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The field of image recognition is extensively researched, with applications addressing 
numerous challenges posed by the scientific community. Notably among these 
challenges are those related to individual safety. This article presents a system 
designed for the application of image recognition in the realm of Occupational 
Risk Prevention—a concern of paramount importance due to the imperative of 
preventing workplace accidents as falls, collisions, or other types of accidents for 
the benefit of both workers and enterprises. In this study, convolutional neural 
networks are employed due to their exceptional efficacy in image recognition. 
Leveraging this technology, the focus is on the recognition of safety signs used in 
Occupational Risk Prevention. The primary objective is to enable the recognition 
of these signs regardless of their orientation or potential degradation, phenomena 
commonly observed due to regular exposure to environmental elements or deliberate 
defacement. The results of this research substantiate the feasibility of integrating 
this technology into devices capable of promptly alerting individuals to potential 
risks. However, to improve classification capabilities, especially for highly degraded 
or complex images, a larger and more diverse data set might be needed, including 
real-world images that introduce greater entropy and variability. Implementing 
such a system would provide workers and companies with a proactive measure 
against workplace accidents, thereby enhancing overall safety in occupational 
environments.
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1 Introduction

In the event of a workplace accident befalling a worker, it poses a multifaceted challenge 
for both the company and its production system, however, if hazards could be avoided through 
effective signaling and recognition, many issues for both workers and the company could 
be significantly reduced. Occupational Risk Prevention (ORP) can be precisely delineated as 
a comprehensive array of activities or measures meticulously formulated to preempt or 
alleviate potential risks inherent within a workplace milieu, and as expected, the signaling 
related to specific risks inherent to the job is encompassed within these activities. Within this 
conceptual framework, an occupational risk manifests as the plausible occurrence of a work-
related accident leading to injuries, illnesses, and fatalities.

The manifestation of accidents not only exerts deleterious impacts on the economic facets of 
the company but also impinges upon human resources (1). Signage assumes a pivotal role within 
the context of ORP, serving as a critical mechanism to apprise workers of specific hazards intrinsic 
to their workplace surroundings. Consequently, it becomes indispensable to impart targeted 
training to workers for the adept understanding and interpretation of these visual cues. Numerous 
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scientific investigations have been conducted to explore the 
comprehension of safety signs across diverse industrial sectors (2–6). A 
consistent finding across these studies is the limited understanding of 
safety pictograms. The determinants contributing to this outcome can 
be categorized into two primary groups: human factors and pictogram 
attributes. The age and experience of the worker are significantly 
influenced by these factors. Conversely, inadequate training or the 
presence of distractions that hinder sign observation diminishes the 
effectiveness of safety signs (6). Regarding pictogram features, key 
considerations include the visibility of the safety sign, image quality, and 
the symbols employed. Additionally, it is imperative to acknowledge the 
potential impairment of safety signs, such as damage, rotation, partial 
concealment, or distance from the observer’s location. In all these 
scenarios, training becomes inconsequential, and the risk of occupational 
accidents significantly escalates. The issues delineated in the preceding 
paragraph underscore the necessity for a system with the capability to 
autonomously identify safety signs in real-time. Such a system could 
effectively alert workers to potential hazards, thereby facilitating the 
optimization of corporate efforts to mitigate occupational accidents. It is 
evident that the advantages inherent in any security-enhancing system 
are substantial across various dimensions (7, 8). The visual sense holds 
paramount importance in our communication processes. Despite the 
significance of the four other senses, vision becomes particularly crucial 
in environments where occupational hazards pose risks to workers. 
Consequently, images assume a foundational role in the communicative 
framework of such work environments. The expeditious interpretability 
of images, as opposed to explanatory text, is highlighted by research 
indicating that individuals require less time to comprehend visual 
information (9). Consequently, the response time to visually transmitted 
information is markedly quicker.

In adherence to regulations set forth by the International 
Organization for Standardization, as articulated in document ISO 
17724:2003 (10), safety signs employed in ORP serve the purpose of 
conveying messages aimed at safeguarding the physical well-being of 
workers. Furthermore, the pictograms utilized exhibit distinctive 
shapes and colors that facilitate prompt identification of associated 
risks, thereby conveying a safety message when the prescribed 
recommendations accompanying these safety signs are adhered to. 
The ISO 7010 standard specifies five combinations of shapes and 
colors within its defined pictograms, each serving to convey 
information of various types. Figure 1 shows a set of mandatory signs.

 1 Safe condition sign: green color and square or rectangular shape.
 2 Fire equipment sign: red color and square shape.
 3 Mandatory action sign: blue color and circular shape.
 4 Prohibition sign: red color and circular shape with a 

diagonal line.

 5 Warning sign: yellow color and equilateral triangle with 
rounded corners.

Numerous research articles have demonstrated the feasibility 
of proficiently recognizing signals and subsequently interpreting 
them for real-time decision-making, as evidenced by existing 
literature (11–13). Convolutional Neural Networks (CNNs) (14, 15) 
represent a technology currently deployed in this domain (16–18). 
The increasing popularity of CNNs in recent years is attributed to 
their noteworthy performance in addressing challenges within 
computer vision, a domain previously deemed nearly 
insurmountable (19, 20). It is noteworthy that CNNs currently 
stand as one of the foremost methods for image classification 
(21, 22).

Considering the above, how can machine vision systems 
be  improved for automated recognition of ORP safety signs in 
industrial environments? This study aims to address the limitations of 
existing research by focusing on automated recognition of ORP signs 
using machine vision, a less explored area compared to traffic sign 
recognition. While most studies focus on improving machine vision 
algorithms for traffic sign detection, this work aims to fill the existing 
gap by investigating how to adapt and optimize these systems for 
working environments, where ORP signs may present variations in 
design, color and context.

CNNs are a class of deep learning models primarily used for 
image and video analysis. They are designed to automatically and 
adaptively learn spatial hierarchies of features through a process 
of convolution, pooling, and activation. CNNs are particularly 
effective at tasks like image recognition, object detection, and 
segmentation due to their ability to capture local patterns and 
handle spatial data.

A CNN operates as a trainable system, acquiring the ability to 
solve problems through learning from diverse examples. Consequently, 
the availability of a sufficiently extensive and representative image 
dataset is imperative for the effective training of the network. Despite 
the existence of publicly accessible image datasets for training 
networks, none, to the best of the authors’ knowledge, are tailored to 
the specific problem under consideration in this article. Therefore, it 
becomes imperative to generate a substantial dataset of images tailored 
to our unique problem to facilitate the application of a CNN.

The primary aim of the research elucidated in this article is the 
comprehensive analysis of the performance of a CNN specifically 
crafted for the detection and classification of images depicting safety 
signs within ORP contexts, given that most of the research in this area 
focuses on traffic signaling, rather than occupational hazard 
prevention signaling. Constructing the system mandates the precise 
definition of the network architecture and the creation of a curated 
image dataset to train the CNN effectively.

To assemble this dataset, an initial selection of images was made 
from the principal safety signs employed in ORP. Subsequently, the 
dataset was augmented by incorporating additional images generated 
through transformations applied to the original set. These 
transformations aim to replicate conceivable imperfections exhibited 
by signs in real-world scenarios, as well as challenges associated with 
their display. The Supplementary material associated with this article 
includes additional information on the data augmentation process. 
Following the training phase with this augmented dataset, the 
network’s proficiency in recognizing novel images was analyzed.

Abbreviations: ANN, artificial neural network; BTSD, Belgium traffic sign dataset; 

CNN, convolutional neural network; CPU, central processing unit; GB, gigabyte; 

GHz, gigahertz; GNU, Gnu’s not unix; GTSRB, German traffic sign recognition 

benchmark; HDD, hard disk drive; ISO, international organization for standardization; 

MB, megabyte; MLP, multi-layer perceptron; ORP, occupational risk prevention; 

OS, operating system; RAM, random-access memory; ReLU, rectified linear unit; 

ResNet, residual network; RGB, red, green and blue; SAAS, software as a service; 

SSD, single shot multibox detector; STS, Swedish traffic signs; vCPU, virtual central 

processing unit; VGG, visual geometry group; YOLO, you only look once.
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It is necessary to note that the closest comparable work addressing 
related concerns is documented in (23), where a CNN is employed to 
assess the degradation level of images portraying safety signs. It is 
crucial to emphasize, however, that the focus of the problem addressed 
in both articles differs significantly.

The problem of image classification constitutes a foundational 
challenge within the domain of computer vision. A myriad of 
methodologies has been employed over the years for this purpose, 
encompassing nearest neighbor classification, decision trees, fuzzy 
classifiers, neural networks, and support vector machines (24). 
Generally, these approaches necessitate a preliminary segmentation 
step or feature extraction operation prior to the classification process. 
Contemporary advancements in image classification techniques have 
yielded methods that exhibit superior performance without the 
prerequisite of preprocessing steps such as image segmentation or 
feature extraction. Among these modern approaches, CNNs have 
garnered considerable acclaim and currently stand as one of the most 
prevalent methods (22, 25). CNNs possess the unique ability to 
discern visual patterns directly from raw pixel data, obviating the need 
for preliminary feature extraction steps inherent in alternative image 
classification methods. Unlike conventional methods, a CNN 
inherently learns these features. Notably, the efficacy of CNNs is 
contingent upon the availability of extensive datasets for training. The 
proliferation of large-scale public image datasets comprising millions 
of high-resolution images in recent years has empowered CNNs to 
achieve remarkable performance in image classification tasks. 
Prominent examples include the utilization of the CNN architecture 
known as AlexNet, as demonstrated in the research presented by 
Krizhevsky et al. (26). Other noteworthy CNN models applied in 

image classification encompass VGG-16 (27), ResNet (28), and 
GoogLeNet (29).

Within the realm of ORP safety signs and image classification, 
extant literature predominantly focuses on human driven visual 
identification and classification. This body of work explores the 
classification aptitude of individuals with diverse characteristics, 
including workers, technicians, and the public (2–6). Recent 
scientometric analysis covering literature from 1990 to 2019 regarding 
safety signs reveals two pivotal observations: firstly, safety signs 
represent an emerging research field in a phase of rapid development; 
secondly, traffic signs and driving safety predominate as the most 
prevalent research topics (30). While the exploration of safety signs 
appears intriguing, research has primarily concentrated on traffic 
signs. Despite the proliferation of publicly available traffic sign 
datasets, such as GTSRB (31), BTSD (32), and STS (33), limited 
attention has been directed towards datasets specific to ORP safety 
signs. This dearth hampers research endeavors in this area, despite its 
inherent importance.

Traffic sign identification and classification, necessitating the 
recognition of objects in outdoor environments, encounter challenges 
influenced by factors like lighting conditions, sign position and 
rotation, degradation, and the presence of obstructive objects. 
Analogous challenges are inherent in the classification of ORP safety 
signs. Existing methods for traffic sign classification include neural 
networks, k-nearest neighbor methods, support vector machines, and 
binary-tree-based classification (34). Typically, these methods leverage 
color and shape attributes for detection and classification. Research 
presented in (35) underscores the accuracy of various methods, 
reporting values ranging between 96.5 and 98.5% in traffic sign 

FIGURE 1

Example of ORP mandatory action signs (48).
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classification. Recent years have witnessed a surge in solutions 
applying CNNs to classify traffic signs (36, 37). This approach 
circumvents the descriptor extraction step sensitive to various factors 
in prior methods, allowing CNNs to utilize traffic sign images as input 
and autonomously learn detailed descriptions. Research in (38) 
demonstrates the superiority of CNNs (98.3% accuracy) over the 
random forest method (96.1% accuracy) and comparable performance 
to human observers (98.8% accuracy). Notably, reported precision 
levels for CNNs even exceed 99%. Despite the extensive studies on 
traffic sign classification, research specific to ORP safety signs is 
sparse. While datasets for traffic signs are abundant, a dedicated 
dataset for ORP safety signs is conspicuously absent, limiting research 
prospects in this domain.

As of our current knowledge, the sole research applying CNNs 
to ORP safety signs is encapsulated in a recent article by Mu and 
Yue (23). This investigation delves into the impact of image 
degradation on machine recognition of safety signs. The 
methodology employs a CNN for image classification and 
introduces a set of degraded images to train the network. It deviates 
from our approach in that the CNN’s objective is to identify the 
applied degradation within the input image. Our study investigates 
the performance of a CNN for ORP safety signs recognition under 
various image degradation conditions, with the aim of improving 
the robustness of this type of systems in real scenarios. The initial 
dataset comprises 108 images of safety signs conforming to ISO 
7010, with 12 types of simulated image degradation applied (blurry, 
corroded, cracked, dilated, fading, frosted, leaning, shadowed, 
shaking, shielded, stretched, and wrinkled). The employed CNN 
architecture features a Convolution layer with 32 convolution 
kernels, an Activation layer with ReLU function, a Max-pooling 
layer, and a final Softmax layer with 12 outputs denoting the 
identified degradation type. Computational results indicate a 
network accuracy of 98.16% for the training set and approximately 
97% for new images. Notably, while numerous studies address 
traffic sign degradation, the research in (23) encompasses a broader 
spectrum of degradation types. It is pertinent to acknowledge, 
however, that certain distortions considered in this research 
(cracked, dilated, stretched, and wrinkled) may not be practically 
feasible in real-world pictograms.

2 Materials and methods

CNNs represent a distinctive subset within the broader domain of 
Artificial Neural Networks (ANNs), and their efficacy has been 
notably demonstrated in tasks such as image recognition and 
classification (21, 22). The nomenclature “Convolutional” is derived 
from one of their pivotal hidden layers, known as the Convolutional 
layer. As alluded to earlier, the widespread adoption of CNNs in recent 
years is attributed to their commendable performance in addressing 
challenges within computer vision domains (19, 20).

Convolutional Neural Networks share a common architectural 
framework with multilayer ANNs, but their input is specifically 
tailored to accommodate images. Within the CNN, the hidden layers 
play a pivotal role in discerning distinctive features within images, 
enabling the network to identify and differentiate them, thereby 
facilitating the categorization of input images into classes. The 
functioning of a CNN bears semblance to human vision, where the 

recognition of an object entails the identification of its constituent 
elements, irrespective of potential omissions. However, the recognition 
of individual components alone is insufficient; the spatial arrangement 
of these components is a critical determinant. Consequently, a CNN 
is not merely tasked with recognizing an object but must also acquire 
an understanding of the spatial relationships between its elements, 
encompassing their relative sizes and colors.

The successive layers within a CNN are responsible for uncovering 
the features that characterize an image. Each layer applies varying 
levels of abstraction to detect different features. As the image traverses 
through the network, these features are constructed hierarchically, 
yielding a spectrum from low-level abstraction features (e.g., edges) 
in the initial layers to higher-level abstraction features (e.g., object 
shapes) in the later layers (14, 15).

2.1 Convolutional neural network layers

There are three basic layers that define a CNN: Convolution Layer, 
Pooling Layer and Softmax Layer. Each of these layers has been 
designed to perform a very specific task within the CNN. Figure 2 
shows an example of a CNN architecture composed of two 
Convolution layers, two Pooling layers and a Softmax layer. In the 
following subsections we will review each of these layers.

2.1.1 Convolutional layer
The Multi-Layer Perceptron (MLP) (39) is a popular ANN made 

up of multiple densely connected layers that learn global patterns. In 
contrast, the Convolution layers of a CNN learn local patterns, which 
means that they learn a pattern at certain coordinates of the image and 
can find it elsewhere in the image. A Convolutional layer applies filters 
(also called kernels or feature detectors) to extract features. The output 
obtained as a result of the convolution of the image and a filter is called 
feature map, convolved feature or convolved map. The convolution 
operation captures the local dependencies that exist in the original 
image. The essential parameters for this layer entail defining the set of 
learnable filters and specifying their dimensions. Each filter possesses 
a predetermined width, height, and depth equivalent to that of the 
input volume.

In the context of image processing, the input volume is defined by 
the pixels constituting the image. In instances where the RGB color 
model represents the image, each pixel is characterized by three values 
denoting the intensity of red, green, and blue. Consequently, the depth 
of the input volume is three. As the filter traverses the image from the 
top-left to the bottom-right, the convolution operation is 
systematically applied to the window’s position. Each instance of this 
convolution operation yields a value in the feature map. As the filter 
progresses across the input volume, a two-dimensional activation map 
emerges, providing the responses of that filter at every spatial position. 
Thus, the network learns filters that activate when detecting specific 
visual features represented by said filters. These features manifest as 
rudimentary entities, such as edges, in the initial layers of the CNN 
and evolve into more intricate structures, such as complete 
circumferences, in deeper layers. A filter representing a particular 
feature informs us about the presence, frequency, and location of that 
feature within the image.

Application of convolutions to an image result in a reduction 
in size contingent upon the filter dimensions. To counteract this 
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size reduction, a technique known as padding is employed. This 
method involves incorporating a margin around the input image, 
ensuring that the feature maps generated by the filter maintain the 
original image size. While the convolution operation may 
incorporate a larger step to decrease image size, it is crucial to 
note that reducing image size need not be detrimental. Indeed, 
such operations, as will be  elucidated in subsequent steps, are 
integral to the overall process. Alternatively, intermediate rows 
and columns can be  introduced into the image as padding to 
enlarge it. The impact on the learning algorithm, in terms of 
computation time, is contingent upon the specific problem 
under consideration.

When a filter fails to discern any discernible features, signifying 
the absence of a valid feature, the filter undergoes modification during 
the backpropagation stage of the network. Backpropagation, a well-
established method for weight adjustment in ANNs (40), takes on a 
distinctive form in CNNs by incorporating convolution into the 
process (41).

In summary, Convolution layers employ filters on either the 
primary image or a feature map within a CNN, contingent upon the 
layer’s position in the CNN architecture. Multiple filters within a 
Convolution layer are applied to its input to extract diverse features 
while concurrently learning the distinctive attributes of each filter. 
Consequently, each filter generates dissimilar feature maps from the 
same original image.

2.1.2 Pooling layer
In the realm of scientific analysis, this particular stratum is 

commonly integrated immediately subsequent to a Convolution layer 
with the intent of diminishing the dimensions of feature maps and 
consolidating the information transmitted to subsequent layers. 
Analogous to the Convolution layer, the operations executed within 
this stratum involve the systematic traversal of a preset-sized window 
across the received feature. The distinguishing factor lies in the 
methodology applied to the affected elements and the non-overlapping 
nature of the window.

Within this context, the window can execute three distinct 
operations aimed at reducing the dimensions of the image. The 
min-pooling operation entails extracting the minimum value within 
the window, while the average-pooling operation compresses 
information by computing the average of values enclosed within the 
window. Lastly, the max-pooling operation involves extracting the 
maximum value found within the window.

2.1.3 Softmax layer
Situated as the concluding stratum within a CNN, this layer holds 

the pivotal responsibility of ascertaining the class to which the 
network attributes the presented input image. Comprising an 
equivalent number of outputs as the distinct images the CNN is 
capable of recognizing, this layer calculates the probability associated 
with each specific class, thereby delineating the likelihood that the 
given image belongs to a particular category.

The input vector and the output vector of this layer are the same 
size. The elements of the input vector can take any real value, while the 
output vector includes real values whose sum is 1. Let ( )1,.., nx x n=

  
denote the input vector of this layer, where n is the number of classes. 
Equation 1 defines the Softmax function applied to the xi element of 
the input vector.

 

( )
1

i

j

x
i n x

j

eS x
e

=

=
∑  

(1)

The Softmax function applies the exponential function to each 
element of the input vector, giving larger values more weight. As a 
result, a value greater than 0 is obtained, which increases as the value 
of the input increases. The Softmax function exposes the main 
differences, and this is very useful to speed up and facilitate learning.

Throughout the years, various CNN architectures have been 
proposed, as documented in the literature (26, 42). Many of these 
architectures leverage fundamental concepts established by the LeNet 
architecture (42). In the context of image recognition, the LeNet 
architecture is employed to categorize input images into predefined 
classes. The network integrates four key operations for image 
recognition: convolution, non-linearity, pooling, and classification:

 • Convolution: Detects features in the image by applying a filter 
that highlights edges and patterns.

 • Non-linearity: Uses functions like ReLU to capture complex 
relationships, adding flexibility to the model.

 • Pooling: Reduces the image resolution to retain the most 
important features and simplify the model.

 • Classification: Employs final layers to assign probabilities to 
different classes, identifying the image’s class.

Notably, the non-linearity aspect has not been expounded upon 
in the preceding discussion. Thus, we will elucidate on it now. During 

FIGURE 2

A basic convolutional neural network scheme.
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the training phase of the network, the incorporation of a non-linear 
activation function becomes imperative for capturing intricate 
relationships within the data. The Rectified Linear function has proven 
to be the most efficacious non-linear activation function for CNNs. 
Neurons employing this function are denoted as Rectified Linear 
Units (ReLUs). The computation of this function is defined by 
Equation 2, where the max operation determines the maximum value 
between the two arguments.

 ( ) ( )max 0,ReLU x x=  (2)

CNN devised for the identification of ORP images is constructed 
based on the fundamental operations inherent in the LeNet 
architecture. Illustrated in Figure 3, the foundational architecture of 
the CNN developed in this study for ORP image identification 
encompasses a total of 12 layers. The initial two blocks are dedicated 
to feature extraction, while the subsequent layers are employed for 
classification purposes.

The CNN operates on input images of dimensions 28 × 28 
pixels, and it is configured with 112 outputs to facilitate the 
detection of 112 distinct pictograms. Following the completion of 
the training phase, the network is poised for pictogram 
identification. When presented with an image as input, the 
network activates the output corresponding to the 
recognized pictogram.

The initial part of the architecture is defined by two groups 
featuring identical layers. Each group comprises a Convolution layer, 
an Activation layer utilizing the ReLU function, and a Max-pooling 
layer. As the filters of the first layer traverse the image, a feature map 
is generated for each filter. Subsequently, the ReLU function within the 
Activation layer determines the presence of specific features at 
designated locations in the image. The Pooling layer selects the 
maximum values from the feature maps, which serve as inputs for the 
subsequent layer.

These initial layers are dedicated to feature extraction. Following 
these blocks, additional layers are incorporated into the network to 
execute the classification operation. Specifically, six more layers are 
introduced, including the Flattening layer, the Dropout layer, two 
fully-connected layers, another Activation layer employing the ReLU 
function, and the final Softmax layer.

The Flattening layer facilitates the conversion of a three-
dimensional array into a vector. The output from the initial feature-
extraction layers is in the form of a three-dimensional matrix. This 

layer transforms the input information into a vector format, enabling 
seamless handling by the subsequent layers.

The incorporation of a Dropout layer serves as a strategy to 
mitigate the challenge of network overfitting. Overfitting arises when 
the network adeptly classifies training patterns but struggles with 
novel patterns. Addressing overfitting can be approached through two 
avenues: expanding the size of the training set or diminishing the 
network’s complexity. In our specific case, where a predetermined set 
of images is available, the latter option is considered to alleviate 
overfitting. To this end, a Dropout layer is employed, which randomly 
deactivates a subset of neurons during training. This deactivation 
reduces the network’s reliance on the training set, thwarting the 
memorization of training data. By ensuring that not all neurons are 
active simultaneously, inactive neurons are precluded from learning 
during specific instances.

The Dense layer, constituting a fully-connected layer, facilitates 
the connection of every neuron in the preceding layer to each neuron 
in the subsequent layer. This layer bears resemblance to its counterpart 
in a MLP. Leveraging a fully-connected layer simplifies the learning of 
non-linear combinations of features derived from convolution 
operations. Although features obtained through convolutions are 
generally valuable for classification, their amalgamation through this 
layer often enhances their discriminative power. In summary, each 
block, comprising a Convolution layer, an Activation layer utilizing 
the ReLU function, and a Pooling layer, undertakes the extraction of 
salient features from images, introduces nonlinearity to the network, 
and diminishes the dimensionality of features, rendering them 
invariant to scale and translation. The initial layers within these blocks 
extract features from the images, while the subsequent layers 
culminate the classification operations. The augmentation of filters 
leads to the generation of additional feature maps, and an increase in 
convolutional layers results in the creation of progressively abstract 
feature maps as the CNN deepens.

The data used in this study are not subject to ethics committee 
regulations, as no sensitive data (relating to humans or animals) are 
handled, as described in Section 8.

3 Results

This section elucidates the procedural steps undertaken to 
formulate the requisite tests and derive the conclusive results presented 
in this article. The CNN was meticulously crafted utilizing the Keras 
framework, seamlessly integrated into the Tensorflow ecosystem. 

FIGURE 3

Layers that define the CNN to classify ORP-related images.

https://doi.org/10.3389/fpubh.2024.1431757
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Román-Gallego et al. 10.3389/fpubh.2024.1431757

Frontiers in Public Health 07 frontiersin.org

Leveraging the synergistic functionalities offered by both frameworks, 
the CNN design process was executed to harness their 
collective capabilities.

In order to execute computations in the cloud environment, a 
virtual machine instance has been instantiated on the Google Cloud1 
platform, specifically within the SAAS services (Software as a Service) 
offered by Compute Engine2. The virtual machine is configured with 
the following specifications:

 • Machine type: n1-standard-1
 • CPU: 1 vCPU Intel Xeon 2.30GHz
 • Architecture: x86_64
 • L1d cache: 32 k
 • L1i cache: 32 k
 • L2 cache: 256 k
 • L3 cache: 46080 K
 • RAM: 3792 MB
 • HDD: 30GB
 • OS: Debian GNU/Linux 9.9 Stretch + TF 1–13

The comprehensive dataset for CNN application encompasses 
94,080 images, with 840 images corresponding to each of the 112 
initial pictograms. This dataset was utilized to establish the training, 
validation, and test sets for the network, with the selection of random 
images from the initial set. In this regard, and as a contribution to this 
work, the ORP-SIG-2024 dataset has been created (43). It consists of 
the original pictograms proposed in ISO 7010, along with a series of 
transformations aimed at enabling models that utilize it to achieve 
greater generalization capacity. This allows them to adapt to real-world 
environments where, in many cases, these pictograms are not as visible 
as they should be, or where they suffer from color loss, shape distortion, 
or other alterations. The dataset comprises 299 pictograms across five 
categories, each with a resolution of 800×800 pixels. There are 16 
transformations for each pictogram, resulting in the following structure:

 • E—Safety condition signals (68 originals and 1,020 modified).
 • F—Fire equipment signals (19 originals and 304 modified).
 • P—Prohibition signals (60 originals and 960 modified).
 • M—Obligation signals (74 originals and 1,184 modified).
 • W—Warning signals (78 originals and 1,248 modified).

The training and validation sets consist of 67,200 images 
distributed across 112 classes, resulting in 600 images per class. This 
dataset was randomly partitioned into two subsets, allocating 50,400 
images for training (75%) and 16,800 images for validation (25%). The 
remaining 26,880 images constitute the test dataset, with 240 images 
allocated per class. The input images presented to the CNN are of 
dimensions 28 × 28 pixels to avoid computational resource saturation 
on the deployed virtual machine. As previously noted, the initial size 
reduction results in 100 × 100 pixels images, ensuring subsequent 
reductions do not lead to information loss within the image set.

Considering the paramount importance of parameter optimization 
during the training process, the definition of hyperparameters is a 

1 https://cloud.google.com/gcp/

2 https://cloud.google.com/compute/

pivotal objective and challenge in implementing CNN-based 
techniques. Given the objective of this study and the acknowledgment 
that an optimal method for enhancing network performance does not 
exist, hyperparameters are considered as an integral part of the 
network structure. Several models, incorporating modifications based 
on (44) and its random search study, are proposed.

Before initiating the network training, it becomes imperative to 
define the number and size of filters. The utilization of more filters 
facilitates the extraction of additional image features, enhancing the 
network’s proficiency in pattern recognition. However, it is crucial to 
note that the number of filters also influences the training time 
required for the network.

Four distinct models have been conceptualized and scrutinized, 
adhering to the CNN architecture expounded. The primary aim is to 
assess the network’s performance under diverse configuration 
parameters. In the initial scenario, the focus is on scrutinizing the loss 
estimation (loss) and accuracy (accuracy) of the models. Subsequently, 
the comparative analysis delves into the models’ performance with test 
data that has not been previously exposed to the network.

The accuracy of a classification method is computed based on the 
number of correctly classified samples, CL, and the total number of 
test samples, TS, (3).

 
CLaccuracy
TS

=
 

(3)

The loss function, also called the cost function, measures the 
prediction error of the network. There are several functions that are 
commonly used as loss functions. In this case we have chosen the 
cross-entropy function (Equation 4), which is the most common 
choice for classification. In this equations M is the number of classes; 
log is the natural logarithm; yo,c is the binary indicator (0 or 1) if class 
label c is the correct classification for observation o; po,c is the predicted 
probability observation o is of class c; A lower score indicates that the 
model is performing better. The training of all models was carried out 
by performing 8, 15, 20 and 30 iterations (epochs) on the training and 
validation sets.
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3.1 Model 1

Model 1 adheres to the CNN architecture illustrated in Figure 3. 
Table  1 provides a comprehensive breakdown of the architecture 
details when implemented through Keras and Tensorflow. In the table, 
the first column designates the name associated with each layer, while 
the second column denotes its type. All types of names correspond to 
those depicted in Figure  3, with the exception of Conv2D and 
MaxPool2D. Conv2D denotes a two-dimensional Convolution layer, 
and MaxPool2D signifies a Max-pooling layer designed for 
two-dimensional data. The third column of Table 1 elucidates the 
output shape of each layer. In all instances, the first argument signifies 
the batch size, and the value None accommodates variable batch size.

Subsequent layers process inputs and generate outputs of size 
14 × 14. The second Max-pooling layer further reduces the input from 
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TABLE 4 Results of Model 2.

Training Validation

Loss Accuracy Loss Accuracy

8 epochs 0.9105 0.7124 0.8607 0.7457

15 epochs 0.4503 0.8583 0.3719 0.8917

20 epochs 0.6197 0.8681 0.5774 0.8791

30 epochs 0.1798 0.9391 0.2402 0.9472

14 × 14 to 7 × 7. The Flattening layer produces a vector with 
7 × 7 × 64 = 3,136 elements. The two fully connected Dense hidden 
layers subsequently decrease the output size (with 500 outputs for the 
first and only 112 for the second). Finally, the Softmax layer culminates 
in 112 outputs, corresponding to the diverse pictograms the network 
aims to identify. The last column in Table 1 delineates the number of 
parameters (weights) within each layer, where a value of 0 implies the 
layer does not undergo any learning.

As previously outlined, two groups of three layers (Convolution, 
Activation with ReLU, and Max-pooling) were employed. In this 
instance, the first group assimilates knowledge from 32 filters, while 
the second group incorporates 64 filters. Results pertaining to the 
various convolutions are presented in Table 2, with a training time of 
50 min. Notably, an increase in the number of iterations correlates 
with a more refined learning process, leading to improved precision 
in pictogram classification by the network.

3.2 Model 2

Model 2 retains the identical layers as Model 1; nevertheless, there 
is a modification in the number of filters within the two initial groups. 
Specifically, Model 2 employs 20 filters in the first group and 50 filters 
in the second. This adjustment aims to investigate the impact of 
reducing parameters on the network’s outcomes. A comprehensive 
breakdown of the Model 2 architecture is presented in Table 3.

The outcomes derived from this model are delineated in Table 4. 
Comparative analysis between Model 1 and Model 2 reveals that the 

disparities are not markedly substantial. Despite the fact that Model 2 
utilizes less training time, 44 min, it yields inferior results compared 
to Model 1. Remarkably, the reduction in the number of filters within 
the convolution layers in Model 2 does not significantly impact the 
overall results.

3.3 Model 3

Model 3 builds upon the framework established by Model 2, 
aiming to attain an elevated level of abstraction. The novel model 
incorporates an additional set of layers, specifically Convolution, 
Activation, and Max-pooling, mirroring the structure of the initial 
two groups present in Model 2. Notably, the first two groups of layers 
maintain an identical number of filters as employed in Model 2, while 
the third group distinguishes itself by utilizing 50 filters. Table  5 
delineates the architecture implemented for Model 3.

As illustrated in Table 6, the outcomes yielded by this model 
exhibit inferior performance compared to its predecessors with a 
training time of 48 min. This observation suggests that, in our 
context, the introduction of an additional level of abstraction has 
not led to an enhancement in CNN results. Furthermore, a 
noteworthy decline in learning levels is evident in comparison to 
Models 1 and 2. This decline may be attributed to the diminishing 
input size of the image after multiple convolutional operations, 
reaching a point where further extraction of differentiable features 
becomes impractical.

TABLE 1 Model 1: layers and characteristics.

Layer Layer type Output 
shape

Parameters

conv2d-1 Conv2D (None, 28, 28, 32) 2,432

Activation-1 Activation (None, 28, 28, 32) 0

max_pooling2d-1 MaxPooling2 (None, 14, 14, 32) 0

conv2d-2 Conv2D (None, 14, 14, 64) 51,264

Activation-2 Activation (None, 14, 14, 64) 0

max_pooling2d-2 MaxPooling2 (None, 7, 7, 64) 0

Flatten-1 Flatten (None, 3,136) 0

Dropout-1 Dropout (None, 3,136) 0

Dense-1 Dense (None, 500) 1,568,500

Activation-3 Activation (None, 500) 0

Dense-2 Dense (None, 112) 56,112

Softmax-1 Softmax (None, 112) 0

TABLE 2 Results of Model 1.

Training Validation

Loss Accuracy Loss Accuracy

8 epochs 0.8972 0.7308 0.8316 0.7583

15 epochs 0.4237 0.8748 0.3429 0.9064

20 epochs 0.5951 0.8872 0.5518 0.8911

30 epochs 0.1630 0.9530 0.2108 0.9581

TABLE 3 Model 2: layers and characteristics.

Layer Layer type Output shape Parameters

conv2d-1 Conv2D (None, 28, 28, 20) 1,520

Activation-1 Activation (None, 28, 28, 20) 0

max_

pooling2d-1

MaxPooling2 (None, 14, 14, 20) 0

conv2d-2 Conv2D (None, 14, 14, 50) 25,050

Activation-2 Activation (None, 14, 14, 50) 0

max_

pooling2d-2

MaxPooling2 (None, 7, 7, 50) 0

Flatten-1 Flatten (None, 2,450) 0

Dropout-1 Dropout (None, 2,450) 0

Dense-1 Dense (None, 500) 1,225,500

Activation-3 Activation (None, 500) 0

Dense-2 Dense (None, 112) 56,112

Softmax-1 Softmax (None, 112) 0
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3.4 Model 4

The final model under consideration bears resemblance to Model 
1, with a notable modification involving the augmentation of filters in 
the initial convolutional layer, which is in close proximity to the input 
image. Precisely, 64 filters have been incorporated, doubling the count 
employed in Model 1. The architectural details of Model 4 are 
elucidated in Table  7. The outcomes presented in Table  8 closely 
resemble those derived from Models 2 and 3, with a training time of 
53 min. This suggests that the augmentation of filters in the initial 
convolutional layer does not yield improvement in 
pictogram recognition.

4 Discussion and conclusion

Following the execution of experimentation with the four 
proposed architectures, Figure  4 depicts the optimal outcomes 
achieved by each model after 30 epochs. It is evident that the 
architecture corresponding to Model 1 stands out as the most 
successful. This model exhibits the highest accuracy for both the 
validation set (95.81%) and the test set (95.30%). Additionally, it 
attains the lowest loss values for both sets of images.

In contrast, Model 3 demonstrates the least favorable overall 
performance, signaling that the introduction of more layers to achieve 
a heightened level of abstraction does not contribute to the 
improvement of the CNN. Models 2 and 4, distinguished by the 
number of filters employed, both yield results inferior to Model 1. 
However, upon comparing these variants, it becomes apparent that the 
model utilizing a greater number of filters outperforms the one with 
fewer filters in a global context.

A thorough examination of the classification results has revealed 
that errors in classification predominantly occur among pictograms 
within the same group. To clarify, a pictogram featuring a prohibition 
sign might be mistakenly identified as another pictogram from the 
same group. It is noteworthy that despite this type of error, the positive 
aspect lies in accurately determining the group of signs to which the 
pictogram belongs. This precision allows for the notification of the 
general type of risk to the worker.

The use of metrics, such as loss and accuracy, in machine learning 
models, particularly in neural networks, is justified as each evaluates 
complementary aspects of performance. Loss measures how well the 
model minimizes errors between predictions and actual values, 
providing a continuous signal to optimize the model. Accuracy, on the 
other hand, measures the percentage of correct predictions, making it 
useful for assessing the overall effectiveness of the model in 
classification tasks. Using both metrics ensures a comprehensive 

TABLE 5 Model 3: layers and characteristics.

Layer Layer type Output 
shape

Parameters

conv2d-1 Conv2D (None, 28, 28, 20) 1,520

Activation-1 Activation (None, 28, 28, 20) 0

max_

pooling2d-1

MaxPooling2 (None, 14, 14, 20) 0

conv2d-2 Conv2D (None, 14, 14, 50) 25,050

Activation-2 Activation (None, 14, 14, 50) 0

max_

pooling2d-2

MaxPooling2 (None, 7, 7, 50) 0

conv2d-3 Conv2D (None, 7, 7, 50) 62,550

Activation-3 Activation (None, 7, 7, 50) 0

max_

pooling2d-3

MaxPooling2 (None, 3, 3, 50) 0

Flatten-1 Flatten (None, 450) 0

Dropout-1 Dropout (None, 450) 0

Dense-1 Dense (None, 500) 225,500

Activation-4 Activation (None, 500) 0

Dense-2 Dense (None, 112) 56,112

Softmax-1 Softmax (None, 112) 0

TABLE 6 Results of Model 3.

Training Validation

Loss Accuracy Loss Accuracy

8 epochs 0.9601 0.7005 0.8789 0.7313

15 epochs 0.4887 0.8510 0.3861 0.8842

20 epochs 0.6711 0.8621 0.5995 0.8694

30 epochs 0.2347 0.9237 0.2532 0.9341

TABLE 7 Model 4: layers and characteristics.

Layer Layer type Output shape Parameters

conv2d-1 Conv2D (None, 28, 28, 64) 4,864

Activation-1 Activation (None, 28, 28, 64) 0

max_

pooling2d-1

MaxPooling2 (None, 14, 14, 64) 0

conv2d-2 Conv2D (None, 14, 14, 64) 102,464

Activation-2 Activation (None, 14, 14, 64) 0

max_

pooling2d-2

MaxPooling2 (None, 7, 7, 64) 0

Flatten-1 Flatten (None, 3,136) 0

Dropout-1 Dropout (None, 3,136) 0

Dense-1 Dense (None, 500) 1,568,500

Activation-3 Activation (None, 500) 0

Dense-2 Dense (None, 112) 56,112

Softmax-1 Softmax (None, 112) 0

TABLE 8 Results for Model 4.

Training Validation

Loss Accuracy Loss Accuracy

8 epochs 0.9421 0.7309 0.9392 0.7391

15 epochs 0.4679 0.8753 0.4494 0.8897

20 epochs 0.6451 0.8878 0.6603 0.8746

30 epochs 0.2113 0.9498 0.3151 0.9387
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FIGURE 4

Loss and accuracy of the models for the training and the validation sets after 30 epochs.

FIGURE 5

Original pictograms not correctly identified by the model. When pictogram (a) was presented to the CNN, the network identified pictogram (b). The 
same happened for pictograms (c,d).

evaluation of the model, optimizing both training and 
practical performance.

Considering the challenges posed by the inclusion of a substantial 
number of distorted pictograms in the training set, the CNN’s 
classification results can be deemed satisfactory. To further evaluate 
the model’s efficacy in scenarios involving undistorted images, a new 
test was conducted using only the original, non-transformed 
pictograms. This set of images, not utilized in the training or validation 
phases, offers insights into the model’s performance in real-world 
scenarios where images remain unaltered.

For this evaluation, the architecture proposed in Model 1, which 
demonstrated superior overall results, was employed. The results of 
this test were highly promising, with the proposed model achieving 
nearly perfect classification, accurately identifying 110 out of 112 
images. Figure  5 illustrates the misclassified pictograms, 
highlighting that in both cases, the erroneously identified pictogram 
belongs to the same group as the intended one. This observation 
suggests that, considering the size of the pictograms and the 
contrast and position of colors within them, these failures are 
acceptable. The overall accuracy for the original pictograms reaches 
an impressive 99.98%.

The presented CNN has been applied to images depicting 
Occupational Safety and Health Administration safety signs, 
encompassing various simulated contexts to emulate potential 
deterioration in real-world scenarios. Computational results 
demonstrate the viability of the models in effectively classifying signs 

within these images. It is crucial to emphasize that apart from the 
simulated deterioration, signs may also be  subject to breakage or 
partial loss, resulting in incomplete pictograms. While signs exhibiting 
such issues should ideally be replaced, various tests were conducted 
with these types of signals to comprehensively analyze the proposed 
methods in this article.

These tests serve the dual purpose of assessing the generalization 
capability and accuracy of the sign classification process. To this end, 
safety signs depicted in Figure 6 were employed.

Given that Model 1 demonstrated superior performance after 30 
epochs, this configuration was employed in the truncated pictogram 
tests. As illustrated in Table  9, the classification of the examined 
truncated pictograms is highly accurate. The success rate for pictogram 
E002 is 97.65%, while for pictograms E005 and E006, it reaches 100%, 
effectively generalizing from the original pictograms. It is crucial to 
note that the truncation of these pictograms is partial, eliminating a 
portion of the pictogram. It is evident that if the truncation were to 
impact a significantly larger segment of the pictogram, image 
recognition would pose a formidable challenge even for a skilled 
human observer.

The exploration of truncated pictograms presents an intriguing 
avenue for future research. Multiple sets of pictograms featuring 
varying degrees of deterioration could be  examined to assess the 
network’s performance. In such cases, determining the level of 
deterioration at which the network’s response remains acceptable 
would be of interest. Clearly, to enable the CNN to generate accurate 
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results for truncated images missing substantial portions, it would 
be advisable to include such images in the training set of the network.

Considering that there are no works related to signal recognition 
in the field of ORP, the results obtained in different works on traffic 
signal recognition are presented for comparison. Although it is true 
that they do not correspond to the same type of pictograms, the results 
can be compared because the shape of the signals and their colors, in 
most cases, are the same.

In the research presented in (45), the presented system is based 
on a Mask R-CNN architecture where, unlike traditional 
approaches with characteristics, it is applied to a wide range of 
categories, where individual instances of traffic signals are not only 
subject to changes in lighting conditions, scale, viewing angle, blur, 
and occlusions but also to significant appearance variations. In this 
case, the authors achieve an accuracy of 97.5% in evaluating the 
proposed model.

In this work (38), the evaluation of signal recognition is carried 
out with YOLOv5 (46) and SSD (47). The results obtained in this study 
reach an average accuracy of 97.6% for the different types of signals, 
and in the case of SSD, it reaches an average of 90.1%. Considering the 
results obtained from various studies and datasets that do not 
correspond exactly to the pictograms proposed in our work but are 
comparable, the model presented in this research achieves accuracy 
rates exceeding 95%, which aligns with previous findings. The focus 
of this study has been on assessing the feasibility of a Deep Learning-
based model capable of accurately recognizing ORP signals. This 
model aims to be  implemented in workplaces to enhance worker 
safety significantly.

Simultaneously, the creation of the specific ORP-SIG-2024 dataset 
has been undertaken to facilitate experimentation in this domain. This 
dataset allows for the exploration of various technologies aimed at 
improving worker safety. The overarching goal is to enhance worker 
safety through the analysis of different approaches and technologies 
applied to this dataset.

ORP holds paramount significance for workers across diverse 
fields. A workplace’s optimal performance and the judicious use of 

necessary materials are crucial for averting accidents that pose 
substantial costs to both workers and companies. Safety signs, 
integral to ORP, serve to alert workers to potential dangers in 
specific work environments. However, negligence or 
overconfidence at times hampers the requisite attention, and the 
correct visualization of signs is impeded by factors such as their 
location or deterioration.

This article proposes the utilization of a CNN to automatically 
classify images related to ORP. The network processes an input image 
containing a safety sign, which may be damaged or distorted, and 
identifies the safety sign. Employing a CNN for this purpose 
necessitates a sufficiently large dataset for training. Given the absence 
of public datasets for ORP safety signs, the research described herein 
involved the generation of an extensive image set using a method that 
starts with ISO 7010 compliant pictograms. This initial set was 
expanded by applying transformations simulating image degradation 
and varying perspectives. Computational results affirm that the CNN 
trained with the augmented image set exhibits commendable 
classification capabilities.

Four CNN models were tested to investigate the impact of the 
number of layers and filters. Results analysis reveals that all models 
yield effective solutions with comparable training times, but Model 1 
outperforms the others, achieving an accuracy exceeding 95%.

The examination of different CNN configurations indicates that 
augmenting layers and parameters does not necessarily improve 
results. Successful model development relies heavily on experiential 
knowledge in determining network architecture and parameter 
estimation. The success of the experiment, surpassing expectations, 
underscores the efficacy of artificially creating the dataset. Training 
the CNN with the transformed image set enhances the network’s 
generalization capacity significantly.

The next logical step involves implementing systems that 
rigorously evaluate both the effectiveness and practical utility of 
the proposed model. This process is crucial to ensure that the 
model not only works properly in controlled environments but is 
also robust and effective in real-world scenarios, where variability 
in conditions can be  greater. To achieve this goal, the overall 
strategy is based on automating the process using devices that 
operate within a service-oriented architecture, as is represented 
in Figure  7. This approach allows for greater flexibility and 
scalability by separating data capture from computationally 
intensive processing.

Specifically, image capture is performed using a mobile device, 
which serves as a lightweight and portable interface for the user, 

FIGURE 6

Pictograms with missing parts.

TABLE 9 Results of Model 1: pictograms with missing parts.

Pictogram Prediction Accuracy

E002 truncated E002 0.9765

E005 truncated E005 1

E006 truncated E006 1
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FIGURE 7

Architecture deployment scheme for the implementation of the model.

facilitating real-time data collection. This choice enhances the system’s 
accessibility in various work environments. Subsequently, the captured 
images are sent to an application server, where the convolutional 
model is executed. Given that the processing of CNNs requires 
considerable computational capacity, the server handles this task to 
relieve the load on mobile devices and ensure a rapid and 
efficient response.

Once the server has processed the image and applied the CNN 
model to classify the safety sign, a response is generated 
that includes both a brief identification of the signal and a 
more detailed description. The latter is particularly useful for users 
with less experience in identifying safety signs, as it provides 
additional information about the risks associated with the 
recognized signal.

The server can be deployed in either a local or a remote network, 
offering flexibility depending on the specific application requirements. 
The decision between local or remote deployment will depend on 
various factors, such as communication latency and the need for real-
time processing. In critical applications where response time is 
essential, using a local network could reduce delays, while a remote 
server may be more suitable for scenarios requiring greater processing 
capacity or distributed access.

Additionally, the system can be optimized by integrating real-time 
cameras into personal protective devices, such as safety helmets. These 
cameras would continuously capture images and send the information 
to the server for analysis and classification, thereby enhancing worker 
safety through automated detection and response to warning signals 
in the workplace. This integration strengthens the system’s ability to 
operate in dynamic conditions, providing active and adaptive 
protection in real-time.
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