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The accuracy of spatial clustering detection is crucial for public health policy 
development and identifying etiological clues. Circular and flexibly-shaped scan 
statistics are widely used for disease cluster detection, but differences in results 
arise mainly due to parameter sensitivity and variations in the scanning window 
shapes. This study aims to analyze the impact of parameter settings on the results 
of these methods and compare their performance in disease clustering detection. 
Using tuberculosis data from Wuhan, China (2015–2019), the study identified the 
optimal parameter settings—MSWS and K-value—for each method to ensure 
accurate clustering. A comprehensive comparison was made using two quantitative 
indicators, the LLR value and cluster size, as well as clustering visualizations. The 
results show that the optimal MSWS parameter for SaTScan is determined through 
a Gini coefficient-based stepwise-threshold-reduction approach, while a K-value 
of 30 is ideal for FleXScan. SaTScan tends to produce more regular clusters, while 
FleXScan often generates more irregular clusters. FleXScan detects fewer clusters 
but with higher LLR values and larger average cluster sizes, although the maximum 
cluster size is smaller. These findings provide valuable insights for optimizing 
disease clustering detection methods and enhancing public health interventions.
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1 Introduction

The purpose of spatial cluster detection of diseases is to identify whether clustering disease 
exists and to locate the areas where these clusters occur. This information can provide clues 
for further etiological investigation. Spatial scan statistics have been widely used as a technique 
for detecting disease clusters (1–4). This method was first introduced by Kulldorff, along with 
the freely available SaTScan software, and has since been extended with several different 
statistical models. The method utilizes a likelihood ratio test statistic to evaluate a large number 
of different and overlapping scanning windows. The test statistic is formulated based on a 
probability model depending on the data type, such as the Poisson model for count data. 
However, this method is limited to circular scan windows for detecting compact clusters, 
which may struggle to accurately identify non-circular clusters. Consequently, other 
researchers have proposed alternative approaches that employ different scanning window 
selection schemes, such as elliptical (5–7) and flexibly-shaped windows (8–10).

A popular alternative for detecting clusters with arbitrary shapes is the flexibly shaped 
spatial scan statistic proposed by Tango and Takahashi, which is implemented in the FleXScan 
software. This method employs an adjacency expansion search, scanning adjacent units in the 
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spatial region to detect irregularly shaped clusters (8–10). However, 
the selection of scanning windows in FleXScan is dependent on an 
exhaustive search strategy, which leads to exponential runtime scaling 
as the K-value increases. Here, the K-value is a constant that indicates 
the maximum number of sub-regions allowed within a preset window, 
severing as a crucial parameter in the implementation of the FleXScan 
method. Due to computational constraints, the K-value is typically 
limited to 30, with a default of 15. To address these limitations, Tango 
and Takahashi (10) proposed a restricted version of the flexibly-
shaped scan statistic that focuses exclusively on regions with elevated 
risk. This modified approach offers improved computational efficiency 
and enables the use of a K-value up to 30 (10, 11).

In addition, Speakman et  al. (12) developed the GraphScan 
method for detecting connected clusters of arbitrary shapes in graph 
or network data. This method improves search efficiency by 
incorporating a branch-and-bound depth-first search approach, which 
enhances the brute force algorithm used in FleXScan. Cadena et al. (13) 
presented a framework for network anomaly detection based on scan 
statistics that outperforms existing methods in terms of performance 
and scalability. Meysami M et al. (6) proposed the flexible–elliptical 
scan method, which combines the flexible and elliptic scan methods to 
address their respective limitations and leverage their advantages. 
However, for non-statistical users such as epidemiologists and public 
health researchers, user-friendly software may be more practical than 
introducing new algorithms. Currently, the most commonly used 
methods are still circular and flexibly-shaped scan statistics, which can 
be directly implemented in SaTScan and FleXScan, respectively.

However, both methods face the challenge of parameter setting 
during implementation, as the cluster results are highly sensitive to 
these parameters. For example, the performance of circular spatial scan 
statistics is influenced by the selection of the maximum scanning 
window size (MSWS) (14–16). If the MSWS is too large, the detected 
clusters may be overly large and may include areas with non-elevated 
risk. Conversely, if it is too small, numerous small clusters may 
be  detected. Different MSWS values yield varying cluster sizes, 
locations, and numbers within the same dataset. Although it is 
common to use 50% of the total population as the default setting for 
MSWS in SaTScan, this may result in an overly large cluster. Therefore, 
determining the optimal MSWS value is crucial for the SaTScan 
method. Performance indicators such as sensitivity, specificity, positive 
predictive value (PPV), and Youden’s index (YDI) are typically used to 
select the optimal MSWS (16), but these metrics are often only available 
in simulation studies. Han et al. (17) proposed the Gini coefficient as 
an effective criterion for determining optimal cluster reporting sizes, 
which helps avoid unnecessarily large and less informative clusters. 
This approach has been implemented in SaTScan version 9.3 and has 
shown success with both simulated and real data (18, 19). Another 
indicator, called the maximum clustering heterogeneous set-proportion 
(MCHS-P), was introduced by Wang et al. (16) for selecting suitable 
MSWS. However, the Gini coefficient remains widely used due to its 
direct application through SaTScan, despite some limitations pointed 
out by Li et al. (15) and Wang et al. (16).

The FleXScan method suggests that setting K = 30 theoretically 
helps achieve the optimal maximum likelihood clustering (MLC). 
However, it is important to understand the impact of different 
K-values on the final clustering results. For example, if we set K = 15, 
can we still achieve a good MLC, and what are the differences between 
the two clustering results? Evaluating the influence of K-value requires 
practical analysis and comparison.

The accuracy of spatial cluster detection results is of great 
significance for the formulation of prevention and control policies in 
the region and the detection of further etiology. Spurious cluster 
results, however, may have unnecessary negative impacts on the socio-
economic development of that region (20). Therefore, selecting the 
appropriate parameter settings is important for accurate cluster 
identification. Unfortunately, there is currently no standard reference 
criterion for parameter selection.

Previous studies have demonstrated that different research 
purposes require different parameter combinations for analysis. 
However, most previous studies are based on simulated data with 
specific assumptions, and the conclusions drawn may not be fully 
applicable to real data, which has certain limitations. The optimal 
parameter combination varies with different data, and the conclusions 
of simulation research are often difficult to extend to more complex 
and variable real-world scenarios without sufficient prior knowledge.

Therefore, the purpose of our study is to compare the differences 
between the two different scanning window methods, and to 
determine the optimal parameter settings for each method. This will 
clarify the impact of parameter settings on the results and provide a 
reference for other researchers. We  will utilize real pulmonary 
tuberculosis disease data (at the township level) from Wuhan, 
spanning 2015 to 2019, as our research dataset. We  will provide 
optimal parameter settings for the two scanning window types in 
different years and compare the spatial clustering results obtained 
from these methods.

2 Study area and data

Our study area is Wuhan City, the capital of Hubei Province, 
located in central China. Known as “the River City,” Wuhan is situated 
at the confluence of the Yangtze River and the Han River the largest 
tributary of the Yangtze. This strategic location has made Wuhan a 
crucial transportation hub, connecting various parts of China through 
its extensive network of railways, highways, and waterways. Wuhan 
City comprises 13 county-level units and 164 town-level units, with a 
total area of 8,569.15 square kilometers. As of the end of 2021, according 
to official information, Wuhan had a permanent population of 12.3265 
million, with its population spatial distribution shown in Figure 1. It 
can be observed from the figure that the central urban area is densely 
populated, while the peripheral rural areas are sparsely populated.

The case information for pulmonary tuberculosis in this study was 
obtained from the National Tuberculosis Management Information 
System, specifically the registered and managed medical records of 
pulmonary tuberculosis patients based on their initial diagnosis 
locations from 2015 to 2019. A total of 30,486 pulmonary tuberculosis 
patients were included in the study. We first employed geocoding 
techniques to spatially encode the addresses of the cases and then 
combined this with population demographic data to obtain the 
incidence rate at the township level. Thus, the final research data used 

Abbreviations: LLR, Log-Likelihood Ratio; RR, Risk Ratio; MSWS, Maximum Scanning 

Window Size; MLC, Maximum Likelihood Clustering; MCHS-P, Maximum Clustering 

Heterogeneous Set-Proportion; PPV, Positive Predictive Value; YDI, Youden’s index.
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in this study consisted of the pulmonary tuberculosis incidence ratesin 
Wuhan at the township level from 2015 to 2019.

3 Methods

The study involved determining optimal parameters, visualizing 
incidence and disease clustering results, and conducting a comparative 
analysis. We assessed and compared the performance of both methods 
in detecting disease clusters by evaluating LLR values and cluster size. 
To facilitate comparability, both methods were implemented using the 
same statistical model, specifically the Poisson statistical model.

3.1 Evaluation metrics for comparison

3.1.1 The LLR value
The LLR value quantifies the deviation of observed data from 

random spatial distribution. A higher LLR value suggests a higher 
likelihood of non-random clustering, indicating the presence of 
genuine spatial clusters. Comparing LLR values allows us to assess the 
strength and significance of detected clusters, helping to identify 
meaningful and informative clusters in the analysis.

3.1.2 The cluster size
The cluster size represents the number of sub-regions contained 

within a cluster. Restricting the cluster size may help reduce the 
likelihood of misclassifying random noise as clusters. Tango et al. (8) 
pointed out that it is unlikely for the size of a true cluster to be larger 

than 10–15 percent of the total number of regions. However, this is 
not a fixed rule and may vary depending on the specific research field 
and data characteristics.

3.2 MSWS settings for the circular scan 
statistic

Initially, we attempted to use the same MSWS value for different 
years within the same spatial region. However, this approach proved 
to be  unreasonable, as the spatial distribution of diseases varied 
significantly across different years. To address this issue, we utilized 
Gini coefficients to assist in identifying the optimal clusters. The Gini 
coefficient is a statistical measure of data inequality, which helps 
evaluate the quality of clustering results under different MSWS values. 
A higher Gini coefficient indicates a more uneven spatial distribution 
of the clustering result, suggesting that the clustering results achieved 
at that particular MSWS value possess greater distinctiveness and 
significance in terms of differentiation.

In this study, we tested MSWS values of 5, 10, 15, 20, 25, 30, 40, 
and 50% for each year from 2015 to 2019.We then calculated the 
corresponding Gini coefficients for each MSWS value. The MSWS 
value associated with the highest Gini coefficient was selected as the 
optimal choice. Our analysis revealed that even within the same 
spatial region, the optimal MSWS values varied due to differences in 
the spatial distribution of diseases across different years.

However, we have found in practice that simply using the Gini 
coefficient as a criterion for determining MSWS is insufficient. 
According to the Gini coefficient, the optimal MSWS in 2018 should 

FIGURE 1

Study area.
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be 25%, However, the spatial clustering result at this value includes too 
many sub-regions, with the most likely cluster (MLC) containing 31 
sub-regions and the secondary cluster containing 39 sub-regions. 
Together these two clusters cover nearly 50% of the total number of 
sub-regions. Clearly, the clusters are too large and may contain 
non-clustered areas. Therefore, we predetermined the MSWS value to 
be  10% when the Gini coefficient was the second largest. At this 
MSWS value, the MLC is divided into two small clusters and 
non-cluster regions, resulting in a significant reduction in the number 
of intra-cluster sub-regions. Although the LLR value of the MLC 
decreased, the LLR values of other clusters increased. The results are 
presented in Table 1 and Figure 2.

Finally, considering both the Gini coefficient and the number of 
sub-regions included in the clusters, we  determined the optimal 
MSWS values for this study, as shown in Table 2.

3.3 K-value setting for the flexibly-shaped 
scan statistic

Theoretically, a larger K-value increases the number of candidate 
scan windows that need to be calculated, but it also enhances the 
likelihood of identifying clusters with higher LLR values, indicating a 
higher probability of detecting true clusters. From this perspective, a 
K-value of 30 is ideal. However, to assess the effect of the K-value on 
the final results, we compared the results for K = 15 and K = 30. These 
results are presented in Table  3, and the spatial clusters are also 
presented on the map in Figure 3.

The results indicate that the spatial distribution of clusters is 
roughly the same when K = 15 and K = 30, but there are differences in 
cluster levels, as ordered by descending LLR values. Notably, there are 
variations in the spatial distribution of the MLC and the number of 
sub-regions included. When K = 30, the MLC contains more 
sub-regions and has a higher LLR value. Due to the limitation of the 
K-value, when K = 15, clusters 3 and 5 are identified as two separate 
clusters, with the LLR values of 29.72 and 16.27, respectively. However, 
these two clusters merge into a single, larger cluster when K = 30, with 
the LLR value increasing to 50.02.

3.4 Cluster visualization

To facilitate understanding of the results, we visualize the cluster 
analysis results on the map, using the color brightness to indicate the 

magnitude of the LLR statistical value. Darker colors correspond to 
higher LLR values, suggesting a greater likelihood of true clustering. 
Additionally, we  employ different color lightness on the map to 
represent the incidence rates of townships and streets as a reference 
for the spatial clustering results.

4 Results

4.1 Comparison of SaTScan and FleXScan in 
evaluation metrics

Tables 4–8 present detailed comparison results of the SaTScan and 
FleXScan methods from 2015 to 2019. These tables include 
information on cluster level (ordered by descending LLR values), 
number of sub-regions (i.e., cluster size), number of cases, expected 
number of cases, population, RR value, LLR value, and p value.

By comparing the relevant information of the two methods in 
Tables 4–8, particularly the LLR values and cluster sizes, we find that 
FleXScan identifies fewer clusters than SaTScan, but generally with 
higher LLR values. This suggests that the FleXScan method applies 
stricter criteria for defining clusters, reducing the likelihood of falsely 
identifying non-cluster areas as clusters. Consequently, while 
FleXScan may detect fewer true clusters, it is likely more accurate in 
identifying statistically significant clusters. The higher LLR values 
associated with FleXScan indicate stronger clustering signals, 
reflecting a greater probability of detecting true clusters.

In addition, we measure cluster size by the number of sub-regions 
covered. Tables 4–8 show that FleXScan identifies clusters with a 
larger average size but a smaller maximum size compared to the 
SaTScan method. This suggests that FleXScan tends to recognize 
larger, more consistent clusters but with a less extreme maximum size. 
In contrast, SaTScan produces results with greater variability in cluster 
sizes, indicating more dispersed and variable cluster sizes. 
Consequently, FleXScan demonstrates higher stability in cluster size 
compared to SaTScan, as it produces more consistent cluster sizes 
across different datasets.

Both methods generally produce MLCs of similar sizes, typically 
containing fewer than 16 sub-regions, representing less than 10% of 
the total 164 sub-regions. However, 2017 is an exception, with 
SaTScan’s MLC size reaching 31 sub-regions, compared to 20 
sub-regions for FleXScan. This discrepancy is mainly due to SaTScan’s 
higher MSWS value of 20% in 2017, which was larger than in other 
years and resulted in a larger MLC size.

TABLE 1 Comparison of cluster results with different MSWS values in SaTScan.

MSWS = 25% (2018) MSWS = 10% (2018)

Level of 
clusters

Number 
of Sun-
region

Number 
of cases

Population 
in risk

LLR p - 
value

Level of 
clusters

Number 
of Sun-
region

Number 
of cases

Population 
in risk

LLR p - 
value

MLC 31 1,270 1,861,018 38.70 <0.001 MLC 12 614 815,615 32.70 <0.001

2 39 1,517 2,398,624 22.66 <0.001 2 4 242 279,704 23.58 <0.001

3 2 143 181,846 9.00 <0.001 3 3 111 111,182 17.33 <0.001

4 1 69 60,229 15.43 <0.001

5 13 586 895,986 10.76 0.002
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This difference in performance arises from FleXScan’s use of an 
exhaustive algorithm, which evaluates all potential scan windows to 
pinpoint those with the highest LLR values. This approach allows 
FleXScan to be more precise in detecting clusters and identifying 
significant clustering patterns, as it thoroughly assesses a wide range 
of possible cluster configurations. By contrast, SaTScan utilizes a 
circular scanning window, which can constrain its ability to capture 
irregularly shaped or more complex clustering patterns. The circular 
window’s limitations can result in less accurate cluster detection and 
higher variability in the sizes of detected clusters. Furthermore, the 
SaTScan method, which involves scanning regions with progressively 
larger circles, might miss clusters that are not well-aligned with the 
circular shape or that have non-uniform spatial distributions. This can 
lead to less consistent results and a greater variability in cluster sizes, 
as observed in the data.

4.2 Comparison of SaTScan and FleXScan 
in cluster visualization

Figures 4–8 show the clustering results generated by the SaTScan 
and FleXScan methods in Wuhan from 2015 to 2019 on maps. 
Additionally, pulmonary tuberculosis incidence maps are provided for 
comparison and reference.

To accurately represent the cluster areas, we used the cluster regions 
comprising all polygons whose centroids are enclosed by the cluster 
circle, rather than directly using the cluster circles generated by SaTScan. 

Furthermore, since certain years have numerous cluster levels with only 
a few regions per level (e.g., in 2016, SaTScan identified a total of 10 
cluster levels, many of which included only one sub-region). To improve 
the legibility of the visualization, we categorized the original clustering 
regions into four categories based on LLR values and the number of 
included sub-regions. The legend specifies the number of sub-regions 
in each category, and the MLC was assigned a single distinct category. 
This classification converted the original data into ordinal data, 
represented by different lightness of color in Figures 4–8. The color 
intensity in each map corresponds to the clustering area level determined 
by the LLR value, with darker colors indicating higher likelihoods.

From Figures  4–8, it is evident that the clusters obtained by 
SaTScan are more regular in shape, whereas those identified by 
FleXScan exhibit excessive irregularity. Clusters with highly irregular 
shapes may be less meaningful, as they complicate the assessment of 
geographical significance for practitioners (9, 17).

Overall, the clusters identified by SaTScan and FleXScan generally 
align with the spatial distribution of high-incidence areas, primarily 
located in the suburban districts of Wuhan, which are sparsely 
populated and economically underdeveloped. However, some high-
incidence areas were not identified as clusters, suggesting that the 
elevated incidence rates in these regions may be random. Although the 
spatial coverage of clusters identified by both methods is largely similar, 
there are significant differences in the LLR values and the specific 
sub-regions included. Notably, the spatial distribution of MLCs 
identified by the two methods from 2015 to 2019 differs considerably, 
with the exception of 2017, where the distributions are similar.

5 Discussion

In this study, we undertook a detailed comparative analysis of the 
SaTScan and FleXScan methods for disease clustering using real data 

FIGURE 2

Clusters detected with different MSWS value in SaTScan. (A) MSWS is 25%, (B) MSWS is 10%.

TABLE 2 The selected optimal MSWS value in different years.

Year 2015 2016 2017 2018 2019

MSWS 15% 10% 20% 10% 15%
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from 2015 to 2019. This comparison aimed to explore the strengths 
and limitations of each method in accurately detecting disease clusters.

5.1 Real disease data

Unlike most previous studies that relied on simulated data, our 
research utilized real disease data. Although this limited our ability to 
use common quantitative metrics, such as sensitivity, specificity, PPV, 
and YDI, to determine the optimal parameter settings and compare 
method performance, using LLR values and cluster size as our analysis 
metrics is still appropriate, albeit not entirely comprehensive. 
Nevertheless, real disease data better reflect actual disease distribution 
and trends, enhancing the realism and generalizability of our results 
and providing more reliable support for public health decision- 
making.

5.2 Parameter settings

The Gini coefficient, traditionally used to determine the MSWS in 
SaTScan, has been validated as effective by some researchers (17, 18). 
However, our findings align with those of Li et al. (15), who identified 
limitations in this approach. Specifically, the Gini coefficient measures 
overall distribution uniformity across the entire region and may not 
capture the nuances of smaller, individual clusters when multiple 
clusters are present. This may lead to multiple small clusters being 
combined into one large cluster, resulting in distorted results, as 
confirmed in our study illustrated in Section 3.2. To address this issue, 
we  recommend combining the Gini coefficient approach with a 
gradual reduction in the threshold to accurately identify and separate 
individual clusters, thereby obtaining more reliable clustering results.

FleXScan identifies clusters using LLR values. While setting 
K = 30 is theoretically optimal, our study reveals that focusing solely 

TABLE 3 Comparison of cluster results with different K-values in FleXScan.

2015 (K = 15) 2015 (K = 30)

Level of 
clusters

Number 
of Sun-
region

Number 
of cases

Population 
in risk

LLR p - 
value

Level of 
clusters

Number 
of Sun-
region

Number 
of cases

Population 
in risk

LLR p - 
value

MLC 8 455 477,903 46.16 0.001 MLC 11 645 688,811 62.79 0.001

2 7 314 314,546 37.30 0.001 2 19 738 856,888 50.02 0.001

3 11 490 577,467 29.72 0.001 3 1 70 46,702 22.71 0.001

4 1 70 46,702 22.71 0.001 4 2 72 57,870 15.75 0.003

5 7 215 240,358 16.27 0.001 5 1 72 58,570 15.30 0.004

6 1 72 58,570 15.30 0.001 6 4 111 105,171 15.04 0.004

7 5 223 257,809 14.40 0.001 7 5 223 257,809 14.40 0.006

FIGURE 3

The clusters detected with different K-value in FleXScan. (A) K = 15, (B) K = 30.
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TABLE 4 Comparison of SaTScan clusters and FleXScan clusters in 2015.

SaTScan-2015 (MSWS = 15%) Restricted FleXScan-2015 (K = 30)

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Populationin 
risk

RR LLR p - 
value

MLC 12 529 351.0 591,071 1.56 41.78 <0.0001 MLC 11 645 409.0 688,811 1.64 62.79 0.001

2 7 324 214.9 361,950 1.54 24.93 <0.0001 2 19 738 508.8 856,888 1.51 50.02 0.001

3 29 1,035 841.7 1,417,641 1.28 24.225 <0.0001 3 1 70 27.7 46,702 2.54 22.71 0.001

4 1 70 27.7 46,702 2.54 22.70 <0.0001 4 2 72 34.4 57,870 2.11 15.75 0.003

5 1 41 14.8 24,884 2.79 15.68 <0.0001 5 1 72 34.8 58,570 2.08 15.30 0.004

6 1 72 34.8 58,570 2.08 15.29 <0.0001 6 4 111 62.5 105,171 1.79 15.04 0.004

7 5 224 164.7 277,338 1.37 9.89 0.006 7 5 223 153.1 257,809 1.47 14.40 0.006

TABLE 5 Comparison of SaTScan clusters and FleXScan clusters in 2016.

SaTScan-2016 (MSWS = 10%) Restricted FleXScan-2016 (K = 30)

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

MLC 8 431 264.5 432,035 1.67 46.21 <0.0001 MLC 9 566 348.3 568,916 1.69 61.09 0.0005

2 1 91 36.4 59,445 2.52 29.02 <0.0001 2 6 388 227.5 371,545 1.75 48.79 0.0005

3 17 604 459.2 749,933 1.35 22.54 <0.0001 3 7 357 245.3 400,657 1.48 23.30 0.0005

4 3 169 109.2 178,290 1.56 14.31 <0.0001 4 4 200 135.9 221,932 1.49 13.53 0.01

5 1 59 27.8 45,394 2.13 13.28 0.0001 5 1 59 27.8 45,394 2.13 13.29 0.01

6 1 14 2.7 4,407 5.20 11.76 <0.0007 6 1 14 2.7 4,407 5.20 11.77 0.03

7 4 248 186.2 304,145 1.35 9.58 0.005

8 1 63 35.8 58,518 1.77 8.44 0.01

9 1 34 25.6 25,420 2.19 8.16 0.02

10 1 52 29.0 47,400 1.80 7.39 0.03
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TABLE 6 Comparison of SaTScan clusters and FleXScan clusters in 2017.

SaTScan-2017 (MSWS = 20%) Restricted FleXScan-2017 (K = 30)

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

MLC 31 1,374 1048.8 1,829,721 1.40 56.64 <0.0001 MLC 20 1,126 768.4 1,340,576 1.57 85.03 0.0005

2 3 111 62.7 109,295 1.79 15.34 <0.0001 2 11 511 340.5 594,032 1.55 39.53 0.0005

3 4 215 145.1 253,094 1.50 15.07 <0.0001 3 4 188 128.4 223,975 1.48 12.40 0.02

4 1 64 33.9 59,207 1.90 10.61 <0.0001

5 5 214 163.2 284,795 1.32 7.40 <0.0001

TABLE 7 Comparison of SaTScan clusters and FleXScan clusters in 2018.

SaTScan-2018 (MSWS = 10%) Restricted FleXScan-2018 (K = 30)

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

Cluster 
level

Number 
of sub-
regions

Number 
of cases

Expected 
cases

Population 
in risk

RR LLR p - 
value

MLC 12 614 441.7 815,615 1.44 32.70 <0.0001 MLC 13 703 495.0 913,950 1.48 42.75 0.0005

2 4 242 151.5 279,704 1.62 23.58 <0.0001 2 11 504 337.7 623,635 1.54 38.05 0.0005

3 3 111 60.2 111,182 1.86 17.33 <0.0001 3 10 509 355.2 655,898 1.47 31.51 0.0005

4 1 69 32.6 60,229 2.13 15.43 <0.0001 4 7 336 228.1 421,252 1.50 23.28 0.0005

5 13 586 485.2 895,986 1.23 10.76 0.002 5 3 213 150.2 277,388 1.43 11.95 0.03
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on the highest LLR values can lead to clusters with highly irregular 
shapes (21–23). Duczmal et  al. (21, 22) have noted that such 
irregular shapes can complicate geographic interpretation and 
suggest that both LLR values and cluster shapes should be considered 
together to achieve clusters that are both statistically significant and 
meaningful. Irregular cluster shapes may arise from specific 
geographic features, population distribution, or data noise and 
might not accurately reflect the actual disease distribution. 
Therefore, considering the regularity of cluster shapes is important 
to avoid misleading interpretations and ineffective public health 
interventions. The current version of FleXScan lacks features to 
control or modify cluster shapes, highlighting the need for further 
developments in this area.

5.3 Computational efficiency

Although both methods can be implemented through software, it 
is essential to discuss their computational efficiency to gain a deeper 
understanding of the differences in their results. The efficiency 
primarily depends on the number of scanning windows that need to 
be calculated.

In the SaTScan method, let the entire study area contain m 
sub-regions. For each region, the scanning radius varies 
systematically from 0 to a predefined maximum (MSWS value), 
centered on each region. If each region has T concentric circular 
windows, the maximum number of windows that need to 
be calculated is m × T.

In contrast, the FlexScan method requires calculating a greater 
number of scanning windows. The process is as follows:

Let iZ  represent region i (1 ≤ i ≤ m), and ikZ  denote the scanning 
window formed by sub-region iZ  and its k-1 connected neighboring 
sub-regions. The basic method for determining these k-1 
sub-regions is:

 (1) Calculate the K-1 nearest neighboring sub-regions of iZ  (which 
may not necessarily be adjacent to iZ ).

 (2) From these K-1 neighboring sub-regions, select k-1 (noting 
that 1 ≤ k ≤ K) while ensuring that they form a “connected” 
scanning window with iZ .

For example, with k = 4, this means that the scanning window 
consists of iZ  and three neighboring sub-regions. In the worstcase, 
the selection of these three sub-regions can result in 3

1KC −  
combinations. Therefore, theoretically, the FleXScan method may 
need to calculate 12Km −∗ windows in the worst case. Although the 
requirement for “connectivity” among sub-regions means that the 
actual number of scanning windows calculated will be  lower, it 
remains substantial. This is why the FleXScan software typically 
recommends that the value of K should not exceed 30, with a default 
value of 15.

From a computational efficiency perspective, the SaTScan method 
demonstrates higher efficiency, while the FleXScan method is 
comparatively less efficient. Thus, enhancing the computational 
efficiency of the FleXScan method presents a valuable area for further 
research. Both classic methods can currently be implemented directly 
through software, allowing researchers to focus less on their 
computational efficiency. However, any optimizations or T

A
B

LE
 8

 C
o

m
p

ar
is

o
n

 o
f 

Sa
T

Sc
an

 c
lu

st
er

s 
an

d
 F

le
X

Sc
an

 c
lu

st
er

s 
in

 2
0

19
.

Sa
T

Sc
an

-2
0

19
 (

M
SW

S 
=

 1
5

%
)

R
e

st
ri

ct
e

d
 F

le
X

Sc
an

-2
0

19
 (
K

 =
 3

0
)

C
lu

st
e

r 
le

ve
l

N
u

m
b

e
r 

o
f 

su
b

-
re

g
io

n
s

N
u

m
b

e
r 

o
f 

ca
se

s
E

xp
e

ct
e

d
 

ca
se

s
P

o
p

u
la

ti
o

n
 

in
 r

is
k

R
R

LL
R

p
 -

 
va

lu
e

C
lu

st
e

r 
le

ve
l

N
u

m
b

e
r 

o
f 

su
b

-
re

g
io

n
s

N
u

m
b

e
r 

o
f 

ca
se

s
E

xp
e

ct
e

d
 

ca
se

s
P

o
p

u
la

ti
o

n
 

in
 r

is
k

R
R

LL
R

p
 -

 
va

lu
e

M
LC

6
36

4
22

7.
5

42
2,

57
1

1.
64

36
.2

6
<0

.0
00

1
M

LC
12

70
6

42
7.

6
79

4,
26

7
1.

74
82

.9
3

0.
00

05

2
7

24
8

14
0.

5
26

0,
95

2
1.

80
34

.4
6

<0
.0

00
1

2
13

85
1

54
5.

8
1,

01
3,

96
7

1.
65

81
.7

3
0.

00
05

3
7

32
9

20
5.

4
38

1,
51

5
1.

64
32

.7
7

<0
.0

00
1

3
8

36
2

23
8.

8
44

3,
59

7
1.

55
28

.7
8

0.
00

05

4
1

81
32

.8
60

,9
41

2.
49

25
.2

2
<0

.0
00

1
4

6
19

7
12

5.
4

23
2,

96
1

1.
59

17
.8

4
0.

00
3

5
2

16
6

99
.0

18
3,

99
5

1.
70

19
.1

6
<0

.0
00

1
5

5
13

0
81

.1
15

0,
60

6
1.

62
12

.6
7

0.
02

6
6

19
2

13
1.

3
24

3,
97

7
1.

48
12

.5
7

0.
00

04
8

7
4

21
2

15
2.

3
28

3,
01

0
1.

41
10

.7
1

0.
00

26

8
1

77
43

.9
81

,5
66

1.
76

10
.2

5
0.

00
39

9
3

17
2

12
1.

4
22

5,
51

9
1.

43
9.

55
0.

00
73

https://doi.org/10.3389/fpubh.2024.1432645
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Wang et al. 10.3389/fpubh.2024.1432645

Frontiers in Public Health 10 frontiersin.org

improvements based on these methods must inevitably consider 
computational efficiency.

5.4 Result visualizations

This study employed a map visualization method to display the 
spatial distribution of disease clusters, using color brightness to 
indicate risk levels. However, differences in cluster distributions 
from the SaTScan and FleXScan methods are not intuitively 
discernible. Introducing interactive visualization tools would 
enhance the comparison of distribution differences among clusters 
with varying risk levels, improving the clarity and practicality of 
the analysis.

5.5 Limitations

Despite the in-depth comparison and analysis of the SaTScan and 
FleXScan methods, our study has several limitations:

 (1) Before applying FleXScan, obtaining a complete spatial 
adjacency matrix for the specific geographic area is crucial. 
Missing spatial adjacency relationships can bias clustering 
results, making preliminary topological checks essential to 
ensure the integrity of the adjacency matrix. In this study, 
we defined the spatial adjacency matrix using queen adjacency, 
which considers shared vertex connections. This may explain 
the irregular cluster shapes produced by FleXScan. Since queen 
adjacency only considers regions sharing a vertex as neighbors, 

FIGURE 4

Spatial distribution map of tuberculosis in Wuhan in 2015. (A) The annual incidence map, (B) the SaTScan clusters result map, (C) the FleXScan clusters 
result map.

FIGURE 5

Spatial distribution map of tuberculosis in Wuhan in 2016. (A) The annual incidence map, (B) the SaTScan clusters result map, (C) the FleXScan clusters 
result map.
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it may lack precision, especially for irregular or complex cluster 
shapes. To enhance the accuracy and interpretability of 
clustering results, future research could explore alternative 
adjacency definitions, such as rock adjacency (shared edge 
adjacency) or bishop adjacency (considering both shared 
vertices and edges).

 (2) Although our study used multi-year disease data, the cross-
sectional nature of the data limited the use of space–time scan 
statistics, restricting a full assessment of SaTScan and 
FleXScan’s spatiotemporal sensitivity and precision. 
Additionally, our analysis was limited to Wuhan City and did 
not include data from broader scales like Hubei Province. 
Future research should assess these methods across different 
geographical scales, such as provincial or national levels, to 

provide a more comprehensive evaluation and increase the 
generalizability of the results.

 (3) Our comparison focused on circular and flexible-shaped scan 
windows. However, elliptical scan windows, which can adjust 
their radii in two directions to better fit non-uniform spatial 
distributions (6), warrant further exploration and evaluation in 
future research.

6 Conclusion

In this study, we  concentrated on determining the optimal 
parameter settings for circular and flexible-shaped scan statistics and 
their effects on clustering results. We also explored the characteristics 

FIGURE 6

Spatial distribution map of tuberculosis in Wuhan in 2017. (A) The annual incidence map, (B) the SaTScan clusters result map, (C) the FleXScan clusters 
result map.

FIGURE 7

Spatial distribution map of tuberculosis in Wuhan in 2018. (A) The annual incidence map, (B) the SaTScan clusters result map, (C) the FleXScan clusters 
result map.
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of these two methods and the influence of different scan window 
shapes on accuracy and reliability, offering valuable insights for 
future research.

While the FleXScan method may offer advantages in terms of 
result accuracy, disease spatial clustering patterns are highly complex. 
To mitigate the limitations of a single method, it is advisable to use a 
combination of methods to determine the final clustering results. 
Furthermore, the exploration of disease spatial clustering 
characteristics should be  integrated with the study of influencing 
factors. Investigating clustering patterns not only aids in developing 
more effective prevention and control strategies but also reveals the 
factors and dynamics that influence disease occurrence and spread. By 
integrating these research methods, a more comprehensive 
understanding of disease transmission and its impact can be achieved, 
leading to more targeted and effective intervention measures.
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