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Background: Influenza is a respiratory infection that poses a significant 
health burden worldwide. Environmental indicators, such as air pollutants and 
meteorological factors, play a role in the onset and propagation of influenza. 
Accurate predictions of influenza incidence and understanding the factors 
influencing it are crucial for public health interventions. Our study aims to 
investigate the impact of various environmental indicators on influenza 
incidence and apply the ARIMAX model to integrate these exogenous variables 
to enhance the accuracy of influenza incidence predictions.

Method: Descriptive statistics and time series analysis were employed to 
illustrate changes in influenza incidence, air pollutants, and meteorological 
indicators. Cross correlation function (CCF) was used to evaluate the correlation 
between environmental indicators and the influenza incidence. We used ARIMA 
and ARIMAX models to perform predictive analysis of influenza incidence.

Results: From January 2014 to September 2023, a total of 21,573 cases of 
influenza were reported in Fuzhou, with a noticeable year-by-year increase 
in incidence. The peak of influenza typically occurred around January each 
year. The results of CCF analysis showed that all 10 environmental indicators 
had a significant impact on the incidence of influenza. The ARIMAX(0, 0, 1) (1, 
0, 0)12 with PM10(lag5) model exhibited the best prediction performance, as 
indicated by the lowest AIC, AICc, and BIC values, which were 529.740, 530.360, 
and 542.910, respectively. The model achieved a fitting RMSE of 2.999 and a 
predicting RMSE of 12.033.

Conclusion: This study provides insights into the impact of environmental 
indicators on influenza incidence in Fuzhou. The ARIMAX(0, 0, 1) (1, 0, 0)12 with 
PM10(lag5) model could provide a scientific basis for formulating influenza 
control policies and public health interventions. Timely prediction of influenza 
incidence is essential for effective epidemic control strategies and minimizing 
disease transmission risks.
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1 Introduction

Influenza, a widely prevalent respiratory infection, exerts a 
substantial impact on the health of millions of people worldwide each 
year, leading to severe morbidity and occasional deaths (1). While, like 
other respiratory infections, influenza is typically most prevalent 
during the winter and spring seasons, recent reports have illuminated 
a noteworthy surge in summer influenza cases (2). This emerging 
trend presents fresh challenges for health authorities and influenza 
surveillance efforts. The onset and propagation of influenza are 
influenced by a multitude of factors, including environmental 
indicators such as air pollutants (3) and meteorological factors (4). 
Therefore, it is of paramount importance to attain accurate predictions 
of influenza incidence and develop a thorough understanding of the 
factors that influence it.

Timely prediction of infectious diseases is essential to maintaining 
and improving public health (5). It helps the government to formulate 
and implement effective epidemic control strategies, ensuring the 
availability of adequate medical resources and healthcare personnel, 
thereby minimizing the risk of disease transmission. Currently, 
various methods are employed for predicting infectious diseases, 
encompassing infectious disease dynamics model (6), logistic 
regression model (7), gray prediction theory (8, 9), ARIMA model 
(10–12), Prophet model (13), Holt-Winters model (14), and LSTM 
models (15). Each of these methods possesses its own set of advantages 
and drawbacks. Notably, the ARIMA model stands out in its ability to 
accurately identify the seasonality and trends of infectious diseases. 
For instance, Wu et al. utilized the ARIMA method to forecast the 
incidence of pulmonary tuberculosis under the regular COVID-19 
epidemic prevention and control measures in China (16). Ahn et al. 
(17) effectively applied the ARIMA model to anticipate the incidence 
of rheumatic diseases during the COVID-19 pandemic in Korea. 
While previous studies have extensively delved into the prediction of 
infectious diseases, researchers often overlook the potential impacts 
of air pollution and meteorological factors on infectious diseases. 
There exists a certain degree of correlation between environmental 
indicators and the incidence of infectious diseases (18, 19). Thus, the 
inclusion of environmental indicators in the predictive model for 
infectious diseases is anticipated to enhance the accuracy of 
predictions to some extent.

In recent years, the incidence of influenza in Fuzhou has been 
increasing year by year, adding to the challenges of disease prevention 
and treatment. Notably, in 2023, during a spring peak in Fuzhou, the 
monthly reported cases of influenza reached 2,749, marking the 
highest number reported in a single month over the past decade. 
Therefore, the analysis of factors influencing influenza incidence and 
the provision of corresponding predictions and early warnings are 
crucial for the development of effective prevention and 
control strategies.

Our study initiated an analysis of the impact of environmental 
indicators, including air pollution and meteorological factors, on 
influenza incidence. It then developed an optimal ARIMA model 
based on influenza incidence data. Subsequently, to enhance 
prediction accuracy, environmental indicators were systematically 
introduced into the optimal ARIMA model, leading to the 
establishment of the ARIMAX model. Finally, we selected the optimal 
ARIMAX model for the prediction analysis of influenza incidence 
in Fuzhou.

2 Materials and methods

2.1 Study area and data sources

Fuzhou, situated in the southeast coastal area of China, serves as 
the capital city of Fujian Province and spans an area of 11,968.53 
square kilometers. As of the end of 2022, Fuzhou had a permanent 
resident population of 8.448 million. The monthly data on influenza 
cases were sourced from the Fuzhou Center for Disease Control and 
Prevention. The surveillance of influenza cases followed the criteria 
outlined by the World Health Organization and the Chinese Center 
for Disease Control and Prevention for influenza-like cases. 
Population statistics were extracted from the Fuzhou Statistical 
Yearbook. We  utilized monthly influenza incidence (per 100,000 
populations) data spanning from January 2014 to December 2022. 
This dataset was split into two subsets: a training set covering the 
period from January 2014 to December 2022, and a test set spanning 
from January 2023 to September 2023.

The monthly air pollution monitoring data used in this study 
covers the period from January 2014 to September 2023 and was 
provided by the Environmental Monitoring Center under the 
Environmental Protection Administration of Fuzhou. The air 
pollutants included particulate matter 2.5 μm (PM2.5), particulate 
matter 10 μm (PM10), sulfur dioxide (SO2), carbon monoxide (CO), 
nitrogen dioxide (NO2), and ozone (O3). Simultaneously, the monthly 
meteorological data for the same period were procured from the 
Fuzhou Meteorological Bureau, encompassing meteorological factors 
such as monthly average temperature (°C), monthly maximum 
temperature (°C), monthly minimum temperature (°C), and monthly 
average wind speed (m/s). The monitoring data for the above 
environmental indicators was obtained with authorization from the 
Fuzhou Environmental Protection Bureau and the Fuzhou 
Meteorological Bureau.

2.2 Construction of the seasonal ARIMA 
model

Autoregressive Integrated Moving Average Model (ARIMA) is a 
widely-used method for the analysis and prediction of time series data 
(20). It finds applications in forecasting infectious diseases like 
varicella (21), tuberculosis (22), and COVID-19 (23). The 
fundamental concept underlying ARIMA model is to utilize historical 
data to make future predictions. ARIMA model is primarily 
composed of three components: Autoregressive (AR), Integration (I), 
and Moving Average (MA). For time series data exhibiting periodic 
patterns, the Seasonal Autoregressive Integrated Moving Average 
Model (SARIMA) combines seasonal differencing with the standard 
ARIMA model, making it well-suited for modeling data with 
recurring characteristics.

In our study, we  developed a SARIMA model denoted as 
ARIMA(p, d, q) (P, D, Q)s, where p signifies the AR order, d stands for 
the differencing order and q represents the MA order. Meanwhile, s 
indicates the period of seasonal trend, while P, D and Q correspond to 
the seasonal terms within the SARIMA model. The determination of 
these parameters, (p, d, q) and (P, D, Q), is achieved through an 
analysis of the Partial Autocorrelation Function (PACF) and the 
Autocorrelation Function (ACF). The choice of the parameter s 
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depends on the length of the seasonal cycle. The seasonal model can 
be mathematically represented as follows:

 
( ) ( ) ( ) ( )˜˜φ φ θ θ ε∗ =s s

Qp t q tpB B y B B
 

(1)

In Equation 1, φp B( ) represents a non-seasonal autoregressive lag 

polynomial, ( )˜φ s
p B  represents seasonal moving average lag 

polynomial, θq B( ) represents seasonal moving average lag polynomial. 
To ensure the stability of our time series, we initially applied differencing, 
a crucial step in the analysis. We then conducted an augmented Dickey–
Fuller (ADF) test to verify the temporal stability of the series. 
Subsequently, we employed the corrected Akaike’s information criterion 
(AICc) to assess the goodness of fit of the SARIMA model, with the 
model associated with the lowest AICc value considered the optimal 
choice. Finally, we conducted the Ljung–Box test to ascertain whether 
the residual sequence of the model exhibited characteristics of white 
noise. If the p-value is greater than 0.05, the model satisfies the test’s 
criteria and can be employed for predictive analysis.

2.3 Construction of the ARIMAX model

ARIMAX model, which incorporates exogenous variables related 
to the target time series as input variables, builds upon the foundation 
of the ARIMA model to enhance prediction accuracy (24). The 
primary objective of the ARIMAX model is to capture trends and 
seasonal fluctuations within time series data by amalgamating 
autoregressive, differencing, moving average components, and 
exogenous variables, thereby offering precise predictions and robust 
analytical capabilities. In contrast to the ARIMA model, the ARIMAX 
model takes into account exogenous variables that are associated with 
the time series data. These exogenous variables can encompass other 
time series data or non-time series data, such as environmental 
indicators (25, 26) and government policies (27). The role of 
exogenous variables is to furnish additional information that aids in 
refining model fitting and prediction accuracy.

In this study, we  developed an ARIMAX model for each 
exogenous environmental variable using data from six air pollutants 
and four meteorological factors. Our approach consisted of three main 
steps: Initially, we conducted the cross-correlation function (CCF) to 
assess the time-delay correlation between different variables and 
influenza incidence. Subsequently, we  integrated significant 
environmental indicators as exogenous variables into the optimal 
ARIMA model, thereby creating alternative ARIMAX models. Finally, 
we selected the best-fitting ARIMAX model based on three criteria: 
(a) the Akaike Information Criterion (AIC), Corrected Akaike 
Information Criterion (AICc), Bayesian Information Criterion (BIC), 
Root mean squared error (RMSE) values are smaller than the optimal 
ARIMA model; (b) the degree that the residual sequence of the model 
is white noise by Ljung-Box test; (c) the model’s performance in 
predicting influenza incidence in 2023.

The primary innovation of our study lies in the integration of 
environmental indicators into the ARIMAX framework. By 
incorporating exogenous variables related to influenza incidence, 
we can gain a more comprehensive understanding of the multifaceted 
factors influencing disease transmission. This approach not only 

improves the accuracy of our predictions but also provides valuable 
insights for public health interventions. Furthermore, we employ 
advanced model selection criteria, such as the corrected AICc, to 
ensure optimal model fitting. Through these enhancements, our 
research contributes a novel perspective to the application of 
ARIMA models in the field of epidemiology, demonstrating their 
adaptability and relevance in addressing contemporary public 
health challenges.

2.4 Statistical methods

Descriptive statistics were employed to illustrate changes in 
influenza incidence, air pollutants and meteorological factors. Time 
series plots (line plots) were utilized to visualize their temporal 
distribution. The cross-correlation function (CCF) was used to 
evaluate the lag effect of environmental influencing factors. For the 
development of ARIMA and ARIMAX models, as well as data 
visualization, we  utilized the R packages “forecast,” “stats,” and 
“ggplot2” in R (version 4.2.1, The R Foundation). The significance 
level was set at 0.05.

2.5 Ethical approval and consent to 
participate

We obtained ethical approval from the Ethical Review Committee 
of the Fuzhou Center for Disease Control and Prevention (Approval 
No. IRB2020008) to conduct a secondary analysis of aggregated data 
collected by the Fuzhou CDC, China. The informed consent 
requirement was waived by the Ethical Review Committee of the 
Fuzhou Center for Disease Control and Prevention for this study. This 
study was carried out following the Helsinki Declaration contents.

3 Results

From January 2014 to September 2023, a total of 21,573 cases of 
influenza were reported in Fuzhou, with an incidence rate of 
2.228 ± 4.593 (as shown in Table 1). The highest number of cases was 
recorded in June 2023, with 2,749 reported cases. Analysis of the time 
series chart of influenza incidence reveals that the peak of influenza 
cases typically occurs around January each year. Overall, there is a 
noticeable year-by-year increase in influenza incidence (as depicted 
in Figure 1).

Upon reviewing the data from the past few years, it becomes 
evident that nearly every winter is marked by severe air pollution in 
Fuzhou. Simultaneously, there is a notable increase in the incidence of 
influenza. Overall, the concentrations of all other five air pollutants, 
with the exception of O3, exhibit a consistent downward trend, as 
illustrated in Figure 2. The mean concentrations of PM2.5, PM10, SO2, 
CO, NO2, and O3 were 24.160, 45.620, 5.479, 0.660, 24.060, and 
88.260 μg/m3, respectively.

During the study period, the time series of meteorological factors 
exhibited a strong cyclical and seasonal pattern overall, with peak 
values occurring during the summer and troughs observed in the 
winter (as depicted in Figure 3). The mean values of the monthly 
average temperature, maximum temperature, minimum temperature 
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FIGURE 1

Time series of influenza incidence in Fuzhou from January 2014 to September 2023.

and average wind speed were 19.893, 23.600, 16.182, and 6.762 m/s, 
respectively.

We investigated the lagged relationship between 10 environmental 
indicators and influenza incidence using cross-correlation analysis. As 
illustrated in Table 2, SO2, CO, NO2, average temperature, maximum 
temperature, and minimum temperature exhibited direct and 
statistically significant associations with influenza incidence, while the 
lag variables for the other three environmental indicators also 
displayed significant associations with influenza incidence.

To begin with, it is imperative to establish an optimal ARIMA 
model for predicting influenza incidence in Fuzhou. Prior to 
modeling, we conducted an ADF test to assess the stability of both 
influenza incidence and 10 environmental indicators, aiming to 
ascertain if differential processing was necessary. All p-values from the 
tests were found to be  less than 0.05, signifying the data were 

stationary and did not need to be differential processed. Consequently, 
we conclude that the parameters d and D in the ARIMA(p, d, q) (P, D, 
Q)s model were both 0. Given that our predictive models were 
constructed using influenza incidence data spanning January 2014 to 
December 2022, we decomposed the data into trend, season, and 
random items. The influenza time series showed an upward trend. 
Meanwhile, this analysis also revealed a pronounced seasonality in 
influenza incidence data, characterized by a seasonal period of 12 
(refer to Figure  4). Consequently, the parameter s of the ARIMA 
model was set at 12, and the model can be expressed as ARIMA(p, 0, 
q) (P, 0, Q)12.

We developed the model using data from the training set (January 
2014 to December 2022) and assessed the prediction performance of 
the model using the test set data (January 2023 to September 2023). 
To determine the values of the remaining ARIMA model parameters 

TABLE 1 The descriptive statistics of the monthly influenza incidence and environmental indicators in Fuzhou, 2014–2023.

Variable Range Mean  ±  S.D. P25 P50 P75 IQR

Incidence (/100, 000) 0.236–32.540 2.228 ± 4.593 0.645 0.974 1.845 1.200

Average temperature (°C) 9.528–30.000 19.893 ± 6.114 13.926 20.000 25.831 11.905

Maximum temperature (°C) 12.050–35.000 23.600 ± 6.346 17.540 23.140 29.230 11.690

Minimum temperature (°C) 6.291–25.000 16.182 ± 5.923 10.059 16.390 21.960 11.901

Average wind speed (m/s) 4.300–9.681 6.762 ± 0.985 6.112 6.700 7.336 1.224

PM2.5 (μg/m3) 12.000–56.000 24.160 ± 7.912 18.000 23.000 29.000 11.000

PM10 (μg/m3) 23.000–89.000 45.620 ± 12.901 36.000 44.000 53.000 17.000

SO2 (μg/m3) 3.000–16.000 5.479 ± 1.827 4.000 5.000 6.000 2.000

CO (mg/m3) 0.326–1.165 0.660 ± 0.142 0.577 0.668 0.735 0.158

NO2 (μg/m3) 8.000–52.000 24.060 ± 8.915 17.000 23.000 30.000 13.000

O3 (μg/m3) 45.000–130.000 88.260 ± 18.542 75.000 87.000 102.000 27.000
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p, q, P, and Q, we generated ACF and PACF plots based on the training 
set data. The plots for ACF and PACF reveal the temporal dependence 
of influenza incidence, with maximum autocorrelation and partial 
correlation coefficients observed at lags 0 (refer to Figure 5).

Through the analysis of the ACF and PACF plots of the original 
time series, it can be determined that the remaining parameters p, 
q, P, and Q of the ARIMA model should be 0, or 1. To automatically 
identify the model order of the ARIMA model, we used the auto.
arima function from the “forecast” package to select a total of 13 
alternative models (Table  3). Finally, the optimal model was 
identified as ARIMA(0, 0, 1) (1, 0, 0)12, boasting the lowest AIC, 
AICc, and BIC values, which stood at 552.910, 553.303, and 563.640, 
respectively. Additionally, the Ljung–Box test confirmed that the 
residual sequence resembles white noise (p > 0.05). The ARIMA(0, 
0, 1) (1, 0, 0)12 model excelled in both fitting and predicting 
influenza incidence. When applied to the training set, the model 
yielded the fitting RMSE of 3.002; the model was employed to 
predict influenza incidence in the test set, achieving the predicting 
RMSE of 12.475.

To investigate the potential influence of environmental 
indicators, such as air pollutants and meteorological factors, on 

influenza incidence, we  systematically integrated these 
environmental indicators one by one into the ARIMA(0, 0, 1) (1, 0, 
0)12 model to formulate an optimal ARIMAX model. We integrated 
the maximum lag correlation variables for each environmental 
indicator into the ARIMA(0, 0, 1) (1, 0, 0)12 model, thus creating 10 
distinct ARIMAX models. The Ljung–Box test was employed to 
assess these 10 models, and results indicated that the residual 
sequences of the models exhibited white noise characteristics (All 
p > 0.05).

Based on the outcomes summarized in Table 4, it was determined 
that the ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) model had the 
lowest AIC, AICc, and BIC values, signifying superior fitting accuracy 
and suitability for predicting influenza incidence in Fuzhou. During 
the model-fitting phase using the training aset, this ARIMAX model 
achieved a RMSE of 2.999. When applied to forecast influenza 
incidence in the test set, the model had an RMSE of 12.033.

Figure 6 graphically presents the fitting and predictive results of 
influenza incidence rates based on the ARIMAX(0, 0, 1) (1, 0, 0)12 with 
PM10(lag5) model. These results demonstrate the efficacy of the 
ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) model in accurately 
forecasting influenza incidence in Fuzhou. Notably, the model 

FIGURE 2

Time series of the six air pollution variables from January 2014 to September 2023.

https://doi.org/10.3389/fpubh.2024.1441240
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zheng et al. 10.3389/fpubh.2024.1441240

Frontiers in Public Health 06 frontiersin.org

displayed commendable fitting accuracy in both the training and 
test sets.

4 Discussion

Influenza is a respiratory viral disease caused by the influenza 
virus (28). It typically manifests with acute respiratory symptoms, but 
for individuals with weaker immune systems, such as the young, the 
older adults, or those with compromised immunity, influenza can lead 
to more severe complications even life-threatening outcomes (2). Over 
the past decade, Fuzhou has witnessed a notable surge in the incidence 
of influenza, indicating a critical influenza epidemic. Hence, 
investigating the factors influencing influenza incidence is crucial for 
the evidence-based development of influenza control policies and the 
implementation of timely public health interventions.

In 2022, the winter flu peak did not occur in Fuzhou, primarily 
attributed to the outbreak of COVID-19 and the strict epidemic 
prevention and control measures implemented, including the 
complete suspension of in-room dining and the promotion of remote 
work. These measures effectively reduced interpersonal contact, 
thereby mitigating the spread of influenza. The proactive interventions 
in response to the COVID-19 outbreak in Fuzhou had a positive 
impact on curbing the high incidence of influenza. However, China 
removed many restrictive COVID-19 prevention and control 
measures after January 8, 2023. It resulted in a rapid increase in 
COVID-19 infections and necessitated home-based treatments for 
many citizens, contributing to a partial reduction in the spread of 
influenza. These observations underscore the need for in-depth 
analysis in future studies to understand the specific mechanisms and 
long-term trends of various public health interventions on 
influenza transmission.

FIGURE 3

Time series of the meteorological factors (monthly average temperature, monthly maximum temperature, monthly minimum temperature, monthly 
average wind speed) from January 2014 to September 2023.

TABLE 2 The correlation coefficients and maximum lag correlation coefficients between influenza incidence and environmental indicators.

PM2.5 PM10 SO2 CO NO2 O3

Corr-Coef −0.018 −0.070 −0.183* −0.220* −0.183* −0.006

Max lag Corr-Coef −0.266* −0.291* −0.184* −0.326* −0.259* 0.238*

Its lag order (Max) 5 5 1 4 4 3

Ave.temp Max.temp Min.temp Ave.ws

Corr-Coef −0.053* −0.051* −0.054* −0.240

Max lag Corr-Coef 0.211* 0.225* 0.195* −0.290*

Its lag order (Max) 3 3 3 2

*p < 0.05; Ave.temp, average temperature; Max.temp, maximum temperature; Min.temp, minimum temperature; Ave.ws, average wind speed.
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During the period from 2022 to 2023, Fuzhou experienced 
consecutive summer influenza peaks, with a higher number of 
reported cases in both years. Apart from the conducive climate 
conditions of high temperature and humidity during summer, which 
potentially facilitate the transmission of the influenza virus, the 
reasons behind the summer influenza peaks in the 2 years might 
be different, contingent upon the contextual circumstances prevailing 
at the time.

In 2022, amidst a significant influenza pandemic, Fuzhou 
encountered no COVID-19 outbreak in June 2022, and residents 
reduced their mask-wearing behavior due to hot weather 
conditions. Concurrently, with medical resources extensively 
allocated for monitoring and treating respiratory diseases during 
the influenza pandemic, this likely resulted in intensified 
surveillance and reporting of influenza cases. During June to July 
2023, the emergence of a summer influenza peak in Fuzhou may 

FIGURE 4

The data of influenza incidence in Fuzhou were decomposed into trend part, seasonal part and random part.

FIGURE 5

The ACF and PACF charts for influenza incidence data from January 2014 to December 2022.
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be  associated with China’s relaxation of numerous restrictive 
COVID-19 control measures, such as mask-wearing and avoidance 
of crowded places, effective from January 8, 2023. Subsequently, 
residents’ immune systems may have weakened. During the 
COVID-19 pandemic, heightened attention to personal protection 
and hygiene practices might have reduced exposure of the immune 
system to common viruses. Following the easing of restrictions, 
resumption of social activities may have diminished the immune 
system’s resistance to the influenza virus, thereby precipitating its 
outbreak. Moreover, there was a notable increase in social 
gatherings. Post-lockdown, individuals likely resumed more social 
and congregational activities such as dining, gatherings, and 
tourism. Such congregation could have facilitated the spread of the 
influenza virus, contributing to the peak in influenza cases. Finally, 
the relaxation of healthcare resource pressures could also have 
played a role. During the COVID-19 pandemic, medical resources 
were primarily directed toward combating the outbreak, 
potentially leading to neglect in the prevention and control of 

other diseases. Post-lockdown, while healthcare resources might 
have eased, reduced vigilance toward COVID-19 may have led to 
diminished attention and control measures for influenza, thereby 
fostering its transmission.

There have been many previous studies have demonstrated the 
association between various diseases and environmental indicators, 
including diseases like dengue fever (29, 30), COVID-19 (31–33), 
and tuberculosis (34). In the case of influenza, environmental 
indicators can influence the occurrence of influenza epidemics 
through factors such as the variation and transmission of influenza 
virus and the immune status of the population (35). The Cross-
Correlation Function (CCF) measures the correlation between two 
variables at different time lags, making it particularly well-suited for 
analyzing lagged effects and time-delayed relationships between 
variables. Additionally, as the impact of environmental indicators 
may exhibit a time lag in disease incidence (36, 37), we investigated 
the lagged correlation between influenza incidence and these 
environmental indicators.

Our analysis revealed that most of the lagged air pollution 
variables exhibited a negative association with influenza incidence. 
This implies that as air pollution levels increase, the incidence of 
influenza tends to decrease. This negative correlation can, in part, 
be attributed to the adverse impact of severe air pollution on the 
human immune system, thereby increasing the risk of infectious 
diseases (38). However, the manifestation of this weakened 
immune system in terms of influenza incidence may not 
be immediately evident and could require some time to become 
apparent. This phenomenon might also be  linked to public 
awareness of declining air quality. Following the perception of 
deteriorating air quality, individuals may have adopted proactive 
protective measures, including reducing outdoor activities and 
wearing face masks to mitigate their exposure to air pollution (39). 
These self-protective behaviors could contribute to a reduction in 
the likelihood of influenza virus transmission, consequently 
lowering the incidence of influenza. Moreover, it’s essential not to 
overlook the impact of the COVID-19 pandemic in recent years. 
From 2019 to 2022, widespread mask-wearing in public to prevent 
COVID-19 not only effectively curtailed the spread of the novel 
coronavirus but also had the side effect of reducing the 

TABLE 3 Parameters and AICc of the alternative ARIMA models.

Alternative ARIMA model AICc

ARIMA(2,0,2) (1,0,1)12 Inf

ARIMA(1,0,0) (1,0,0)12 554.387

ARIMA(0,0,1) (0,0,1)12 553.402

ARIMA(0,0,1) (1,0,1)12 555.492

ARIMA(0,0,1) (0,0,2)12 555.519

ARIMA(0,0,1) (1,0,0)12 553.303

ARIMA(0,0,1) (2,0,0)12 555.493

ARIMA(0,0,1) (2,0,1)12 Inf

ARIMA(0,0,0) (1,0,0)12 562.445

ARIMA(1,0,1) (1,0,0)12 555.499

ARIMA(0,0,2) (1,0,0)12 555.499

ARIMA(1,0,2) (1,0,0)12 Inf

ARIMA(0,0,1) (1,0,0)12 560.726

The bold values represent the best performing models and parameters. Inf, Infinity.

TABLE 4 The performance of the ARIMA(0, 0, 1) (1, 0, 0)12 and 10 ARIMAX models.

Model Variable MA(1) SAR(1) AIC AICc BIC

ARIMA(0,0,1) (1,0,0)12 0.503* 0.387* 552.910 553.300 563.640

ARIMA(0,0,1) (1,0,0)12 with PM2.5(lag5) −0.048* 0.516* 0.401* 533.560 534.170 546.730

ARIMA(0,0,1) (1,0,0)12 with PM10(lag5) −0.068* 0.520* 0.426* 529.740 530.360 542.910

ARIMA(0,0,1) (1,0,0)12 with SO2(lag4) −0.084* 0.500* 0.387* 550.580 551.180 563.950

ARIMA(0,0,1) (1,0,0)12 with NO2(lag4) −0.083 0.499* 0.388* 535.580 536.190 548.800

ARIMA(0,0,1) (1,0,0)12 with CO(lag4) −4.254 0.503* 0.399* 536.560 537.170 549.780

ARIMA(0,0,1) (1,0,0)12 with O3(lag3) 0.031 0.515* 0.396* 539.990 540.600 553.260

ARIMA(0,0,1) (1,0,0)12 with Ave.temp(lag3) 0.007* 0.519* 0.400* 542.630 543.240 555.900

ARIMA(0,0,1) (1,0,0)12 with Max.temp(lag3) 0.023* 0.516* 0.397* 542.550 543.160 555.820

ARIMA(0,0,1) (1,0,0)12 with Min.temp(lag3) −0.012* 0.524* 0.405* 542.620 543.220 555.890

ARIMA(0,0,1) (1,0,0)12 with Ave.ws(lag2) −0.067 0.521* 0.387* 546.680 547.280 560.000

*P < 0.05; Ave.temp, average temperature; Max.temp, maximum temperature; Min.temp, minimum temperature; Ave.ws, average wind speed. The bold values represent the best performing 
models and parameters.
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transmission of influenza (40). Interestingly, our analysis showed 
a positive association between the third-order lagged variable of 
O3 and influenza incidence. This positive correlation may 
be  attributed to high concentrations of O3 inducing lung 
inflammation (41), which weakens the immune system and 
heightens susceptibility to infections. Furthermore, O3 might also 
influence the pathogen’s transmission mode, potentially rendering 
it more prone to airborne transmission.

The analysis revealed that influenza incidence demonstrated a 
negative association with three distinct temperature variables, 
indicating that the higher the temperature, the lower the influenza 
incidence. The intricacies of this relationship become more 
pronounced when accounting for the temperature’s delayed effects. 
The third-order lagged temperature variable demonstrated a 
significant positive correlation with influenza incidence. This 
observed pattern could be  indicative of the seasonal pattern of 
influenza virus transmission, further complicated by temperature’s 
influence on human behavior and immune responses. The 
transmission of the influenza virus may exhibit nuanced seasonal 
variations, influenced by changing atmospheric temperatures (42). 
While increasing temperatures generally correlate with reduced 
influenza incidence, the full manifestation of this trend may 
experience delays due to the time-sensitive nature of human 
immune and behavioral adjustments. This suggests that 
people may still be  at risk of spreading the flu virus for some 
time after the temperatures rise. Notably, behavioral patterns 
also shift in response to seasonal temperature changes. During 
warmer periods, increased outdoor activities and social 
interactions could inadvertently amplify influenza transmission 
risks, potentially leading to a spike in cases as temperatures rise. 
In relation to average wind speed, while the mean value 
demonstrated no significant correlation with influenza, the 
second-order lagged wind speed showed a significant negative 
correlation with influenza incidence, indicating that wind 

speed also has a long-term lag negative correlation effect on 
influenza incidence.

We utilized time series analysis to examine the correlation 
between influenza incidence and environmental indicators in 
Fuzhou from January 2014 to September 2023. The environmental 
indicators encompassed air pollution variables (PM2.5, PM10, SO2, 
CO, NO2, and O3) and meteorological factors (mean temperature, 
minimum temperature, maximum temperature, and wind speed). 
In our study, the time series data of influenza incidence in Fuzhou 
from January 2014 to September 2023 were found to be stationary 
and exhibited seasonal distribution. However, since the model 
used in the study was able to effectively capture the seasonal 
effects, there was no need to difference the time series data of 
influenza incidence. We  also experimented with introducing 
seasonal differences in the time series data of influenza incidence; 
however, we  observed that this adjustment did not lead to an 
improvement in the model’s performance. Therefore, the data of 
influenza incidence were not processed by differencing in this 
study. First, the ARIMA(0, 0, 1) (1, 0, 0)12 model was identified as 
the most optimal ARIMA model for forecasting influenza 
incidence in Fuzhou, with AIC, AICc, and BIC values of 552.910, 
553.300, and 563.640, respectively. This model was employed to 
fit the training set, yielding a fitting RMSE of 3.002. Subsequently, 
the model was utilized for prediction analysis on the test set, 
yielding a predicting RMSE of 12.475. To enhance prediction 
accuracy, the maximum lag correlation variables of environmental 
indicators during the study period were incorporated into the 
optimal ARIMA model. The results demonstrated that the AIC, 
AICc, and BIC values of the 10 ARIMAX models, each including 
a single environmental index, were lower than those of the 
ARIMA(0, 0, 1) (1, 0, 0)12 model. This suggested that considering 
environmental indicators could enhance the predictive 
performance of the model. Comparing the AIC, AICc, and BIC 
values of all ARIMAX models, the ARIMAX(0, 0, 1) (1, 0, 0)12 with 

FIGURE 6

Chart of fitting and predicting influenza incidence based on ARIMAX (0,0,1)(1,0,0)12 with PM10.
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PM10(lag5) model had the lowest AIC, AICc, and BIC values, 
specifically 529.740, 530.360, and 542.910, respectively. Moreover, 
this model exhibited a fitting RMSE of 2.999 and a predicting 
RMSE of 12.033, both of which were superior to the optimal 
ARIMA model. The ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) 
model can be effectively employed for short-term prediction of 
influenza incidence in Fuzhou. This approach provides a 
scientifically grounded basis for formulating influenza control 
policies and public health interventions in Fuzhou.

The findings from our study suggest several implications for 
further research. Firstly, there is a need to explore the specific 
mechanisms through which environmental factors, such as air 
pollution and meteorological conditions, influence influenza 
transmission dynamics. Additionally, future studies could 
investigate the applicability of the ARIMAX model in 
different geographical contexts and for other infectious 
diseases. Expanding the dataset to include more diverse 
populations and environmental conditions could enhance the 
robustness of predictive models. Lastly, interdisciplinary research 
integrating public health, environmental science, and 
epidemiology will be  essential for developing comprehensive 
strategies to mitigate the impact of influenza and improve public 
health preparedness.

In our study, we  examined both ARIMA and ARIMAX 
modeling approaches to analyze influenza incidence in Fuzhou. 
The strengths of the ARIMA model include its simplicity and 
strong theoretical foundation, making it effective for stationary 
time series data. However, it does not account for external factors, 
which can limit its explanatory power. On the other hand, the 
ARIMAX model allows for the incorporation of exogenous 
variables, enhancing predictive accuracy and capturing lagged 
effects, which is crucial for understanding the impact of 
environmental indicators. Nevertheless, the ARIMAX model 
introduces complexity and relies heavily on the quality of data for 
the exogenous variables, which can pose challenges in 
interpretation and model validation. Ultimately, the ARIMAX 
model provided a more comprehensive analysis for our research 
questions. While the ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) 
model incorporating environmental indicators provides valuable 
insights into the relationship between these factors and influenza 
incidence, it is essential to acknowledge its limitations. Firstly, the 
model relies heavily on historical data, which may not capture 
sudden changes in environmental conditions or emerging 
infectious disease patterns. Additionally, while environmental 
indicators such as air pollution and meteorological factors are 
significant, they are not the sole determinants of influenza 
occurrence. Biological factors, human behavior, and public health 
interventions also play crucial roles. Thus, while our statistical 
analysis demonstrates a correlation, it does not imply causation, 
and the model’s predictions should be interpreted with caution. 
Therefore, while our findings suggest a potential relationship, 
further research, including controlled studies and experimental 
designs, is necessary to establish definitive causal links between 
environmental pollution factors and influenza incidence. 
Additional, future research should consider integrating biological 
and socio-economic factors to enhance the comprehensiveness of 
predictive models.

5 Conclusion

The incidence of influenza in Fuzhou has shown a significant 
increase in the past decade. Our study indicates that air pollution and 
meteorological factors exert an impact on influenza incidence, often 
exhibiting a lag effect. The ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) 
model was developed using historical data on influenza incidence and 
air pollutant levels in Fuzhou, demonstrated excellent predictive 
performance for forecasting influenza incidence. Therefore, the 
ARIMAX(0, 0, 1) (1, 0, 0)12 with PM10(lag5) model could provide a 
scientific basis for the formulation of influenza control policies and 
public health interventions in Fuzhou.
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