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Introduction: The primary aim of this study is to investigate and predict the 
prevalence and determinants of tuberculosis disease burden in China. Leveraging 
high-quality data sources and employing a methodologically rigorous approach, 
the study endeavors to enhance our understanding of tuberculosis control 
efforts across different regions of China. First, through nationwide spatio-
temporal cluster analysis, we summarized the status of tuberculosis burden in 
various regions of China and explore the differences, thereby providing a basis 
for formulating more targeted tuberculosis prevention and control policies in 
different regions; Subsequently, using a time series-based forecasting model, 
we conducted the first-ever national tuberculosis burden trend forecast to offer 
scientific guidance for timely adjustments in planning and resource allocation. 
This research seeks to contribute significantly to China’s existing tuberculosis 
prevention and control system.

Materials and methods: This research draws upon publicly available pulmonary 
tuberculosis (PTB) incidence and mortality statistics from 31 provinces and 
municipalities of mainland China between 2004 and 2018. We organized and 
classified these data according to province, month, year, and patient age group. 
Overall, the sample included 14,816,329 new instances of PTB and 42,465 
PTB-related fatalities. We  used spatiotemporal cluster analysis to record the 
epidemiological characteristics and incidence patterns of PTB during this period. 
Additionally, a time series model was constructed to forecast and analyze the 
incidence and mortality trends of PTB in China.

Results: This study reveals significant regional variations in PTB incidence and 
mortality in China. Tibet (124.24%) and Xinjiang (114.72%) in western China 
exhibited the largest percentage change in tuberculosis (TB) incidence, while 
Zhejiang Province (−50.45%) and Jiangsu Province (−51.33%) in eastern China 
showed the largest decreases. Regions with significant percentage increases in 
PTB mortality rates (>100%) included four western regions, six central regions, 
and five eastern regions. The regions with relatively large percentage decreases 
in the mortality rate of PTB include Tianjin (−52.25%) and Shanghai (−68.30%). 
These differences are attributed to two main factors: (1) economic imbalances 
leading to poor TB control in underdeveloped areas, and (2) differences in TB-
related policies among provinces causing uneven distribution of disease risks. 
Consequently, China may still face challenges in achieving the World Health 
Organization’s 2030 tuberculosis control goals. Nationwide, the mortality 
rate of PTB in China increased between 2004 and 2018 (percentage change: 
105.35%, AAPC: 4.1), while the incidence of PTB showed a downward trend 
(percentage change: -20.59%, AAPC: −2.1). Among different age groups, the 
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0–19 age group has the smallest disease burden. While incidence and mortality 
from TB were primarily found in adults 60 years of age or older, the age group 
of 0–19 years has the smallest burden of TB, highlighting obvious differences 
in age characteristics. It is predicted that the mortality rate of TB in China 
will continue to increase. In summary, the TB epidemic in China has been 
largely controlled due to the implementation of many public health programs 
and policies targeting specific groups and geographical areas. Finding and 
supporting effective health programs will make it possible to achieve the World 
Health Organization’s goal of controlling tuberculosis in China.

KEYWORDS

pulmonary tuberculosis, disease burden, spatial–temporal cluster analysis, prediction 
study, China

1 Introduction

Tuberculosis is an airborne contagious disease caused by the 
bacterium Mycobacterium tuberculosis. In recent years, TB has 
become the second deadliest contagious disease globally, surpassed 
only by COVID-19 (1). According to statistics, since 2019, the global 
new incidence rate of TB and the number of deaths due to TB have 
been rising, reversing the long-standing downward trend. In 2022, 
there were over 10 million new TB patients worldwide, and 
approximately 1.3 million people died from this disease. TB patients 
in eight countries account for more than two-thirds of the global 
total, including India, Indonesia, China, the Philippines, Pakistan and 
other countries (2). Consequently, TB remains one of the leading 
causes of adverse health effects and mortality worldwide, particularly 
in low- and middle-income developing countries.

As a developing country, China has prioritized TB prevention 
and control in alignment with the recommendations of the World 
Health Organization (3, 4). China has developed and implemented 
TB prevention and control programs such as the international 
widespread adoption of the directly observed treatment, short-
course (DOTS) method across different provinces (5), etc. Despite 
these endeavors, China persists one of the high-burden countries for 
TB (1), encountering ongoing challenges in TB prevention and 
control, especially for the main type of pulmonary tuberculosis 
(PTB), accounting for about 78.7% of tuberculosis cases (6). 
Therefore, this research focuses on PTB specifically to analyze the 
Tuberculosis disease burden in China. Current research 
predominantly delves into the analysis of natural factors, including 
meteorological factors, seasonal patterns, and geographic locations, 
and their impact on TB transmission (7–9). Moreover, regional 
disparities in TB burden are also linked to social factors, including 
variations in TB-related prevention and control policies across 
different regions. Therefore, there is an urgent need for nationwide 
spatiotemporal cluster analysis to provide a basis for comparing the 
effectiveness of different policies in different regions, thereby 
pinpointing more targeted TB prevention and control measures. 
Such an approach will furnish scientific evidence to bolster the 
efficiency of TB prevention and control efforts, optimizing 
existing strategies.

Furthermore, predictive studies are pivotal in anticipating 
future trends in TB burden. Although geospatial predictive models 
have become increasingly utilized for this purpose (10), time 
series-based predictive models remain underexplored in research 

in this realm. In mainland China, leveraging time-series prediction 
models rooted in historical data, researchers can forecast whether 
the forthcoming TB burden will align with the World Health 
Organization’s end-tuberculosis milestones based on the current 
situation, offering scientific guidance for timely adjustments in 
planning and resource allocation.

In order to identify the factors causing disparities in TB 
prevention and control policies in different regions and to furnish 
theoretical underpinnings for the development of more efficacious 
and judicious policies and measures for TB prevention, this study 
aims to achieve several key objectives. Firstly, it seeks to delineate the 
current landscape of TB burden in China and examine variations in 
TB burden across different provinces. Additionally, it endeavors to 
forecast the future TB burden in China and evaluate the nation’s 
progress toward meeting the targets outlined in the World Health 
Organization’s End TB Strategy by 2030. To accomplish these aims, a 
time series forecast model is employed to project future trends in TB 
burden and provide scientific insights to facilitate timely adjustments 
in planning and resource allocation.

2 Materials and methods

2.1 Research data

In particular, PTB remains the predominant form of TB, 
constituting approximately 85% of all TB cases (1). Therefore, 
we conduct this study using PTB surveillance data. TB surveillance 
data on PTB pathogenicity testing and PTB disease burden for 31 
provinces and cities in mainland China spanning from 2004 to 2018 
were collected from the National Population and Health Scientific 
Data Sharing Platform - Public Health Scientific Data Center.1 This 
comprehensive dataset encompasses 14,816,329 TB incidence cases 
and 42,465 TB deaths for analysis. By categorizing annual TB 
burden data across different age groups, we  derived specific 
TB-related statistics for adolescents (0–19 years), young adults 
(20–39 years), middle-aged adults (40–59 years), and older adults 
(≥60 years).

1 https://www.phsciencedata.cn/Share/index.jsp

https://doi.org/10.3389/fpubh.2024.1436515
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.phsciencedata.cn/Share/index.jsp


Guo et al. 10.3389/fpubh.2024.1436515

Frontiers in Public Health 03 frontiersin.org

2.2 Statistical methods

The statistical methods used in this study encompass three distinct 
components which are the linear regression, cluster analysis, and 
projection prediction, respectively. The first part was to assess the 
burden of TB disease and discerning trends in the change in mainland 
China as well as across individual provinces. To accomplish this, 
we utilized the join-point regression model, a robust statistical tool for 
assessing trends in disease burdens over time (11). Join-point 
regression does not require the data to be  strictly smooth and 
automatically detects trend change points in the data, which makes it 
suitable for public health data with non-linear trends. Additionally, 
the join-point regression model can automatically detect change 
points in data trends, providing more precise statistical analysis 
crucial for interpreting and predicting time trends in health-related 
events (12). We  used annual percentage changes (APCs) 
(Equations 1-1, 1-2), and average annual percentage changes (AAPCs) 
(Equation 2-1) to assess trends in the morbidity and mortality of TB 
between 2004 and 2018. APCs were used to calculate segment-specific 
linear trends throughout the studied year. AAPCs were used to 
estimate overall changes throughout the entire duration of the study. 
These calculations were performed using the join-point model 
according to the following formula (13):

 (1) APCs

 ( )ln   morbidity or mortality xα β ε= + +  (1-1)

 ( )( )100 exp 1APCs β= × −  (1-2)

 (2) AAPCs

 ( ){ }exp / 1 100i i iAAPCs w wβ= ∑ ∑ − ×  (2-1)

Where x represents the calendar year. α  denotes the constant of 
the linear fitting; β is expressed as the slope coefficient of each year; ε  
is the residual error between the estimated and actual values 
(Equation 1-1). iw  is the number of PTB data for each year 
(Equation 2-1). To assess whether the fluctuation trend in different 
segments was statistically significant, we compared the AAPC to 0. If 
the lower limit of the 95% confidence interval (CI) of the AAPC 
exceeded zero, it indicated an increasing trend in morbidity or 
mortality. Conversely, if the upper limit of the 95% CI of the AAPC fell 
below zero, it suggested a decreasing trend in morbidity or mortality.

In the second part, we performed a systematic cluster analysis based 
on class averaging with Dynamic Time Wraping (DTW) distance 
(Equations 3-1–3-3) on the time series of incidence and mortality in 31 
provinces and cities in China. This analysis aimed to elucidate the 
diverse patterns of TB incidence and mortality control across different 
provinces. While Euclidean distance and DTW distance are commonly 
used matrix distance calculation methods in clustering algorithms (14), 
Euclidean distance is notably sensitive to small variations in the time 
axis. Even minor deviations in time series data may result in substantial 
differences in calculated distances, rendering it less suitable for time 
series data with varying time lengths. Moreover, the requirement for 

equal time series lengths presents a significant limitation, necessitating 
padding or truncation of the time length, which may lead to inaccurate 
clustering and an inability to effectively handle non-linear changes (15). 
In contrast, DTW distance mitigates the shortcomings of Euclidean 
distance by accommodating time shifts and distortions. It aligns 
sequences by stretching or compressing them along the time axis, 
thereby offering flexibility to handle temporal offsets and enabling more 
precise measurements of similarities between time series. Unlike 
Euclidean distance, DTW distance does not mandate that time series 
be of the same length, nor does it necessitate preprocessing steps such as 
padding or truncation of the time axis. Moreover, DTW distance can 
effectively manage nonlinear distortions through multiple points (16). 
Given the significant disparities in morbidity and mortality rates among 
different provinces and time periods according to the PTB surveillance 
data, DTW distance was selected for utilization in the clustering process, 
which proceeds as outlined below:

 (3) DTW

 1 2 3, , , , , ,i mQ q q q q q ′= … …  (3-1)

 1 2 3, , , , , ,j nC c c c c c ′= … …  (3-2)
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In the DTW distance calculation formula, (Equations 3-1–3-3) Q 
and C represent any two time series with respective lengths m and n, kω  
is the distance ( ),i jDTW q c  between the corresponding points ( ),i jq c  
of the two time series, K  is the length of the longer time series. Following 
the computation of the DTW distance for each time series, we employ 
the class averaging method to systematically cluster each time series into 
distinct classes based on the calculated distances. Subsequently, 
we compute the distance between the new class and other classes using 
the same method. This iterative process continues as we merge the two 
closest classes into a new class according to the calculated distance. These 
steps are repeated until the number of classes approaches 1. At each stage, 
clustering diagrams are generated to aid in determining the optimal 
number of classes. In the systematic clustering model (Equation 4-1), the 
distance between classes is defined as the average of the squared distances 
between two elements within each class. Assuming that the clustering 
proceeds to a certain step where pG  and qG  are merged into a single 
entity. PQD  represents the distance between pG  and qG . Additionally, pn
and qn  are the number of elements contained within classes pG  and qG  
respectively, while ijd  denotes the distance between two elements in pG  
and qG  (Equation 4-1).

In the third part, we applied a projection model to forecast future 
TB incidence and mortality rates in China. Firstly, five prevalent time 
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series prediction models, ARIMA, PROPHET, GLMNET, 
RANDOMFOREST, and PROPHET BOOST were individually used 
(17–19); subsequently, we evaluated the prediction accuracy for both 
incidence and mortality rates, and found that the ARIMA model 
exhibited superior predictive efficiency for TB incidence and mortality 
time series data in China. In addition, the ARIMA model 
(Equation 5-1) has the characteristics of being easy to interpret and 
apply, being able to deal with nonlinear and unstable time series, and 
also being able to take into account the influence of historical data, 
with high accuracy in predicting the future, which is suitable for this 
retrospective study. Consequently, the ARIMA model was selected for 
subsequent predictions, and its formulation is as follows:

 ( )( )[ ], , , ,ARIMA p d q P D Q m  (5-1)

Where, ( ), ,p d q  are the non-seasonal parameters in the model 
and ( )[ ], ,P D Q m  represent the seasonal parameters in the model. p 
and P indicate the number of lags of the time series data itself (lags) 
used in the forecasting model, which is also known as AR/Auto-
Regressive term; d  and D represent the number of orders of 
differencing required for the time series data to achieve stability, which 
is also called as the Integrated term; q and Q represent the number of 
lags of the forecasting error (lags) used in the forecasting model, 
additionally referred to as the MA/Moving Average term.

3 Results

3.1 Overall tuberculosis disease burden and 
changing trends in mainland China in 
2004–2018

Figure 1 illustrates the yearly fluctuations in new TB cases and 
TB-related deaths across mainland China from 2004 to 2018. The trend 
in the number of new cases per year closely mirrors that of the annual 
incidence rate, both reaching a peak in 2005 at 1,259,308 cases and 96.88 
per 100,000 population, respectively, before experiencing a notable 
decline (Figure 1A). By 2018, the annual incidence rate had reduced to 
only 61.18% of its 2005 level. Similarly, the trend observed in the number 
of deaths aligns with that of the annual mortality rate, with both reaching 
their zenith in 2009 at 3,783 deaths and 0.28 per 100,000 population, 
respectively. However, following a six-year decline from 2009 to 2014, 
both indicators began to ascend in 2015 (Figure 1B). Notably, in 2018, 
the number of deaths and the annual mortality rate stood at 3,149 and 
0.23 per 100,000 population, respectively, closely resembling the peak 
values observed in 2009. In summary, mainland China experienced an 
overall decrease in incidence percentage change of −20.59% from 2004 
to 2018, while witnessing an increasing trend in mortality percentage 
change, which reached 105.35% (Supplementary Table S1).

Figure 2 depicts the distribution of new TB cases and deaths across 
various age groups in mainland China over the past 15 years, revealing 
significant age-related disparities. Notably, the burden of TB is lowest in 
the 0–19 age group, where the annual number of new cases remains 
below 105,000 and deaths do not exceed 30 per 100,000 annually, both 
exhibiting a gradual decline. In 2018, the number of new cases in this age 
group was 54,977, with 44 deaths reported. Between 2004 and 2011, the 
20–39 age group exhibited the highest incidence rate among the four age 
groups, peaking at over 400,000 cases in 2005, though it steadily declined 

thereafter. Subsequently, the 40–59 age group (from 2002 to 2015) and 
the age group over 60 years (from 2016 onwards) successively emerged 
as the primary cohorts for new TB cases, each surpassing 300,000 cases 
annually. Regarding mortality, the proportionate distribution among the 
four age groups has remained relatively stable over the years. Specifically, 
the age group 60 and above consistently exhibits the highest mortality 
rate, averaging over 1,500 cases per year, while the 40–59 and 20–39 age 
groups fall within the intermediate range, each averaging around 500 
and 300 cases per year, respectively. In summary, the TB burden in 
mainland China predominantly afflicts individuals aged 60 years and 
above, markedly surpassing that observed in the 0–19 age group.

3.2 Comparison of TB disease burden and 
changing trends in 31 provinces and cities 
in mainland China in 2004–2018

Figure 3 presents the TB burden distribution among provinces in 
mainland China, revealing notable geographic disparities in the 
percentage change of TB burden from 2004 to 2018. Among them, 
Tibet (124.24%) and Xinjiang (114.72%) exhibited the highest 
percentage change in TB incidence, displaying a pronounced upward 
trend, whereas Zhejiang Province (−50.45%) and Jiangsu Province 
(−51.33%) demonstrated the smallest percentage change in TB 
incidence, reflecting a prominent downward trend compared to 2004 
data (Supplementary Table S1). Significant percentage changes in the 
mortality rate of pulmonary TB were observed across various regions 
of mainland China. Notably, the four western regions (Xinjiang 
1336.40%, Tibet 364.77%, Qinghai 328.31%, Chongqing 280.20%), six 
central regions (Anhui 379.22%, Hunan 272.28%, Hubei 196.15%, 
Henan 124.51%, Inner Mongolia 120.01%, Jiangxi 113.15%), and five 
eastern regions (Shandong 349.44%, Liaoning 320.85%, Hebei 
171.26%, Hainan 157.27%, Guangxi 110.17%) displayed substantial 
percentage changes in mortality rates. Conversely, Tianjin (−52.25%) 
and Shanghai (−68.30%) exhibited relatively minor percentage 
changes in mortality rates. (Notably, due to a lack of mortality data in 
Ningxia in 2004, its percentage change value was excluded from the 
statistical calculations, Supplementary Table S1).

From 2004 to 2018, the APCs for TB incidence and mortality in the 
31 provinces and cities indicated a statistically significant mean APC and 
95% CI of −2.1 (−3.2, −1.0) for incidence (Supplementary Table S2 for 
specific results), while the AAPC of 4.1 (−1.2, 9.8) was not statistically 
significant (Supplementary Figures S1, S2). Notably, among the 31 
provincial and municipal areas, Jilin, Jiangsu, Zhejiang, and Fujian 
provinces exhibited significant and statistically significant decreasing 
trends in morbidity, with AAPCs of −5.1 (−9.1, −0.9), −5.4 (−6.3, −4.6), 
−5.0 (−6.1, −3.9), and − 5.0, (−9.0, −0.9), respectively 
(Supplementary Figure S1). Conversely, Xinjiang displayed the most 
noticeable increasing trend in mortality among the 31 provincial and 
municipal regions, with an AAPC of 17.7 (7.3, 29) 
(Supplementary Figure S2).

3.3 Time series clustering analysis of the 
burden of tuberculosis disease in mainland 
China

The time series analysis of TB disease burden in mainland China 
was clustered using DTW distance as the clustering index, and the 
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FIGURE 1

Total situations of (A) tuberculosis incidence and (B) tuberculosis deaths in mainland China, 2004–2018.
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FIGURE 2

Situations of (A) tuberculosis incidence and (B) tuberculosis deaths by different age groups in mainland China, 2004–2018.
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results were presented in Figure  4. The clustering results for TB 
incidence rates across provinces were categorized into seven major 
clusters, while the mortality rates were divided into six major clusters 
(Supplementary Figures S3–S15).

Cluster (I) represents the clustering results for morbidity:

 • Categories 1, 3, and 5 show a continuous upward trend.
 • Category 2 fluctuates between 120 and 190 and exhibits a single-

peaked change.
 • Categories 4, 6, and 7 show a continuous downward trend.

Cluster (M) represents the clustering results for mortality:

 • Categories 1 and 4 exhibit an upward fluctuating trend.
 • Categories 2 and 5 exhibit a downward fluctuating trend.
 • Category 3 fluctuates between 0.2 and 0.7 and shows a “U” 

shaped fluctuation with multiple peaks.
 • Category 6 fluctuates between 0.05 and 0.5 with multiple peaks, 

showing no clear upward or downward trend.

The time series analysis of TB incidence rates in most regions of 
mainland China, primarily the central and eastern regions, falls into 
Cluster (I)4. The incidence rates in this cluster gradually reduce 
within a single peak range of 100 to 120 per 100,000 
(Supplementary Figure S6). In contrast, the time series analysis of TB 
mortality in most regions falls into Cluster (M)6, where mortality 
rates fluctuate within 0–0.5 per 100,000 with multiple peaks 
(Supplementary Figure S15).

Specifically, we  found that the time series clustering of 
morbidity in Tibet and Qinghai province belongs to Cluster (I)3, 
while the mortality clustering in these regions belongs to Cluster 
(M)2 and Cluster (M)6, respectively. The mortality clustering for 
Guizhou and Shanghai falls into Cluster (M)5, whereas the 
incidence rate clustering for Guizhou belongs to Cluster (I)2, and 
Shanghai belongs to Cluster (I)7. Notably, Xinjiang forms a unique 
cluster, distinct from all other provinces in both morbidity 
and mortality.

3.4 Model fitting and prediction for time 
series analysis of tuberculosis disease 
burden in mainland China in 2030

We found the ARIMA model was the most optimal prediction 
model for forecasting the TB disease burden in mainland China 
after testing of the five included models (Supplementary Tables S3, S4). 
This conclusion was drawn because the ARIMA model 
demonstrated the best prediction accuracy across several metrics, 
including MAE, MAPE, MASE, sMAPE, RMSE, and R^2. The final 
prediction results suggested that the overall incidence rate would 
continue to decline by 2030, while the mortality rate would continue 
to increase by 2030 (Figure 5). In addition, the time series analysis 
of TB disease burden showed an obvious annual cycle and 
seasonality, with a trough in winter and a peak in spring (Figure 5; 
Supplementary Figures S16, S17).

4 Discussion

In this study, we utilized publicly available data on TB in mainland 
China provided by the Public Health Science Data Center. 
We analyzed the spatiotemporal distribution characteristics of TB 
cases from 2004 to 2018 and conducted the first-ever nationwide 
predictive research on the burden of TB in China. Regarding 
tuberculosis burden surveys, previous studies, both domestic and 
international, primarily focused on descriptive statistical analysis, 
often limiting their scope to analyzing population prevalence trends. 
This study goes beyond merely describing changes in disease burden 
by incorporating cluster analysis based on varying trend patterns. This 
approach allows for a more nuanced observation of the clustering 
characteristics of TB burden across regions, facilitating the 
identification of effective prevention and control strategies. 
Additionally, the inclusion of predictive analyses enhances the ability 
to evaluate the effectiveness of existing TB health policies and forecast 
future trends. The findings of this study indicate that the TB 
prevention and control policies in Guizhou Province and Xinjiang are 

FIGURE 3

Percentage change in tuberculosis disease burden in mainland China across provinces, 2004–2018. (A) Incidence rate; (B) Mortality rate.
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particularly effective and may serve as models for 
nationwide implementation.

We observed a sharp increase in reported TB cases during 2004–
2005. This may be attributed to the launch of the National Tuberculosis 
Information Management System (TBIMS) by the Chinese Center for 
Disease Control and Prevention (CDC) in 2005. This system enabled 
the online collection of information on all TB cases nationwide (20).

The TB mortality rate, although peaking in 2005, has been on the 
rise since 2015 (Figure 1B). In response, many relevant government 
departments in China conducted a joint investigation and released an 
action plan (2019–2022) (21), formulating comprehensive action goals 
and key prevention and control measures at the national level. 
However, predictive results indicate that China may still face 
challenges in achieving the World Health Organization’s 2030 
tuberculosis control objectives. This disparity is due to two main 
factors: (1) poor control of drug-resistant TB in underdeveloped 
regions due to economic imbalances (22, 23), and (2) an uneven 
distribution of disease risk caused by differences in TB-related policies 
at the provincial level in China (24). In light of this situation, China 
needs to rely on the findings of cluster and predictive research, 
compare specific policies among provinces, and explore more effective 
and rational TB prevention strategies to achieve the goals set by the 
World Health Organization’s End TB Strategy.

Furthermore, we observed a significantly higher burden of PTB 
among older adult individuals (≥60 years old) in China compared to 
the younger population. Similar findings have been reported in several 
provincial and municipal areas across the country (25–28). This 
phenomenon can be attributed to two main factors. Firstly, policy 
measures play a crucial role. The Chinese government has led 
initiatives to implement health education programs on TB among 
children and adolescents in schools, maintain school environmental 
hygiene, and improve timely reporting mechanisms for TB cases (29). 
These measures effectively reduce the incidence of TB among the 

younger population. Secondly, the older adult population is more 
susceptible to TB due to their higher prevalence of underlying health 
conditions and weakened immune systems. This vulnerability 
increases their susceptibility to TB infection and raises the risk of 
reinfection (30–32). Current tuberculosis prevention and treatment 
policies should prioritize the older adult population by effectively 
raising TB awareness through educational outreach. Efforts should 
include BCG vaccine supplementation and the promotion of healthy 
lifestyles to boost immunity, ultimately helping to prevent TB 
transmission among older adults. Based on the results of cluster and 
time-series analyses, we  observed regional characteristics in the 
spatiotemporal distribution of TB cases in China. Guizhou province, 
situated in mountainous areas, significantly lags behind Shanghai in 
terms of economic development. However, both Guizhou and 
Shanghai fall under Cluster (M) 5 regarding the trend of PTB 
mortality rates, showing a fluctuating downward trend within the 
range of 0.2/100,000 to 0.8/100,000. This fluctuating downward trend 
aligns with the global, European Region, and African Region trends 
reported in the Global Tuberculosis Report 2023 (1). Current research 
highlights that economic development levels and policy differences 
are crucial factors influencing the burden of PTB (33, 34). This 
suggests that the China Global Fund Tuberculosis Control Project, 
initiated and led by the Guizhou provincial government in 2003, 
played a pivotal role in controlling the spread of PTB within the 
province (35). The project proposes nine prevention and control 
measures to address the current situation and priorities of drug-
resistant tuberculosis prevention and control in Guizhou Province. 
These measures encompass targeted strategies across the entire disease 
process, including screening, diagnosis, treatment, and prevention of 
drug-resistant TB. Additionally, practical preventive actions are 
recommended from the perspectives of patients, healthcare workers, 
and research experts. All of these efforts contribute to a more targeted 
approach to preventing and controlling the transmission of 

FIGURE 4

Clustering of tuberculosis incidence and mortality time series analysis mainland China across provinces, 2004–2018. (A) Incidence rate; (B) Morality 
rate. *Cluster(I) represents the clustering results of morbidity: (1) fluctuates in 140–310 with a continuous upward trend, (2) fluctuates in 120–190 with 
a single-peaked change, (3) fluctuates in 70–140 with a continuous upward trend, (4) fluctuates in 50–130 with a continuous downward trend, 5 
fluctuates in 140–310 with a continuous upward trend, 6 fluctuates in 70–150 with a continuous downward trend Cluster(M) represents the clustering 
results of mortality: 1 fluctuates between 0 and 2.5 and fluctuates upwards, 2 fluctuates between 0 and 1.25 and fluctuates downwards with multiple 
peaks, 3 fluctuates between 0.2–0.7 and fluctuates “U” shaped with multiple peaks, 4 fluctuates between 0.1–0.5 and fluctuates upwards 0.5 and 
fluctuating upward trend, 5 fluctuating 0.2–0.7 and fluctuating downward trend, 6 fluctuating 0.05–0.5 and multi-peaked fluctuating trend.
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drug-resistant TB. Additionally, the time-series clustering of incidence 
rates in Tibet and Qinghai Province placed them in the same Cluster 
(I)3, indicating a continuous upward trend. This may be due to the fact 
that the residents in these regions are primarily herders with relatively 
low literacy levels and limited economic means, preventing them from 
accessing local healthcare services. This situation leads to the 
continued spread of PTB, impacting its prevention and control efforts 
(34). Tibet and Qinghai can draw on Guizhou Province’s TB 
prevention and control policies and update existing TB prevention 
and control measures by taking into account the specific characteristics 
of their populations. Local health departments should focus on the 
older adult population. Overall, the level of economic development 
significantly influences the clustering of TB morbidity and mortality. 
This influence stems from the direct impact of regional economic 
conditions on local income levels, healthcare services, and living 

conditions, which in turn causes differences in the number of TB 
diagnoses and cures. Particularly in economically underdeveloped 
regions, the prevalence of TB is exacerbated by a higher concentration 
of individuals with limited education. These individuals often lack 
awareness about tuberculosis and are less likely to seek treatment in 
more developed areas. Additionally, the local medical infrastructure 
in these regions is often inadequate, failing to effectively control the 
spread of the disease, thereby increasing TB incidence. Furthermore, 
people in economically disadvantaged areas are more likely to be in 
close contact with live animals and livestock, a known risk factor for 
TB transmission. This factor further contributes to the higher 
concentration of TB cases in these economically less developed 
regions to some extent.

From 2004 to 2018, the number of PTB cases in Xinjiang showed 
a gradual increase and was significantly higher than the national 

FIGURE 5

Projection incidence (A) and mortality (B) of pulmonary tuberculosis in mainland China in 2030.
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average. One possible reason for this trend is that Xinjiang has 
implemented a series of measures to screen for cases and control PTB 
outbreaks. By the end of 2010, Xinjiang’s DOTS coverage had reached 
100%, and in 2013 it was the first province in the country to implement 
a new “trinity” model of TB control services. This model includes 
policies such as “centralized isolation treatment for infected patients 
and home treatment for non-infected patients, such as centralized 
medication + nutritious breakfast” (24). Although the number of TB 
cases appears to be  increasing, this is actually a reflection of the 
continuous improvement in the TB reporting system, which should 
be maintained. Lessons can be drawn from Guizhou Province, which 
not only implements effective health policies within the province for 
TB prevention and control but also actively learns from more 
developed regions. For instance, Guizhou has invited experts from 
cities like Shanghai to provide scientific lectures and has adopted 
successful prevention and control strategies from Shanghai, such as 
enhancing the TB reporting system and ensuring timely follow-up for 
individuals infected with tuberculosis bacilli. National epidemiological 
surveys on tuberculosis should be conducted regularly to identify 
provinces with notable success in TB prevention and control. 
Promoting these best practices across provinces, increasing 
opportunities for interprovincial learning and exchange, and 
improving collaboration will ultimately enhance the overall efficiency 
of TB prevention and control efforts.

Using ARIMA model projections, we found an upward trend in 
TB mortality in mainland China since 2015. This trend is influenced 
by several factors. Firstly, there has been an increase in the burden of 
drug-resistant TB, with approximately 450,000 new cases of 
rifampicin-resistant TB reported in 2021 (36). Secondly, the impact of 
the COVID-19 pandemic led to the suspension of TB case reporting 
in 2021, potentially setting back TB control efforts by 8 years in 
achieving the goal of ending TB by 2030 (37). Pandemics have been 
shown to impact TB case reporting and treatment outcomes. Both TB 
and COVID-19 tests are more likely to yield false-negative results in 
a TB pandemic setting (38). Both diseases require better samples with 
independence to improve diagnostic precision and accuracy. Airborne 
and aerosol-based transmission are the primary modes of spread for 
both SARS-CoV-2 and Mycobacterium tuberculosis. Additionally, 
COVID-19 worsen the TB disease burden by increasing pulmonary 
disability and lung damage (39). To enhance positive case 
identification, numerous studies have conducted geospatial analyses 
to delineate the distribution of TB cases (40, 41). While TB is 
frequently prevalent in low-income areas and regions with inadequate 
sanitation, higher disease prevalence is often observed among 
individuals without stable residency status, including refugees, asylum 
seekers, and ordinary migrants (42). Infectious disease surveillance 
among incoming mobile populations should be  enhanced, with 
consistent registration, screening, and testing for tuberculosis 
infection. The implementation of closure control policies due to the 
pandemic may have added complexity to the actual TB disease burden 
in mainland China, necessitating further investigation.

This research is subject to several potential limitations related to 
the dataset and clustering algorithms. Firstly, while the National 
Population and Health Scientific Data Sharing Platform provides 
high-quality data, it lacks comprehensive personal information about 
patients. This limitation prevents the analysis of certain demographic 
characteristics, such as gender and occupation, which are significant 
factors influencing TB distribution. Additionally, because the 

platform’s data is not updated to the most recent year, only 
retrospective studies can be conducted, introducing potential selection 
bias. Limitations in the inclusion criteria for new cases further 
constrain the study. On the algorithmic side, the DTW algorithm also 
presents limitations. It requires substantial computational resources, 
particularly when handling large datasets, and it focuses solely on the 
similarity between two sequences, without incorporating actual 
geographic information (16). These factors contribute to the study’s 
limitations. Firstly, PTB cases reported through the direct network 
reporting of infectious diseases may be subject to data bias due to 
variations in TB diagnostic capacity and healthcare provider practices. 
Secondly, our analysis was conducted at the provincial level, which 
may result in some level of data aggregation or disaggregation due to 
geographical scale effects. Thirdly, due to constraints in data collection, 
we  were unable to explore in depth the etiological relationship 
between TB and risk confounding variables such as socioeconomic 
and environmental factors through multivariate analyses. However, 
despite these limitations, this study underscores the critical 
importance of PTB regulation. In the future, the prevention and 
treatment of tuberculosis will usher in a new phase of challenges in 
the post-epidemic era, necessitating both traditional, proven methods 
such as vaccination and the timely adaptation of prevention and 
treatment policies to more effectively achieve the World Health 
Organization’s (WHO) goal of eliminating tuberculosis. To support 
these objectives, research should prioritize two main areas: first, 
evaluating intervention effectiveness through health economics to 
identify the most impactful strategies, and second, leveraging 
advancements in artificial intelligence to develop efficient surveillance 
tools that can pinpoint high-risk areas and populations. This approach 
will enable a more responsive infectious disease system at all levels, 
facilitating the rapid detection of potential infection sources and the 
swift implementation of preventive and control measures to reduce 
transmission risks.

5 Conclusion

While China’s TB incidence continues to decline steadily, the 
burden remains significant, particularly due to regional inequalities 
and a concentration of cases among the older adult. These findings 
underscore the urgent need to enhance protective and preventive 
measures, along with intensified TB-related awareness campaigns and 
educational initiatives, to align with the World Health Organization’s 
milestones for TB control in China.
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