 
treatments for AD, a definitive cure remains elusive. Consequently, the 
importance of early and efficient prediction of AD cannot 
be overstated. Biomarkers such as β-amyloid (Aβ), phosphorylated tau 
protein (p-tau), magnetic resonance imaging (MRI) and positron 
emission tomography (PET) are utilized to aid in the diagnosis of 
AD. However, these biomarkers are hindered by limitations such as 
invasiveness, high cost, and time consumption. Consequently, scholars 
are actively investigating more efficient and convenient biomarkers.

1.2 Automated diagnosis based on acoustic 
features

Several endeavors have been undertaken to leverage language and 
speech data gathered from everyday life through computational 
speech processing techniques for automated diagnosis, prognosis, or 
progression modeling (2). A prevalent approach in recent research 
involves utilizing speech data obtained from various language tasks 
and employing speech processing techniques to extract diverse types 
of features for modeling (2–4). It is gathering prominence due to their 
numerous prospective benefits, such as non-invasiveness, cost-
effectiveness, and ease of accessibility.

Machine Learning has demonstrated significant effectiveness in 
language modeling, prompting some research studies to propose its 
utilization for detecting AD due to its exceptional performance in 
binary AD vs. control comparisons (5, 6). Gonzalez-Moreira et al. (7) 
conducted a study where prosodic features were measured in 
individuals with mild dementia and healthy controls, utilizing 
automatic prosodic analysis during a reading task. The study achieved 
a classification accuracy of 85%, indicating a noteworthy discriminatory 
capacity between the two groups. Roshanzamir et al. (8) achieved an 
accuracy rate of 88.08% by employing BERT as an encoder in 
conjunction with a logistic regression classifier to differentiate between 
AD patients and controls, utilizing English data from the Pitt corpus.

The features employed in automated diagnosis research are mainly 
acoustic-dependent features. Acoustic-dependent features encompass 
characteristics that do not necessitate comprehension of content, 
including prosodic features such as pause rate, articulation rate, and 
spectral features like formant trajectories and Mel Frequency Cepstral 
Coefficients, as well as vocal quality indicators like jitter and shimmer 

(as listed in Table  1). Satt et  al. (27) recorded participants during 
various cognitive tasks and meticulously engineered acoustic features 
tailored to each task. Their study achieved an equal error rate of 87% 
in a binary classification distinguishing between AD and HC groups. 
Balagopalan et  al. (21) modeled the acoustic part of speech using 
acoustic parameters of frequency and spectral domain by patients’ 
verbal descriptions of the Cookie Theft picture. In their study, Support 
Vector Machine (SVM) had the highest performance with an accuracy 
of 81.5%. Rohanian et al. (28) modeled the acoustic part of speech 
using COVAREP, an open-access repository of acoustic assessment 
algorithms. An ML architecture with Bi-long short-term memory 
(Bi-LSTM) was trained and evaluated on the linguistic and acoustic 
feature sets, achieving an accuracy of 79.2% for the joint combination 
of acoustic and linguistic feature sets. Balagopalan et al. (5) employed 
MFCCs, fundamental frequency, and zero-crossing rate-related 
statistics as acoustic parameters, together with lexical-semantic 
features, achieving an accuracy of 81.3% with SVM model.

In addition to the acoustic features utilized in the research articles 
mentioned before, there are also standard acoustic feature sets such 
as ComParE (29), GeMAPs (30), and eGeMAPS, which are supported 
by the openSMILE v2.4.2 toolkit based on the Python languge. The 
ADReSS Challenge at INTERSPEECH 2020 (31) also suggests other 
feature sets such as emobase (32) and MRCG functions.

1.3 Automated diagnosis based on 
linguistic features

In addition to the measurement of acoustic features, some scholars 
believe that linguistic indicators can better reflect changes in patient’s 
language abilities.

Language impairment represents a prominent manifestation of 
AD, characterized by challenges in both speech production and 
comprehension. This symptomatology typically emerges in the early 
stages of the disease and deteriorates in tandem with disease 
progression. Moreover, research indicates that individuals with 
manifest AD exhibit indications of language deficits long before 
receiving a formal diagnosis (33). This observation proves particularly 
valuable in identifying mild cognitive impairment (MCI), which 
serves as the prodromal stage of AD (34).

Based on the disproportionate impairments in language functions 
at various stages of Alzheimer’s disease, some scholars have proposed 
using linguistic features for automatic diagnosis.

Linguistic features pertain to aspects related to the meaning, 
grammar, or logic of speech. These features encompass diverse linguistic 
domains and corresponding attributes, including lexical diversity and 
density at the lexical level, dependency-based parse tree scores at the 
syntactic level, latent semantic analysis at the semantic level, as well as 
assessments of coherence, paraphrasing, and filler words at the 
pragmatic level (2). The linguistic features used for automated diagnosis 
are listed in Table  2. Sadeghian et  al. (44) employed the extracted 
linguistic features to augment the Mini-Mental State Examination 
(MMSE) for AD detection resulting in a substantial improvement in 
accuracy from 70.8% to 94.4%. Guo et al. (45) conducted a lexical-level 
analysis using N-grams LMs for AD detection and achieved state-of-
the-art detection accuracy of 85.4% on the DementiaBank dataset. 
Balagopalan et al. (5) utilized lexico-syntactic features to model the 
linguistic aspects of participants’ speech. These features were derived 
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from speech-graph, constituency parsing tree, lexical richness, 
syntactic, and semantic features based on picture description content.

1.4 Comparison between acoustic and 
linguistic features

Upon comparing the two types of indicators, it can be observed 
that the advantages of acoustic features lie in their strong transferability 
and independence from linguistic content. Minimal effort is required 
to apply this methodology to another language (46). Algorithms 
focusing on acoustic features demonstrate universality, allowing 
researchers from diverse countries to study various languages and 

speech tasks. Consequently, research centered on acoustic features 
enjoys broader prevalence and application within academic circles. 
However, acoustic features are heavily reliant on audio quality. Poor 
audio quality may adversely affect the detection efficacy.

Compared to acoustic features, studies utilizing linguistic features 
often achieve higher performance levels due to their richness in 
information. These indicators involve deeper levels of language 
proficiency, thus better reflecting changes in patients’ language abilities. 
However, these features necessitate a more in-depth analysis of discourse 
content, hence, the generation of spoken content typically requires 
automatic speech recognition (ASR) before relevant contextual analysis 
can be conducted. Their robustness is highly dependent on the quality 
of the ASR system (46). In addition, relevant algorithms must also 

TABLE 2 Linguistic feature taxonomy.

Subcategory Feature type Feature name, abbreviation References

Lexical features Bag of words BoW (35)

Linguistic inquiry and word count LIWC (36, 37)

Lexical diversity Type-token ratio (TTR) (38, 39)

Moving average TTR (MATTR) (38)

Brunet’s index; Honore’s statistic (40–42)

Familiarity; imageability; age-of-acquisition (38)

Vocabulary analysis The total number of utterances; mean length of utterances; functional words; 

unique words; word count; character length; lexical bigrams

(25)

Part-of-speech tagging PoS (26, 37, 38)

Lexical density Idea density (ID) (43)

Syntactical features Constituency-based parse tree scores (38)

Sentence analysis The mean length of sentences; T-units; clauses (38)

The frequency of occurrence of different grammatical constituents (38)

The rate, proportion, and average length of noun phrases, verb phrases, and 

prepositional phrases

(38)

Coordinated sentences; subordinated sentences; reduced sentences; number of 

predicates; average number of predicates; dependency distance; number of 

dependencies; average dependencies per sentence

(25)

Pragmatics Coherence The filler words; phrase repetitions; word revisions; phrase revisions (26)

TABLE 1 Acoustic feature taxonomy.

Subcategory Feature type Feature name References

Prosodic features Temporal Pause rate (PR) (9, 10)

Hesitation rate (11, 12)

Speech rate (SR) (11)

Articulation rate (AR) (11–13)

Speech tempo (11, 12)

Fundamental frequency F0 and trajectory (14, 15)

Spectral features Formant trajectories F1, F2, F3 (16–20)

Mel frequency cepstral coefficients MFCCs (21)

Vocal quality Jitter, Shimmer, harmonic-to-noise ratio Jitt, shimm, HNR (22–24)

ASR-related Filled pauses, repetition, dysfluencies, hesitations, fractal dimension, 

entropy.

FP, rep, dys, hes, FD, entr (25)

Dialog features (i.e., turn-taking) TT: avg. turn length, inter-turn silences (26)
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consider the uniqueness of the language, combing linguistic features of 
this language (such as English, Chinese etc.) to better analyze syntactic, 
pragmatic performance of AD patients. Therefore, these algorithms are 
designed for specific languages. While context-dependent features may 
have limitations in transferability, preventing direct application to other 
languages, they still hold significant research value.

Several studies have integrated both acoustic and linguistic features 
in their research. Fraser et al. (47) investigated speech and corresponding 
transcriptions from 240 AD patients and 233 healthy controls in the 
DementiaBank corpus. They extracted a total of 370 features, 
encompassing aspects such as part-of-speech (POS), syntax, acoustic 
properties, and other linguistic factors. Their study achieved a best 
average accuracy of 81.92% for binary classification. Similarly, Lopez-
de-Ipiña et al. (22) utilizing Hungarian data, achieved accuracy rates 
ranging from 72% to 82% in classifying cognitively healthy individuals, 
those with MCI, and those with AD based on acoustic features, with 
comparable results obtained using language features. Furthermore, 
He et al. (33) employed seven speech and linguistic features in a random 
forest classifier to assess the discriminability of participants from 
Spanish/Catalan backgrounds with AD, MCI, subjective cognitive 
decline (SCD), and cognitively healthy controls, obtaining scores 
exceeding 90% in their evaluations. Kong (48) modeled the linguistic 
aspects of speech by employing syntactic and semantic features, as well 
as psycholinguistic characteristics. For acoustic parameters, they 
utilized the MFCC features. They combined the two modalities using a 
joint embedding method and built logistic regression classifiers on these 
feature sets, achieving an accuracy of 70.8%.

1.5 Existing research limitations

Considering the somewhat surprising quantity and diversity of 
studies we encountered, it is reasonable to conclude that this is a 
highly promising field. However, it is evident that several challenges 
need to be addressed.

Firstly, the primary limitation lies in the comparison of the 
diagnosis effectiveness between acoustic features and linguistic 
features. Although both types of indicators can be  used for early 
screening of AD, there seems to be a lack of comparative studies on 
which type is more effective. Most existing studies utilize only one type 

of indicator or combine both types, seemingly assuming that the 
combination of both indicators yields better diagnosis results. However, 
no study has yet compared the diagnosis effectiveness of acoustic 
features, linguistic features, and their combination using the same 
dataset. A comparative analysis of these three indicator combinations 
would enhance our understanding of the effectiveness of acoustic and 
linguistic features. It would help improve the accuracy of machine 
learning and serve as a reference for scholars in choosing indicators for 
related research in the future.

Secondly, automated speech analysis has predominantly focused 
on English speech data. Notably, there has been a dearth of research 
specifically targeting Chinese language data, with only a sparse 
representation in the comprehensive systematic analysis conducted by 
Garcia et al. (2), wherein merely one study (46) was conducted on 
Chinese and Taiwanese datasets. However, given the burgeoning 
interest in studying language and aging within the Chinese older 
population, it is widely acknowledged among scholars that employing 
machine learning techniques on Chinese speech data holds substantial 
promise for enhancing AD detection efforts. This recognition is 
imperative for the global dissemination and implementation of robust 
screening methodologies for AD.

1.6 Objects of this research

Hence, this study endeavors to:

 1 Compare the diagnosis effectiveness of acoustic features, 
linguistic features and their combination using the same dataset.

 2 Develop a Chinese language analysis model for older adults 
with cognitive decline using self-collected natural discourse 
data from native Chinese speakers.

The study outlined herein follows a structured approach, as 
depicted in Figure 1. Initially, the voice responses of subjects from 
Shanghai communities were recorded during a picture description 
task. Subsequently, voice segments and transcriptions were obtained 
from the recordings. Following data preprocessing, specific acoustic 
features were extracted from the voice segments, and linguistic 
features were extracted from the transcriptions. Finally, the extracted 

FIGURE 1

Overview of speech collection and analysis steps as well as machine learning classification in this study.
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features were employed to train machine learning models for the 
classification of AD, MCI, and HC groups.

2 Materials and methods

2.1 Subjects

Subjects were recruited from communities in Shanghai. All 
participants completed a picture description task based on the 
Cookie Theft picture from The Boston Diagnostic Aphasia 
Examination (49) and MoCA-B test under the guidance of trained 
operators. All subjects were divided into 3 groups including AD, 
MCI, and HC, based on their MoCA-B score.

Specifically, older adults in AD group fulfilled the following 
criteria: MoCA-B score <13 and years of education <6, MoCA-B 
score <15 and years of education range from 7 to 12, MoCA-B score 
<16 and years of education more than 12; MCI group: MoCA-B score 
range from 19 to 14 and years of education <6, MoCA-B score range 
from 22 to 16 and years of education range from 7–12, MoCA-B 
range from 24 to 17 and years of education more than 12; HC group: 
MoCA-B score range from 30 to 20 and years of education <6, 
MoCA-B score range from 30 to 23 and years of education range from 
7 to 12, MoCA-B range from 30 to 25 and years of education more 
than 12. For the consistency in the later acoustic features analysis, 
we excluded subjects who speak only Shanghainese and preserved 
only the noise-free Mandarin samples.

Finally, based on the criteria, 92 older adults (40 male and 52 female) 
ranging in age from 53 to 87 (M = 69.82, SD = 8.82) were recruited, 
including 30 AD patients, 40 MCI patients and 22 HC participants. All 
older adults were right-handed and native speakers of Chinese. The 
number subjects in each age group are shown in Table 3. We recorded 
the speech of each subject using voice recorder Sony ICD-SX2000.

The study was conducted under the approval of the Ethics 
Committee, Tongji University, under the approval number 
tjsflrec202306. All participants provided written informed consent to 
participate in the study. All examinations were conducted in Chinese.

2.2 Data collection and analysis

2.2.1 Preprocessing
After collecting speech data from the subjects, researchers used 

Feishu (50), an online open-source platform for audio processing, to 
identify the timing of the utterance of each audio file and transcribe 
the recording. Next, the researchers cut out the subjects’ utterances 
from the original recording with Parselmouth, a Python interface to 

the internal Praat code (51) which enables batch analysis of multiple 
sound files. The voice segments of each subject were joined together 
as a new audio file and automatic noise reduction in Praat was applied 
on the concatenated audio file. The transcriptions of the utterances of 
the subject were extracted and stored in text files.

After the recordings were preprocessed as described above, the 
audio files and the transcriptions were further used for acoustic and 
linguistic analysis. All the acoustic and linguistic features we extracted 
are listed in Table 4. Detailed descriptions of these features can be 
found in sections 2.2.2 and 2.2.3, respectively.

2.2.2 Acoustic features extraction
Recent studies on machine learning approaches based on speech 

data investigate various acoustic features for classification. For 
example, Yamada et  al. (3) compute the jitter, shimmer, and the 
variances of MFCC1-12 from the collected speech data. Lopez-de-
Ipiña et al. (22) and Gonzalez-Moreira et al. (9) use acoustic features 
only for training and achieve a considerable accuracy.

By examining the standard acoustic feature sets (9, 29–31, 50) as 
well as the acoustic features used in several research papers (2, 3, 32, 
44, 48, 51) mentioned in section 1.2, we found that the commonly 
used acoustic features include F0s, jitter, shimmer, MFCCs, and 
formants. We obtained these acoustic features of our speech data using 
Parselmouth, and computed their statistics for training ML models.

 • Fundamental frequency (F0)
F0 is a measurement of acoustic production based on the rate of 

vibration of the vocal fold. The F0 of a voice at different times is 
computed using short-time Fourier transform over a sliding time 
window. In this study, the F0s were estimated based on the voice 
recordings of the subjects. For each voice segment of a subject, 
we extracted the F0s at all the time points of that segment and computed 
their mean value. After obtaining the mean F0s of all the voice 
segments, we ranked these mean F0s in ascending order and took the 
middle seven values for ML classification (median value, three values 
smaller than and closet to the median value, and three values larger 
than and closet to the median value). The median F0 value and the 
three values closest above and below the median could capture the 
central tendency of the F0 distribution and reflect its variability to some 
extent, which we believe can be informative for Alzheimer’s detection.

 • Jitter and Shimmer
Jitter and shimmer measure the variation of the frequency and 

amplitude of sound. For each subject, we concatenated all the voice 
segments into a single audio file and obtained its relative, local 
jitter and shimmer. The voice segments were concatenated better 
obtain representative values for each subject. The formula of 

TABLE 3 Basic characteristics of the subjects.

AD (30) MCI (40) HC (22) P-value

M SD M SD M SD

Age (year) 73.30 9.322 69.90 8.089 64.95 7.319 0.003

Gender (#female) 19 63.33% 23 57.5% 10 45.45% 0.432

Education (year) 8.77 5.036 10.73 4.095 10.82 4.479 0.145

MoCA-B score 10.03 3.200 19.98 2.616 24.73 2.251 0.000

M, mean; SD, standard deviation (number and proportion of females for the gender; more details in Supplementary Appendix 1).
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relative, local jitter and shimmer implemented in Praat are 
as follow.
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where N is the number of extracted F0 periods, Ti is the length of 
the ith period measure in ms, and Ai is the amplitude of the ith period 
represented on a scale from 0 to 1. The F0 periods are identified using 
the “To PointProcess” object in Praat, and the corresponding 
amplitudes are estimated.

 • Mel-frequency cepstral coefficients MFCCs
MFCCs describe the distribution of power over different 

frequencies of a sound signal. Some researches on AD speech 
recognition use the mean values or other statistics of the first several 
frame-level MFCCs for training (2, 3, 45, 38). For each subject, 
we obtained the first 6 frame-level MFCCs of the concatenated speech. 
The parameters for computing the MFCCs were default values in Praat 
(window length = 0.015, time step = 0.005). For each of the first 6 
MFCCs, we computed the mean values and standard deviations over 
all the frames for ML classification. Using the mean and standard 
deviation of the first few frame-level MFCCs is a common approach 
in speech-based cognitive screening research, as the lower-order 
MFCCs tend to capture the most essential characteristics of the 
spectral envelope.

 • Formants
Formants are frequency peaks in the spectrum of a sound or 

signal in general. In acoustic analysis, a formant typically results from 
a resonance of vocal tract. To extract the formants based on the voice 
recordings, we first specified the time points of all the pulses using the 
“To PointProcess” object in Praat, and then extracted the first four 
formants at these identified pulses. The median value of each formant 
over the pulses were obtained, resulting in four median formants, 

which were used for training ML models. The first four formants were 
chosen since lower-frequency formants are generally more robust and 
informative for speech analysis.

2.2.3 Linguistic features extraction
There have been a large number of studies showing that cognitive 

decline is associated with the change of linguistic features of daily 
speech. For example, Guinn et  al. (42) conducted discriminative 
analysis of conversational speech involving individuals suffering from 
Alzheimer’s disease and showed that metrics such as part-of-speech 
rate, type-token ratio, and Brunet’s index, contrast between residents 
diagnosed with Alzheimer’s disease and their healthy caregivers. 
Vincze et al. (52) suggested that morphological features including 
number of words and rate of nouns, verbs, adjectives, help distinguish 
MCI patients from healthy controls. Ahmed et al. (53) found that 
measures of semantic and lexical content and syntactic complexity 
best capture the global progression of linguistic impairment through 
the successive clinical stages of disease. Lira et al. (54) reported that 
decreased performance in quantity and content of discourse is evident 
in patients with AD from the mildest phase, with content continuing 
to worsen as the disease progresses. Based on previous studies, 
we extracted a few basic and commonly used linguistic features which 
are described in the following.

 • Lexical features
To evaluate the lexical characteristics of the subjects’ response, 

we extracted the ratio of different part-of-speech (POS) and several 
measures of lexical features. The POS included the: ratio of nouns, 
verbs, and pronouns, which are basic lexical measures that describe 
the characteristics of a text. The lexical richness measures included 
type-token ratio of words and characters, which reflects word 
production of the subjects and has been shown to be associated with 
cognitive decline. These features were extracted using Stanford 
CoreNLP (55), a Java-based toolkit developed by the Stanford NLP 
Group that enables users to derive linguistic annotations. The 
CoreNLP currently supports word segmentation and part-of-speech 
tagging for eight languages including Chinese.

 • Semantic features
In addition to these lexical features, we extracted two domains of 

semantic features that measure the speech production of the subjects. 
Specifically, we calculated the ratio of all the information words which 
include nouns, verbs, adjectives, and numerals. Moreover, we recruited 
volunteers to count the number of semantic information units in each 
transcription and used these numbers for classification. The 
information units are specific for the Cookie Theft picture, which are 
conventionally divided into four categories: people, objects, places, 
and actions (56). Table 5 shows the full list of these information units. 
The result has passed consistency check to ensure accuracy.

2.3 Difference testing

To see whether the extracted acoustic or linguistic features are 
associated with the level of cognitive decline, we  perform a 
permutation test on the mean of each feature. Since the study is aimed 
at cognitive decline detection, two difference testing tasks are 

TABLE 4 Summary of all the acoustic and linguistic features extracted 
from speech data.

Acoustic features

F0s Mean F0s of each utterance

Jitter, Shimmer Jitter and Shimmer of the joined utterances

MFCCs Frame-level MFCC1-7 of the joined utterances

Formants Formants 1–4 of the joined utterances

Linguistic features

Part-of-speech Ratio of nouns, verbs, and pronouns, in the total 

number of words

Type-token ratio Type-token ratio of words and type-token ratio of 

characters

Information words Ratio of information words in the total number of 

words (Information words include nouns, verbs, 

adjectives, and numerals)

Information units Number of people, objects, places, and actions 

category (specific to the Cookie Theft)
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performed: difference testing between HC and AD, and difference 
testing between HC and CI (cognitive impaired, which include both 
the AD and MCI subjects). The null hypothesis is that the distribution 
of each feature is the same for HC as for AD (or the same for HC as 
for CI) in our sample data. In our permutation test, we compute the 
observed mean value of each feature and then compare it with 
multiple simulated test mean values, generated through random 
permutations. The test mean values give a simulated distribution, so 
an empirical p-value for the observed mean value is calculated based 
on this simulated distribution. The mean value of each feature in HC, 
AD, and CI, as well as the empirical p-values in the two permutation 
tests, are listed in Table 6.

Results of the permutation tests on acoustic features are shown in 
Table 6. AD and MCI patients show significant higher F0 (p < 0.05) 
compared with healthy older adults. For MFCC, only MFCC1 std., 
MFCC2 std., MFCC3 std., MFCC4 std., and MFCC5 std. show 
significant differences between AD and healthy control group. For 
Format, only Formant2 median, Formant3 median, and Formant4 
median show significant differences between AD patients and 
healthy controls.

Group comparisons of linguistic features are also shown in 
Table 6. For linguistic feature, compared with healthy older adults, 
patients with AD show a significant reduction in the Ratio of nouns, 
Ratio of verbs and Ratio of pronouns (p < 0.01). There is also significant 
difference between control group and older adults with MCI on Ratio 
of verbs (p < 0.01) and Ratio of pronouns (p < 0.05). There is no 
significant difference between healthy controls and AD patients in 
Type-Token ratio of words, Type-Token ratio of characters and 
Density of information units (p > 0.05), and so does healthy controls 
and MCI patients. Further examination of information units reveals 
that AD patients show a significant reduction in references to objects, 
places (p < 0.01) and actions (p < 0.05). Scores for semantic units 
between healthy controls and MCI patients show significant difference 
only in objects (p < 0.01).

2.4 ML models training

After the acoustic and linguistic features were extracted from the 
speech data, they were used to train machine learning models. The 
machine learning classifiers we  used include Logistic Regression 
(Logistic), Random Forest (RF), Support Vector Machines (SVM), 
Gaussian Naïve Bayesian (GNB), and k-Nearest Neighbors (kNN). 

The models are summarized in Table 7. For the RF, SVM, and kNN 
classifier, we applied grid search on the following parameters: for the 
RF, the number of estimators N; for the SVM, the kernel regularization 
parameter C; for the kNN, the number of neighbors k. The ML 
classification was implemented using Python (version 3.9.12) toolbox 
sklearn (57).

We conducted two binary classification tasks: HC vs. AD, HC vs. 
CI. For each task we trained the machine learning models listed in 
Table 7 with only acoustic features, only linguistic features, and all the 
acoustic and linguistic features, and a combination of both acoustic 
and linguistic features. The purpose is to compare the efficiency of 
acoustic and linguistic features on cognitive decline detection.

Before the data are fed into the model, we  perform z-score 
normalization: all the values of each feature are subtracted from their 
mean value and then divided by their standard deviation. We conduct 
normalization on the features within each gender group to reduce any 
potential impact of gender imbalance on classification. Normalization 
increases the stability of the model parameters during training and 
gives better accuracies.

We used Leave-One-Out method for training and validation: in 
each loop, one subject’s feature data was hold out, while the rest of 
the subjects’ feature data were used to train the machine learning 
model. Then, the trained model was used to predict the label of the 
held-out sample. The performance of the model was evaluated by the 
accuracy of predicting all the subjects. The sensitivity and the 
precision were also computed as TP/(TP + FN) and TP/(TP + FP), 
respectively, where TP, FN, FP represent the number of true positive, 
false negative, and false positive samples, as in a typical classification 
paradigm. The sensitivity was especially important to cognitive 
screening since it measured the models’ capabilities in detecting 
cognitive decline. The F1 score was also calculated based on the 
sensitivity and precision.

3 Results

In the two classification tasks, HC vs. AD classification and HC 
vs. CI classification, each model was trained on the acoustic feature 
set, the linguistic feature set, and all features combined. The accuracies 
are summarized in Table  8. The sensitivity and precision are 
summarized in Table 9.

In Table 8, the highest accuracies achieved in each classification 
task on each feature set are highlighted in bold. It is noteworthy that 
the SVM model generally outperformed other models across different 
tasks in terms of accuracy. For instance, in the HC vs. AD task, the 
SVM achieved the highest accuracy of 76.92% on the linguistic feature 
set and the highest accuracy of 80.77% on all features combined. In 
the HC vs. CI task, the SVM achieved the highest accuracy of 80.43% 
on the linguistic features, shared the highest accuracy of 76.09% with 
the kNN on the acoustic features and 77.17% on all the features. For 
each classification task, the models that achieved the highest accuracy 
on each feature set are summarized in Table  10. Related 
hyperparameters and the corresponding confusion matrices 
are displayed.

Additionally, the classification performance varied between 
different models on the same dataset. For instance, in the HC vs. AD 
classification, the accuracy on all the features ranged from 73.08% 
achieved by the GNB to 80.77% achieved by the SVM. In the HC vs. 

TABLE 5 Information units of the cookie theft.

Subjects Boy, girl, mother

Places Kitchen, exterior

Objects Cupboard, cookie, curtains, jar, dishes, sink, stool, water, 

window, dishcloth, faucet, and floor

Actions Boy taking or stealing a cookie

Boy or stool falling

Mother drying or washing dishes

Water overflowing or spilling

Girl asking for a cookie

Mother unconcerned by or unaware of the water overflowing

Children stealing cookies
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CI classification, the accuracy on all the features ranged from 65.22% 
achieved by the GNB to 77.17% achieved by the SVM and kNN. This 
variation in model performance may be attributed to several factors 
including characteristics of the dataset, inductive biases of the models, 
and hyperparameters of the models. For instance, the GNB classifier 
assumes independence between different features and Gaussian 
distributions, which may not be suitable for our feature data, since 

we included several similar statistics of the same acoustic feature (e.g., 
the seven consecutive F0s). This could possibly account for the 
relatively low accuracies achieved by the GNB. Yet, the SVM has been 
reported to perform well on small-size and high-dimensional datasets, 
which are exactly the characteristics of our feature data. It might 
be suggested that the SVM is a good candidate for cognitive screening 
based on multiple speech features.

TABLE 6 Result of statistical difference analysis: the mean value of each feature in the HC, AD, CI group, and the empirical p-values obtained from the 
two permutation tests (std, standard deviation; med, median).

Feature Mean in HC Mean in AD Mean in CI Empirical p-value, 
HC vs. AD

Empirical p-value, 
HC vs. CI

F0-1 140.420 161.085 154.817 0.0205 0.0575

F0-2 149.492 173.266 163.467 0.0114 0.0829

F0-3 151.826 182.486 169.933 0.0026 0.0309

F0-4 156.101 188.991 176.081 0.0015 0.0223

F0-5 159.801 193.094 181.430 0.0026 0.0166

F0-6 163.012 200.132 186.841 0.0021 0.0182

F0-7 166.376 206.172 191.496 0.0020 0.0151

Jitter 0.038 0.045 0.041 0.0620 0.2843

Shimmer 0.167 0.175 0.171 0.2616 0.5028

MFCC1 mean 234.901 196.541 225.899 0.1144 0.7277

MFCC2 mean 24.713 61.410 31.532 0.1299 0.7726

MFCC3 mean 53.839 50.680 52.700 0.6851 0.8911

MFCC4 mean −10.847 −1.813 −11.745 0.3319 0.9296

MFCC5 mean −2.153 1.151 −3.947 0.5688 0.7334

MFCC6 mean −19.508 −12.374 −16.963 0.1670 0.5954

MFCC1 std 78.217 62.003 71.342 0.0071 0.2070

MFCC2 std 49.469 41.364 46.065 0.0103 0.2946

MFCC3 std 39.740 34.426 38.318 0.0391 0.5896

MFCC4 std 33.715 29.314 31.570 0.0187 0.2230

MFCC5 std 31.452 31.229 31.718 0.8696 0.8283

MFCC6 std 27.930 26.263 27.480 0.1416 0.6374

Formant1 med 445.556 449.034 449.117 0.8454 0.8115

Formant2 med 1624.625 1711.090 1650.245 0.0120 0.3852

Formant3 med 2651.637 2782.151 2720.257 0.0024 0.0832

Formant4 med 3774.587 3859.464 3805.747 0.0416 0.4376

Ratio of nouns 0.251 0.194 0.222 0.0014 0.0804

Ratio of verbs 0.223 0.271 0.258 0.0064 0.0075

Ratio of pronouns 0.133 0.183 0.174 0.0067 0.0177

Type-token ratio of words 0.558 0.586 0.575 0.4043 0.5736

Type-token ratio of 

characters
0.471 0.513 0.499 0.1972 0.3483

Density of information 

units
0.546 0.531 0.542 0.4130 0.8255

Information units, people 2.545 2.300 2.414 0.2308 0.4791

Information units, objects 5.773 2.933 4.100 0.0000 0.0036

Information units, places 0.727 0.200 0.557 0.0006 0.2743

Information units, actions 3.136 2.133 2.700 0.0188 0.2753

The F0s and formants were measured in Hz. Other measures are dimensionless numbers or ratios.
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In addition to the cross-model comparison, it is also intriguing 
to find that the models generally performed better on the linguistic 
feature set than on the acoustic feature set. For example, in the HC 
vs. AD task, the kNN achieved a remarkable accuracy of 75.00% on 
the linguistic features, but only 67.31% on the acoustic features; in the 
HC vs. CI task, an accuracy of 81.52% on the linguistic features, but 
only 76.09% on the acoustic features (Table 8). The possible causes 
for this difference in model performance on different features and its 
implication will be explored in section 4.

4 Discussion

Although a volume of research has employed acoustic and 
linguistic features to develop automated speech screening for AD, 
there seems to be a lack of comparative studies on which type of 
indicator is more effective, especially in Chinese context. In this study, 
we compared the effectiveness of acoustic features, linguistic features 
and their combination on automated speech screening, and developed 
an automated speech analysis model in Chinese context.

The accuracy achieved with linguistic features is generally higher 
than acoustic features and their combination for training. The highest 
accuracy to differentiate HC and AD is 80.77% achieved by SVM 
based on all the acoustic and linguistic features, while the highest 
accuracy to differentiate HC and AD or MCI is 80.43% achieved by 
SVM, using only linguistic features.

The possible reason is that the data we collected are natural speech 
from daily living environments but not in a studio without noise. 
Therefore, the values of acoustic features are influenced by background 
noise while the transcriptions are exact and the linguistic features are 
not affected. This actually matches our motivation of research. 
We hope to apply our research framework to cognitive impairment 
screening among the older adults in communities, where a relatively 
high ratio of noise in recordings is inevitable. From the comparison 
between accuracies using acoustic and linguistic features, we also 
suggest the linguistic feature set as a better marker in cognitive 
impairment screening in community settings.

Language impairment represent a prominent manifestation of 
AD. Numerous studies have illustrated that these subtle alternations 
are often quantifiable even in early phases of the disease (58, 59). 
Efforts have been undertaken to conduct both quantitative and 
qualitative investigations into the language capabilities of individuals 
with AD, encompassing comparative analyses between patients with 
AD and healthy control cohorts, as well as comparisons among 
patients at various disease stages. These analyses include a broad 
spectrum of discourse features across multiple language domains, 
including semantics, syntax, pragmatics and phonology (60–63).

Through the entire course of the disease, language impairment 
appears to occur disproportionately, with previous research indicating 
that deficits in semantics and pragmatics are more prevalent and 
pronounced compared to syntactic impairments (63). In the stage of 
MCI, characteristic linguistic changes include longer hesitations, 
decreased speech rate, and more frequent difficulties in word retrieval 
during spontaneous speech (27). During the mild AD stage, patients 
tend to speak more slowly, exhibit longer pauses, and experience 
increased difficulty in finding the correct words, resulting in speech 
disfluency or interrupted messages  (64). Individuals with AD 
generally produce shorter texts than those in an MCI group, with less 
coherent information, more incoherent phrases, and increased 
occurrence of semantic and graphemic paraphasia (65). In the 
advanced stages of the disease, the syntactic structures of speech are 
susceptible to impairment. Disease progression often entails a 
simplification of syntactic complexity, characterized by the frequent 
utilization of simple sentences to convey fundamental semantic 
content. This phenomenon culminates in the production of short, 
repetitive, and fragmented utterances, potentially culminating in 
mutism (66). The disproportionate impairments in language functions 
observed throughout the progression of AD have been acknowledged 
as having significant clinical implications.

Neuro-psychological assessment tools, such as the Mini-Mental 
State Examination (MMSE) and the Montreal Cognitive Assessment 
(MoCA), exhibit high sensitivity and specificity in detecting 
AD. However, low scores on standard language tests cannot fully 
reflect actual performance of patients in daily conversations (67), and 
the application is often limited clinically difficulty in recognizing early 
symptoms and the clinicians’ insufficient time to assess cognitive 
impairment (68, 69). Connected speech requires diverse and 
complicated cognitive functions, making it sensitive to cognitive 

TABLE 7 Summary of machine learning classifiers employed in this study.

Model Information

Logistic L2 penalty, regularization rate = 1.0

GNB

RF Grid search on N = 3, 4, 5, …, 15

SVM RBF kernel, γ = “scale,” grid search on C = 0.1, 0.4, 0.7, …, 2.5

kNN Weight = “uniform,” grid search on k = 1, 2, 3, …, 8

TABLE 8 Accuracy of each machine learning model in each classification 
task on different feature sets (%).

HC vs. AD

ML model Feature set

Acoustic Linguistic All

Logistic 67.31 75.00 75.00

GNB 73.08 73.08 73.08

RF 67.31 75.00 75.00

SVM 69.23 76.92 80.77

kNN 67.31 75.00 76.92

HC vs. CI

ML model Feature set

Acoustic Linguistic All

Logistic 71.74 76.09 72.83

GNB 60.87 66.30 65.22

RF 76.09 78.26 76.09

SVM 76.09 80.43 77.17

kNN 76.09 81.52 77.17

In either of the HC vs. AD task and the HC vs. CI task, each machine learning model was 
trained on acoustic feature set, linguistic feature set, and all features. The highest accuracy 
achieved in each classification task is marked in bold.
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TABLE 10 Summary of the model that achieves the highest accuracy in each classification task with each feature set, with any relevant hyperparameters 
in the brackets and the confusion matrix below.

Classification 
task

Feature set

Acoustic Linguistic All

HC vs. AD

GNB SVM (C = 0.1) SVM (C = 1.3)

HC vs. CI

SVM (C = 0.1) SVM (C = 1.9)

kNN (k = 6) 

For multiple models that achieve the same highest accuracy, the one with the highest F1 score is displayed.

decline (70). Incorporating AI-based AD and MCI screening 
algorithms clinically can streamline MCI and AD diagnosis, making 
the screening and early detection of cognitive decline more efficient 
and effective, and consequently reduce the overall healthcare 
utilization and costs.

This theoretical study may provide the possibility of automatic 
speech analysis and cognitive impairment risk assessment in real-
scene application, such as in community screening and on a mobile 
App. As far as we  know, there is few such application in China 
currently and relevant theoretical study on Chinese speech data is 
insufficient. Therefore, we believe our project is a pioneering study in 
this field and would pave the way for further development.

While this study has preliminarily demonstrated the effectiveness 
of applying machine learning techniques to Chinese AD detection, 
there are still some limitations. Firstly, the dataset is relatively small 
from a computational standpoint, which restricts both the ability to 
train the model with extensive data and the utilization of state-of-
the-art deep learning techniques. Despite validating the results 
through cross-validation, this constraint still imposes limitations on 
the classifier’s performance.

A second drawback is the limited range of features used in this 
study. While the 25 acoustic features and 10 linguistic features were 
shown to produce remarkable classification performance both 
respectively and altogether, this total number of features is far less 

TABLE 9 Sensitivity (in %), and precision (in %), and F1 score of each machine learning model in each classification task on different feature sets.

ML model HC vs. AD

Feature set

Acoustic Linguistic ALL

Logistic 68.57 80.00 0.739 77.42 80.00 0.787 79.31 76.67 0.780

GNB 70.00 93.33 0.800 76.67 76.67 0.767 71.05 90.00 0.794

RF 67.57 83.33 0.746 77.42 80.00 0.787 74.29 86.67 0.800

SVM 68.42 86.67 0.765 78.13 83.33 0.807 83.33 83.33 0.833

kNN 64.44 96.67 0.773 79.31 76.67 0.780 73.68 93.33 0.824

HC vs. CI

ML model Feature set

Acoustic Lingustic All

Logistic 78.21 87.14 0.824 79.27 92.86 0.855 72.83 80.82 0.825

GNB 74.29 74.29 0.743 80.00 74.29 0.770 65.22 78.79 0.765

RF 77.91 95.71 0.859 81.25 92.86 0.867 76.09 79.27 0.855

SVM 76.09 100.00 0.864 80.23 98.57 0.885 77.17 77.53 0.868

kNN 77.27 97.14 0.861 88.41 87.14 0.878 77.17 76.92 0.870

Each cell displays sensitivity first, precision next, and finally F1 score. The highest F1 score achieved in each classification task is marked in bold.
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than that compared with some cutting-edge research which utilizes 
tens and even hundreds of features. This may impede the machine 
learning classifiers from detecting cognitive decline from a more 
comprehensive perspective. Part of the reason stems from the 
insufficient development of Chinese algorithms at various linguistic 
levels. The results may vary when different acoustic and linguistic 
features are selected, but as far as the results of this study are 
concerned, the linguistic features play an important role in 
automated speech screening. It is expected that scholars can use 
different databases and richer features to validate the results of 
the study.

Thirdly, as an attempt at developing a Chinese language analysis 
model, the existing metrics fail to cover all languages levels and 
linguistic abilities. In the future, we aim to incorporate a broader range 
of linguistic features across multiple levels and collect more diverse 
range of language data, particularly data from different pathological 
stages. Leveraging an augmented dataset, the aim is to advance the 
precision of binary classification and explore the feasibility of 
ternary classification.

5 Conclusion

Alzheimer’s disease is one of the most challenging health 
problems scientists are facing since decades. In this study, 
we compared which kind of feature set (acoustic set, linguistic set, 
and their combination) has the best effectiveness on automatic 
speech screening and developed an automatic speech screening 
model for Chinese corpus. We extracted acoustic features (pitches, 
jitter, shimmer, MFCCs, and formants) and linguistic features 
(part-of-speech, type-token ratio, information words, information 
units) to train 5 Machine Learning algorithms including Logistic 
Regression, GNB, RF, SVM, and kNN to automatically detect MCI 
and AD. We  found the accuracy with linguistic features is 
generally higher than acoustic features and their combination in 
training, demonstrating the importance of linguistic features in 
automated speech analysis, especially for date collected in natural 
living environment. This study also illustrates the applicability of 
automated speech screening in Chinese. The extensive 
experimental results show that SVM model achieved better 
performance in differentiating HC and AD (80.77%) as compared 
to other ML algorithms, and the highest accuracy to differentiate 
HC and AD or MCI is 80.43% achieved by RF, based only on 
linguistic features.
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