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Background: Machine learning is pivotal for predicting Peripherally Inserted 
Central Catheter-related venous thrombosis (PICC-RVT) risk, facilitating early 
diagnosis and proactive treatment. Existing models often assess PICC-RVT risk 
as static and discrete outcomes, which may limit their practical application.

Objectives: This study aims to evaluate the effectiveness of seven diverse 
machine learning algorithms, including three deep learning and four traditional 
machine learning models, that incorporate time-series data to assess PICC-RVT 
risk. It also seeks to identify key predictive factors for PICC-RVT using these 
models.

Methods: We conducted a retrospective multi-center cohort study involving 
5,272 patients who underwent PICC placement. After preprocessing patient 
data, the models were trained. Demographic, clinical pathology, and treatment 
data were analyzed to identify predictive factors. A variable analysis was then 
conducted to determine the most significant predictors of PICC-RVT. Model 
performance was evaluated using the Concordance Index (c-index) and the 
composite Brier score, and the Intraclass Correlation Coefficient (ICC) from 
cross-validation folds assessed model stability.

Results: Deep learning models generally outperformed traditional machine 
learning models in terms of predictive accuracy (mean c-index: 0.949 vs. 0.732; 
mean integrated Brier score: 0.046 vs. 0.093). Specifically, the DeepSurv model 
demonstrated exceptional precision in risk assessment (c-index: 0.95). Stability 
varied with the number of predictive factors, with Cox-Time showing the highest 
ICC (0.974) with 16 predictive factors, and DeepSurv the most stable with 26 
predictive factors (ICC: 0.983). Key predictors across models included albumin 
levels, prefill sealant type, and activated partial thromboplastin time.

Conclusion: Machine learning models that incorporate time-to-event data can 
effectively predict PICC-RVT risk. The DeepSurv model, in particular, shows 
excellent discriminative and calibration capabilities. Albumin levels, type of 
prefill sealant, and activated partial thromboplastin time are critical indicators 
for identifying and managing high-risk PICC-RVT patients.
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1 Introduction

In modern medical settings, the Peripherally Inserted Central 
Catheter (PICC) has become an indispensable tool for administering 
long-term intravenous therapies such as cancer treatments, prolonged 
antibiotic courses, and nutritional support, due to its significant 
advantages (1, 2). Despite its numerous benefits, the use of PICC is 
associated with certain risks, primarily the development of PICC-
related venous thrombosis (PICC-RVT). The incidence of PICC-RVT 
in critically ill patients varies widely, from 13 to 91% (3), and about 
30% of these cases can lead to more severe complications such as 
pulmonary embolism, post-thrombotic syndrome, and limb paralysis, 
which, in extreme cases, could result in death (4–7).

Given these risks, there is a crucial public health interest in 
developing effective prediction and management strategies for PICC-
RVT. This study leverages machine learning algorithms, which 
represent an advancement over traditional statistical methods like 
regression, in predicting PICC-RVT outcomes, thus enhancing 
therapeutic effectiveness and reducing complications. Previous 
research has demonstrated that machine learning models offer more 
robust discriminative accuracy (8–13). However, the direct 
applicability of these models in routine clinical practice remains 
limited due to several factors, including the lack of integration of time-
to-event data and the absence of comprehensive model validation 
metrics like the Brier score (8, 14, 15).

Our study proposes a novel approach by incorporating event 
occurrence time data and extensive risk factor categorization within 
machine learning frameworks to predict overall survival rates of 
PICC-RVT across large datasets. We evaluated three neural network 
extension algorithms and four ensemble learning algorithms on their 
ability to predict these outcomes in varied patient cohorts. A detailed 
feature analysis helped us refine the models and stratify PICC-RVT 
patients into distinct risk categories, thereby facilitating more precise 
clinical decision-making.

This research not only contributes to clinical practice by providing 
tools for better risk management of PICC-RVT but also aligns with 
public health goals by potentially informing policy decisions related 
to the safe use of PICC lines. By reducing the incidence of severe 
complications, our findings could lead to improved patient outcomes 
and reduced healthcare costs, emphasizing the relevance of integrating 
advanced predictive technologies in public health strategies.

2 Materials and methods

2.1 Data collection and ethical 
considerations

In a comprehensive retrospective multi-center cohort study 
conducted from May 2015 to July 2023, we  examined patients 
receiving PICC, with data collection spanning 27 hospitals in China, 
as outlined in Table 1. This study was authorized by the China Clinical 
Trials Registry (Registration Number: ChiCTR2300070265).

PICC insertions were executed by certified nurses with 
specialization in intravenous therapy, who were accredited by 
provincial or national nursing associations in China. These nurses 
received extensive training on PICC-related knowledge and diagnostic 

standards to ensure the standardization and precision of the procedure 
before the study began. The accurate placement of the catheter tip was 
confirmed by professional physicians, while maintenance care, 
including the changing of the transparent dressing (with the initial 
change within 24 h post-insertion), was conducted weekly by 
trained nurses.

This study employed color Doppler ultrasound to monitor 
thrombotic complications. Clinically, thrombotic complications 
post-PICC placement are identified if a patient exhibits symptoms 
such as pain, swelling, erythema, increased skin temperature, or 
venous distension in the limb, shoulder, neck, or chest on the 
catheter side, accompanied by one or more of the following 
ultrasound findings: (a) inability to compress the venous lumen, 
(b) filling defects within the lumen’s blood flow signal, (c) 
significant echogenicity within the lumen, (d) loss of phasic 
changes in venous flow spectrum, (e) weakened or absent Vasalva 
response, and (f) reduced or absent blood flow augmentation upon 
distal limb compressiont (14).

From the study’s outset, we  collected data on demographic 
characteristics, medical histories, and previous experiences with deep 
venous catheterization and venous thromboembolism from medical 
records and participant reports. At the initial assessment, clinical and 
physical examination results were documented, along with laboratory 
indicators like white blood cell count, hemoglobin, and platelet count. 
After catheter insertion, detailed information regarding the catheter 
and puncture-associated data was continually collected. Treatment-
related characteristics, including the patient’s activity status and 
ultrasound findings, were updated weekly.

2.2 Data preparation

2.2.1 Data cleaning
The inclusion criteria for patients are: (a) aged over 18; (b) 

requiring intravenous administration of antineoplastic drugs or 
nutritional support; (c) a life expectancy of more than 30 days post-
PICC insertion. The exclusion criteria are incomplete relevant data or 
record data anomaly.

2.2.2 Data transformation and feature 
engineering

During the data collection phase of this study, several predictive 
features were initially categorized as categorical variables or Boolean 
values. These data underwent transformation to meet the model’s 
requirements. Specifically, one-hot encoding was utilized for variables 
such as the type of chemotherapy drugs. For instance, if the types of 
chemotherapy drugs are “Drug A,” “Drug B,” and “Drug C,” the 
one-hot encoding process transformed these categories into binary 
vectors as follows:

 

DrugA , ,
DrugB , ,
DrugC , ,

:
:
:

1 0 0
0 1 0
0 0 1

 
 
 

This transformation converts categorical variables into a binary 
format, facilitating their processing by machine learning algorithms.
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TABLE 1 Comparison of no complication and complication set demographic information.

Variable No-PICC-RVT (N = 2,928) PICC-RVT (N = 525)

Age (years) 52.62 ± 11.43 55.92 ± 11.21

Height (cm) 162.35 ± 8.04 164.89 ± 8.34

Weight (kg) 62.74 ± 11.26 64.17 ± 12.23

White blood cell (10×109/L) 6.85 ± 14.60 6.30 ± 3.41

Hemoglobin (g/L) 126.60 ± 33.20 128.22 ± 38.38

Platelet (109/L) 246.87 ± 86.28 235.83 ± 85.88

D-Dimer (mg/L) 1.10 ± 4.03 1.26 ± 4.63

Prothrombin time (s) 13.13 ± 2.74 12.80 ± 2.58

Fibrinogen (g/L) 3.49 ± 1.26 3.63 ± 1.32

Activated partial prothrombin time (s) 29.46 ± 11.51 27.54 ± 5.08

Albumin (g/L) 33.10 ± 17.07 38.86 ± 9.07

C-reactive protein (mg/L) 11.72 ± 25.87 12.55 ± 23.36

Catheter vessel diameter ratio 0.33 ± 0.07 0.34 ± 0.07

Gender (Male/Female): 897 (30.6%)/2,031 (69.4%) 233 (44.3%)/293 (55.7%)

Education

No record/Primary school 1,837 (62.67%)/589 (20.10%) 397 (75.61%)/76 (14.47%)

Middle and high school/Bachelor degree or above 304 (10.37%)/201 (6.85%) 37 (7.04%)/15 (2.85%)

Tumor staging

I/II 268 (9.15%)/583 (19.91%) 58 (11.04%)/61 (11.62%)

III/IV 892 (30.46%)/1,185 (40.47%) 177 (33.71%)/228 (43.43%)

Chemotherapy cycle

No chemotherapy/1–4 1,006 (34.35%)/1,076 (36.74%) 95 (18.09%)/287 (54.66%)

5–8/>8 737 (25.17%)/109 (3.72%) 129 (24.57%)/14 (2.66%)

Main diagnosis of admission

Respiratory system 476 (16.2%) 102 (19.4%)

Circulatory system 14 (0.4%) 3 (0.05%)

Digestive system 626 (21.3%) 155 (29.52%)

Motion system 14 (0.4%) 1 (0.1%)

Nervous system 19 (0.6%) 3 (0.5%)

Urinary system 20 (0.6%) 2 (0.3%)

Reproductive system 179 (6.1%) 37 (0.7%)

Mammary glands 1,287 (43.9%) 159 (30.2%)

Blood system 150 (5.1%) 28 (5.3%)

Ear, nose, throat, head, neck and mouth 101 (3.4%) 24 (5.1%)

Others 42 (1.4%) 11 (2.0%)

Reason for catheter retention

Chemotherapy drugs 2,392 (81.69%) 460 (87.62%)

Hypertonic fluid 189 (6.45%) 36 (6.86%)

Long-term infusion 146 (4.99%) 25 (4.76%)

Others 7 (0.23%) 1 (0.19%)

Puncture blood vessel

Basilic vein 2,682 (91.60%) 492 (93.71%)

Brachial vein 173 (5.91%) 23 (4.38%)

Cephalic vein 49 (1.67%) 3 (0.57%)

(Continued)
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TABLE 1 (Continued)

Variable No-PICC-RVT (N = 2,928) PICC-RVT (N = 525)

Others 24 (0.82%) 7 (1.33%)

Conduit mode

Bard PICC Catheter 4F 2,898 (98.97%) 523 (99.7%)

Others 30 (1.03%) 2 (0.3%)

Type of PICC

Tri-valve PICC 2,789 (95.25%) 443 (82.48%)

Front opening 73 (2.49%) 55 (10.48%)

Others 67(2.25%) 37(7.05%)

Position of catheter tip

T7 and Lower than T7 1,348 (46.06%) 230 (43.9%)

Upper than T6 1,580 (53.96%) 295 (56.1%)

PICC catheterization method

Under ultrasound guidance 2,593 (88.56%) 496 (94.48%)

Ultrasound Guidance Combined with ECG 223 (7.62%) 13 (2.48%)

Others 112 (3.9%) 16 (3.05%)

Puncture complications

None 2,769 (94.57%) 515 (98.10%)

Malposition 137 (4.68%) 9 (1.71%)

Others 22 (0.75%) 1 (0.19%)

Positioning method of catheter tip

X-ray 2,099 (71.69%) 498 (94.86%)

ECG + X ray 252 (8.61%) 11 (3.05%)

Others 577 (19.71%) 16 (2.1%)

Type of disinfectant

Dextrose Chlorhexidine alcohol Solution 582 (19.88%) 107 (20.38%)

Ethanol + Iodine Tincture 2,340 (79.92%) 418 (79.62%)

Others 6 (0.2%) 0 (0%)

Connector Type

Positive pressure connector 2,538 (86.68%) 388 (73.90%)

Heparin cap 340 (11.61%) 123 (23.43%)

Negative pressure connection 27 (0.92%) 7 (1.33%)

Balance pressure connector 2 (0.07%) 4 (0.76%)

StatLock fixed PICC (No/Yes) 2,677 (91.4%)/251 (8.6%) 462 (88%)/63 (12%)

Pre-filled sealing fluid (No/Yes) 1,988 (67.90%)/940 (32.10%) 488 (85.33%)/77 (14.67%)

Type of sealing fluid (Normal/Heparin) 2,877 (98.26%)/51 (1.74%) 508 (96.76%)/17 (3.27%)

Catheter lumen number (Single/Others) 2,923 (99.83%)/5 (0.17%) 525 (100%)/0 (0%)

Puncture site (Left/Right) 1,465 (50.03%)/1,463 (49.97%) 284 (54.10%)/241(45.90%)

Number of punctures (1/>1) 2,801 (95.66%)/124 (4.34%) 513 (97.71%)/12 (2.29%)

History of Hypertension (No/Yes) 2,386 (81.49%)/542 (18.51%) 446 (84.95%)/79 (15.05%)

History of Diabetes (No/Yes) 2,687 (91.77%)/241 (8.23%) 488 (92.95%)/37 (7.05%)

History of coronary heart disease (No/Yes) 2,897 (98.94%)/31 (1.06%) 523 (99.62%)/2 (0.38%)

Past deep vein thrombosis and thrombophlebitis (No/Yes) 2,900 (99.04%)/28 (0.96%) 515 (98.10%)/10 (1.90%)

History of deep vein catheterization (No/Yes) 2,754 (94.06%)/174 (5.94%) 480(91.43%)/45(8.57%)

(Continued)
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For continuous variables like albumin levels, feature scaling was 
applied to normalize the measurement scales of various features. The 
normalization process can be represented by the following formula:

 
′ =

−X X µ
σ

where X is the original value, μ is the mean of the dataset, and σ is 
the standard deviation. This standardization ensures that the albumin 
levels have a mean of 0 and a standard deviation of 1, enhancing 
algorithm performance and expediting model convergence. Additionally, 
feature scaling improves the model’s interpretability, making its outputs 
more straightforward for clinical physicians to comprehend and utilize.

2.2.3 Feature selection
The study performed univariate analyses on selected data to 

investigate the correlation between categorical variables and 
thrombosis after PICC catheterization. Logistic regression models 
were employed to assess the relationship between both categorical and 
continuous variables with the incidence of thrombotic complications. 
Statistical analyses encompassed the calculation of Odds Ratios, 95% 
confidence intervals, and p-values, with a p-value threshold of less 
than 0.05 set for determining statistical significance. Factors 
significantly predicting thrombotic complications post-PICC 
catheterization were pinpointed and then integrated into the model as 
predictive features to forecast the likelihood of event occurrence.

2.2.4 Learning algorithms
Three neural network-based algorithms—time-dependent Cox 

model (Cox-Time), DeepSurv, and DeepHit (16–18)—and four 
machine learning-based algorithms—Random Survival Forest (RSF), 
Mortality Prediction using Logistic Regression (MP-LogitR), 
Mortality Prediction using AdaBoost (MP-AdaBoost), and Threshold 
Regression (ThresReg) (19–22)—were selected for training. These 
algorithms, which have been utilized in medical survival analysis, 
were chosen for their reported performance in existing literature.

2.2.4.1 DeepHit
DeepHit, a deep learning-based discrete-time survival analysis 

model, is specifically engineered to handle competing risks. This 
model utilizes a probability mass function estimation, which is 

achieved through a shared sub-network alongside multiple cause-
specific sub-networks, thereby facilitating the discretization of 
continuous-time data. DeepHit’s architectural framework provides 
exceptional flexibility and accuracy in predicting survival time, 
representing a notable advancement in survival analysis (16, 23).

2.2.4.2 DeepSurv
DeepSurv is a survival analysis model that leverages deep neural 

networks to enhance the Cox proportional hazards framework. It 
excels in capturing the intricacies of survival data through a nonlinear 
risk function, thereby facilitating personalized risk assessments across 
diverse clinical and biomedical datasets. By combining contemporary 
deep learning approaches with classical survival analysis 
methodologies, DeepSurv makes it possible to forecast outcomes 
without the need for specifying interaction terms, setting it apart from 
traditional models that necessitate such adjustments (17, 24).

2.2.4.3 Cox-time
Cox-Time is a neural network-based survival analysis model 

designed to circumvent the proportional hazard assumption of 
traditional Cox models. It can process continuous-time data and uses 
time-dependent covariates to effectively model non-proportional 
hazards variables, similar to the approach in the DeepSurv algorithm. 
Cox-Time focuses on providing precise predictions of survival time, 
especially when dealing with data that exhibit complex relationships 
and time-dependent characteristics (16).

2.2.4.4 Random survival forest
RSF is a powerful non-parametric survival analysis technique that 

combines multiple decision trees to handle survival time data (25). 
This method automatically addresses complex interactions and 
nonlinear relationships between variables, providing precise estimates 
of individual survival time distributions. RSF is particularly well-
suited for high-dimensional data environments, capable of effectively 
identifying and evaluating significant predictive factors, thus playing 
a crucial role in the field of survival analysis (19).

2.2.4.5 MP-LogitR
MP-LogitR is a survival analysis method that integrates machine 

learning techniques with survival data (20). It updates the dataset at 
different time intervals and uses traditional machine learning 
algorithms such as logistic regression to predict the survival status of 

TABLE 1 (Continued)

Variable No-PICC-RVT (N = 2,928) PICC-RVT (N = 525)

Platinum drugs (No/Yes) 1,903 (64.99%)/1,025 (35.01%) 245(46.67%)/280(53.33%)

Anthracycline drugs (No/Yes) 1,925 (65.74%)/1,003 (34.26%) 436 (83.05%)/89 (16.95%)

Alkylating agents (No/Yes) 1,850 (63.18%)/1,078 (36.82%) 425 (80.95%)/100 (19.05%)

immune modulators (No/Yes) 2,926(99.93%)/2(0.07%) 52 5(100%)/0 (0%)

Targeted drugs (No/Yes) 2,424 (82.79%)/502 (17.21%) 450 (85.71%)/75 (14.3%)

Plant alkaloids (No/Yes) 1,562 (53.35%)/1,366 (46.65%) 335 (63.81%)/190 (36.19%)

Anti-metabolite drugs (No/Yes) 2,323 (79.34%)/605 (20.66%) 339 (76.0%)/126 (24.0%)

Corticosteroid medications (No/Yes) 2,887 (98.6%)/41 (1.40%) 519 (98.86%)/6 (1.14%)

Topoisomerase Drugs (No/Yes) 2,653 (90.61%)/275 (9.39%) 451 (85.9%)/74 (14.1%)

Other chemotherapy drugs (No/Yes) 2,462 (84.08%)/466 (15.92%) 452 (86.1%)/73 (13.9%)

https://doi.org/10.3389/fpubh.2024.1445425
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2024.1445425

Frontiers in Public Health 06 frontiersin.org

patients, thereby assessing the survival risk at various time points. This 
method trains classifiers independently for each time point, offering 
a dynamic and precise risk assessment tool suitable for continuous-
time survival analysis (26).

2.2.4.6 MP-AdaBoost
MP-AdaBoost is a machine learning-based survival model 

designed for analyzing survival time data (21). This model employs 
the AdaBoost algorithm to predict the survival status of patients at 
various time intervals and, based on this, assesses the risk score for 
patients at each time point. MP-AdaBoost independently trains 
classifiers for each time interval, providing AdaBoost-based survival 
predictions for each time point, thereby offering a dynamic and 
detailed risk assessment for survival analysis (27).

2.2.4.7 ThresReg
ThresReg is a threshold regression model used in survival analysis, 

particularly effective in scenarios where thresholds or boundaries exist 
(22). ThresReg models data by identifying key thresholds that impact 
survival time, allowing for dynamic assessment of the risk associated 
with survival events. This method is especially suitable for survival 
time prediction in datasets where clear demarcation points or 
thresholds are present (28).

2.2.5 Model training and validation
After preprocessing, the data were utilized to train machine 

learning algorithms that account for event occurrence times, focusing 
on disease-specific and overall survival rates as outcomes. The training 
regimen for traditional machine learning algorithms such as RSF, 
MP-LogitR, MP-AdaBoost, and ThresReg was rigorously developed 
and executed. These algorithms applied five-fold cross-validation, 
dividing the dataset into 80% for training and 20% for testing. 
Notably,for the RSF model, bootstrapping without replacement was 
implemented to construct 1,000 independent decision trees.

For deep learning models like DeepSurv, Cox-Time, and DeepHit, 
Python 3.8 was used for development, with the Adam optimizer and 
an initial learning rate of 0.001. Hyperparameters including hidden 
layers, nodes per layer, dropout, and batch size were fine-tuned using 
five-fold cross-validation. Selection was based on the analysis of 
training and validation learning curves, manually calculated to 
identify the highest concordance index and lowest Brier score, 
ensuring an optimal model fit.

2.2.6 Model performance evaluation

2.2.6.1 Concordance index (C-index)
The C-index is an essential statistical tool for evaluating the 

performance of prediction models, particularly in survival analysis 
and time-to-event data. It measures the model’s accuracy in predicting 
the sequence of event occurrences, indicating the proportion of paired 
samples whose occurrence order is correctly predicted by the model 
(29). Mathematically, the C-index is defined as:

 
C index

N
I T T I T T I T T I T Ti j i j i j i j i j− = <( ) <( ) + =( ) =( )<∑1    

where I  is the indicator function, Ti  and Tj  are the true survival 
times, and Ti  and Tj  are the predicted survival times. Values range 

from 0.5 (indicating no better accuracy than random guessing) to 1.0 
(denoting perfect prediction accuracy). In survival analysis, it assesses 
whether the model accurately identifies individuals at varying risk 
levels, with higher C-index values signifying superior predictive 
ability. The mean C-index reported in our study is the average C-index 
obtained from multiple cross-validation folds, providing a robust 
estimate of the model’s discriminatory power (30, 31).

2.2.6.2 Brier scores (B-score)
The B-Score, established by Glenn W. Brier in 1950, serves as a 

critical measure for evaluating the accuracy of probability predictions, 
particularly in binary scenarios. It quantifies prediction accuracy by 
calculating the mean squared difference between the predicted 
probabilities and actual outcomes. For survival models, the integrated 
Brier Score is used to evaluate the performance of the model over time 
(15). The integrated Brier Score is given by:

 
B Score

N
S t X I T t dti

N
i i− = ( ) − ≤( )( )∫ ∑ =

1 1
0 1

2

τ
τ 

where 


S t Xi( )  is the predicted survival probability at time t  for 
subject it , I T ti ≤( )  is an indicator of whether the event has occurred 
by time t , and τ  is the maximum follow-up time. The Brier score 
ranges from 0 (indicating perfect prediction) to 1 (indicating the 
poorest prediction), offering a clear, quantitative metric for assessing 
model performance. The mean integrated Brier Score is the average 
score across different time points and cross-validation folds, providing 
a comprehensive measure of the model’s calibration and accuracy.

2.2.6.3 Model stability
Model stability evaluates the robustness of machine learning 

models against variations in training data, reflecting on the model’s 
generalizability and reliability. Following a method akin to Turney’s 
approach (32), this study assesses stability using five-fold cross-
validation and measures it by the intraclass correlation coefficient 
(ICC) of performance metrics across different test subsets. Model 
performance is further evaluated using the average and standard 
deviation of the C-index across folds and the combined Brier Score.

3 Results

3.1 Population characteristics

From October 2015 to July 2023, clinical data for 5,272 patients 
who received PICC insertion treatment were gathered across 27 
hospitals. In the data preparation phase, 1,815 patients were excluded 
due to issues with their records among other reasons, as depicted in 
Figure 1. Consequently, 3,453 patients who met the eligibility criteria 
were incorporated into the study. The demographic and clinical 
pathological characteristics of these patients are detailed in Table 1.

The age range of the patients included in the study was from 18 to 
80 years, with a smaller proportion of males (32.7%) compared to 
females (67.3%). Among the patients with PICC, thrombosis occurred 
in 525 cases (15.2%). The majority, or 71.8%, of the patients 
undergoing PICC catheterization were diagnosed with stage III cancer 
or higher. Approximately 80% of these patients required long-term 
chemotherapy, utilizing treatments such as platinum-based drugs 
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(37.7%), plant alkaloids (45.06%), and alkylating agents (34.1%). A 
total of 401 patients necessitated catheter removal due to recurrent 
thrombotic complications, whereas only 124 patients were able to 
continue using the catheter after receiving nursing care.

3.2 Variable selection

Through statistical analysis, we  found that factors such as 
gender, age, height, education, primary diagnosis upon admission, 
activated partial prothrombin time, albumin, method of catheter 
fixation, type of pre-filled sealing fluid, type of connector, catheter 
opening, type of dressing, and certain chemotherapy drugs (such 
as platinum, anthracyclines, alkylating agents, and plant alkaloids) 
exhibited highly significant statistical differences (p < 0.001). 
Additionally, variables like weight, platelet count, prothrombin 
time, fibrinogen, history of deep vein catheterization, 
hypertension, puncture site, puncture complications, type of 
sealing fluid, and method of catheter tip positioning showed 
statistically significant correlations (p < 0.05), as detailed in 
Table 2.

Following the statistical correlation analysis, two models were 
developed for each outcome, differentiated by the number of 
predictive features. The initial models incorporate variables 
demonstrating exceptionally high statistical significance 
(p < 0.001), while the subsequent models include variables with 
significant statistical relevance (p < 0.05). Any variable with a 

p-value exceeding 0.05 was excluded, concentrating the analysis 
on predictors with substantial statistical backing. This meticulous 
approach to selecting input variables enhances the models’ 
predictive accuracy.

3.3 Model development and comparison

To evaluate the performance and stability range of all predictive 
models for PICC-RVT occurrence, we  divided the dataset into a 
training set and a test set in an 8:2 ratio. Additionally, we applied data 
preprocessing, feature selection, and machine learning algorithms. 
We  employed three normalization methods (MinMax, Z-Score, 
Mean), two feature reduction techniques (PCA, PCC), and four 
feature selection methods (RFE, Relief, ANOVA, KW). Finally, 
we determined the highest concordance index and comprehensive B 
score for each model through five-fold cross-validation (algorithm 
workflow is illustrated in Figure 2). The implementation example code 
for the algorithms is detailed in Supplementary Table S2. The choice 
of data processing method and final hyperparameters for each 
algorithm were manually adjusted to achieve the highest concordance 
index and comprehensive B score, tailored to the specific dataset and 
feature variability of the study.

3.3.1 Cause-specific deep learning prediction
In our study, we undertook extensive hyperparameter tuning using 

five-fold cross-validation, examining a range of hyperparameters 

FIGURE 1

Data inclusion and exclusion flowchart.
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including hidden layers (1 to 5 layers), nodes per layer (16, 32, 64, 128, 
256), and dropout rates (0.1, 0.2, 0.3, 0.4, 0.5). After numerous model 
attempts, we ultimately selected the optimal training hyperparameters as 
shown in Table 3. For example, in our dataset, the DeepSurv model 
exhibited peak performance with 3 hidden layers, 64 nodes per layer, and 
a dropout rate of 0.2. These hyperparameters were chosen for their ability 
to maximize the concordance index and minimize the integrated Brier 
score, thereby ensuring the best possible model performance.

The training results for the 26-feature model are illustrated in 
Figure  3, while the 16-feature model results are shown in 
Supplementary Figure S1. The results indicate that the three deep 
learning models (DeepSurv, DeepHit, Cox-Time) have strong 
predictive capabilities, with the DeepSurv model exhibiting 
particularly outstanding discriminative performance. The DeepSurv 
model achieved a high concordance index (C-index) of 0.95 in the 
26-feature model, followed by the Cox-Time and DeepHit models. 
Overall, the predictive performance of the 26-feature model was 
superior to that of the 16-feature model (as shown in 
Appendix Figure 1). Regarding the Brier score, the DeepSurv model 
achieved a score of 0.032, with an average standard deviation of 
0.081, which is slightly higher than the other deep learning algorithms 
but both scores are well below the critical value of 0.25.

3.3.2 Cause-specific machine learning prediction
In machine learning, we compared four machine learning methods 

(RSF, AdaBoost, ThresReg, LogitR) with both 26 parameters and 16 
parameters. After manual tuning, each model exhibited improved 
discriminative power. Among them, the RSF model performed the best, 
with C-Index scores of 0.772 and 0.741, respectively. The integrated Brier 

TABLE 2 Univariate analysis of the risk factors of PICC-RVT.

Variable Univariate analysis

Odds 
ratio

95% CI p-value

Demographic characteristics

Gender 0.3921 −1.1273–0.7452 <0.001

Age (years) 0.0256 0.0172–0.0341 <0.001

Height (cm) 0.0379 0.0265–0.0493 <0.001

Weight (kg) 0.0106 0.0027–0.0185 0.009

Education 0.8157 −0.2854–0.1222 <0.001

Tumor staging 0.9982 −0.0881–0.0845 0.967

Chemotherapy cycle 1.0083 −0.0217–0.0382 0.588

Main diagnosis of admission 0.9273 −0.1055–0.0455 <0.001

Laboratory indicators

White blood cell (10×109/L) 0.0224 0.0528–0.0080 0.149

Hemoglobin (g/L) 0.0014 −0.0011–0.0040 0.290

Platele (109/L) 0.0015 −0.0026–0.0003 0.008

Prothrombin time (s) −0.0338 −0.0660–0.0015 0.040

D-dimer (mg/L) 0.0078 −0.0112–0.0269 0.419

Fibrinogen (g/L) 0.0851 0.0181–0.1522 0.013

Activated partial prothrombin 

time (s)
−0.0391 −0.0547–0.0234 <0.001

Albumin (g/L) 0.0284 0.0207–0.0361 <0.001

C reactive protein (mg/L) 0.0011 −0.0022–0.0046 0.498

Past medical history

Hypertension 0.7599 −0.5366–0.0125 0.040

Diabetes 0.8892 −0.4751–0.2403 0.519

Coronary heart disease 0.3469 −2.4933–0.3757 0.148

Past deep vein thrombosis 

and thrombophlebitis
1.8902 −0.0915–1.3648 0.086

History of deep vein 

catheterization

1.4518 0.0293–0.7163 0.033

Other 0.9810 −0.0815–0.0432 0.547

Puncture related information

Puncture site (left vs. Right) 0.8344 −0.3471–0.0149 0.032

Number of punctures 1.3533 −0.0539–0.6591 0.096

Position of catheter tip 1.0062 −0.0466–0.05898 0.819

Tube placement method 0.6558 −0.6749–0.1691 0.001

Puncture blood vessel 0.9076 −0.3258–0.1319 0.406

Puncture complications 0.4864 −1.2608–0.1807 0.008

StatLock fixed PICC 0.6315 0.2405–0.8409 <0.001

Type of disinfectant 0.9753 −0.2517–0.2017 0.828

Pre-filled tube sealing fluid 0.4418 −1.0785–0.5553 <0.001

Dressing type 0.1908 −1.7507–1.5626 <0.001

Conduit related information

Catheter vessel diameter ratio 1.0466 −0.1091–2.2023 0.076

Type of sealing fluid 2.0601 0.1550–1.2906 0.012

(Continued)

Variable Univariate analysis

Odds 
ratio

95% CI p-value

Reason for catheter retention 0.8904 −0.2937–0.0616 0.200

Connector type 1.7076 0.3529–0.7173 <0.001

Positioning method of 

catheter tip

1.3783 0.1104–0.5314 0.002

PICC catheter opening 0.5245 −0.7730–0.5175 <0.001

PICC model 1.1949 −0.1117–0.4678 0.228

Number of PICC cavities 0.0010 −89.2205–75.3853 0.869

Chemotherapy drugs

Platinum drugs 1.9734 0.4901–0.8694 <0.001

Anthracycline drugs 0.4390 −1.0655–0.5812 <0.001

Alkylating agents 0.4382 −1.0587–0.5913 <0.001

immune modulators 0.0001 −290.7380–

272.7910

0.950

Targeted drugs 0.7751 −0.5170–0.0075 0.056

Plant alkaloids 0.6636 −0.6052–0.2151 <0.001

Anti-metabolite drugs 1.2743 0.0208–0.4640 0.032

Corticosteroid medications 0.7678 −1.2081–0.6796 0.583

Topoisomerase Drugs 1.4919 0.1240–0.6761 0.004

Other chemotherapy drugs 0.8329 −0.4583–0.0928 0.193

TABLE 2 (Continued)

https://doi.org/10.3389/fpubh.2024.1445425
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2024.1445425

Frontiers in Public Health 09 frontiersin.org

score for both the 26-parameter and 16-parameter models was 0.064, 
reflecting similar accuracy of the predicted survival function to the actual 
survival status for both models.

3.4 Important variables of prediction 
models

Figure 4 displays SHAP (Shapley additive Explanations) graphs 
for three deep learning methods, detailing the comparative importance 
of each feature (33, 34). The results reveal that albumin, type of 
pre-filled locking solution, and activated partial thromboplastin time 
are the strongest predictors in the deep learning predictive models.

The top 8 important variables for each predictive model show that 
regardless of the model used, albumin and the type of sealing solution 
are the most critical variables in predicting PICC-RVT (Tables 4, 5), 
particularly the type of sealing solution involving heparin saline. 
Regardless of the model used, a patient’s primary diagnosis, the 
method of PICC placement, targeted therapies, and platinum-based 
drugs consistently exhibit high variable importance.

4 Discussion

Peripherally Inserted Central Catheters (PICCs) are an essential 
part of contemporary medical practice, especially for patients 

requiring prolonged intravenous therapy (35). These catheters offer 
multiple benefits: they minimize the risk of infections, allow for 
extended usage, enhance patient comfort, and reduce the frequency 
of venipunctures. Such advantages establish PICCs as the preferred 
method for administering long-term antibiotics, chemotherapy, 
nutritional support, and managing intricate medication regimens. By 
alleviating patient discomfort and reducing the risk of complications, 
PICCs significantly contribute to improved treatment outcomes, 
quicker patient recovery, and decreased healthcare costs (36, 37).

Despite their considerable benefits, the use of PICCs is 
associated with certain risks, including complications like PICC-
related venous thrombosis (PICC-RVT). PICC-RVT may manifest 
as pain, swelling, and catheter malfunction; in severe cases, it can 
escalate to life-threatening thromboembolic events such as 
pulmonary embolism. Accurate prediction of PICC-RVT is 
therefore crucial. Effective risk prediction enables healthcare 
professionals to take preventive measures, such as choosing the 
optimal catheter type and site, regularly monitoring the patient’s 
blood status, and, if necessary, administering anticoagulant or 
thrombolytic therapy (4).

In modern medical disease management, accurate and timely 
prognostic predictions are vital for enhancing patient outcomes and 
quality of life. While traditional inferential statistical models rely on 
historical data and statistical inference, the advent of big data and 
increased computational capabilities has favored machine learning 
models for prognostication. Machine learning excels in handling 

FIGURE 2

PICC-RVT survival analysis model establishment process.
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complex datasets and identifying latent patterns and correlations, 
offering dynamic prognostic probabilities that adjust over time (16). 
This evolving approach is crucial, as the effectiveness of predictive 
models can wane over extended periods (28). Incorporating event 
timing into these models not only provides more accurate risk 
assessments but also captures the changing nature of risk over time, 
making it particularly suited for the long-term monitoring of 
complications associated with PICC use.

Recent studies have demonstrated the potential of machine 
learning models in predicting PICC-related venous thrombosis 
(PICC-RVT) risks, integrating various predictive factors and time-to-
event data to enhance predictive accuracy. Our research builds on 
these findings by incorporating seven different machine learning 
algorithms, including both traditional and deep learning models, to 
evaluate their effectiveness in assessing PICC-RVT risks. 
Supplementary Table S4 provides a summary of related works from 
the past 5 years that are pertinent to this study.

The evaluation revealed that deep learning models, on average, 
outperformed machine learning models in terms of predictive 
performance, with a higher average c-index (0.949 vs. 0.732) and a 
lower average comprehensive Brier score (0.046 vs. 0.093). Among 

these, the DeepSurv model stood out, showcasing superior 
performance and exceptional accuracy in risk assessment, 
evidenced by its c-index of 0.95 and an excellent Brier score of 
0.032, indicating minimal prediction error. Moreover, the Cox-Time 
model displayed the highest ICC value at 0.984, suggesting slightly 
greater reliability compared to the DeepSurv model. However, the 
DeepSurv model’s accuracy and relative reliability in predicting 
PICC-RVT, coupled with its outstanding prediction stability, could 
enhance its popularity in certain clinical scenarios. Additionally, it 
was observed that the model’s stability varies with the number of 
predictors; specifically, Cox-Time exhibits the highest intra-class 
correlation coefficient with 16 predictors (ICC: 0.974), whereas 
DeepSurv achieves the greatest stability with 26 predictors 
(ICC: 0.983).

In this study, we found that models equipped with 26 parameters 
generally surpassed those with only 16 parameters in predictive 
performance. This improvement can be attributed to the fact that a 
greater number of parameters enhances the model’s learning capacity, 
allowing it to grasp more complex data relationships, which is crucial 
for handling multi-dimensional data. However, the increase in 
parameters also raises the risk of overfitting, characterized by high 

TABLE 3 Deep learning-based survival models and their performance and stability measures.

Models (Parameter) Hyperparameters C-Index Mean SD) B-score Mean SD) ICC (95%CI)

DeepSurv (26/16)

Layers = 3

Nodes per layer = 64

Dropout = 0.2

Batch size = 64

Learning rate = 0.01

0.95 (0.007)a/0.759 (0.012) 0.032 (0.081)/0.042 (0.091)
0.983 (0.931–1.00)/0.973 

(0.921–0.99)

DeepHit (26/16)

Layers = 3

Nodes per layer = 64

Dropout = 0.2

Batch size = 64

Learning rate = 0.01

0.948 (0.012)/0.723 (0.012) 0.061 (0.052)/0.071 (0.062)
0.974 (0.908–1.00)/0.964 

(0.898–0.99)

Cox-Time (26/16)

Layers = 3

Nodes per layer = 64

Dropout = 0.2

Batch size = 64

Learning rate = 0.001

0.949 (0.008)/0.741 (0.014) 0.045 (0.044)/0.055 (0.054)
0.984 (0.914–1.00)/0.974 

(0.904–0.99)

MP-RSF (26/16)

N (trees) = 1,000

Features considered

for best split = √N

0.772 (0.012)/0.741 (0.016) 0.064 (0.023)b/0.064 (0.033)
0.942 (0.833–1.00)/0.932 

(0.823–0.99)

MP-AdaBoost (26/16)

weak learners = 1,000

Learning rate = 0.001

Features considered

for best split = √N

0.731 (0.017)/0.723 (0.077) 0.067 (0.025)/0.077 (0.035)
0.936 (0.712–1.00)/0.926 

(0.702–0.99)

ThresReg (26/16)
Regularization strength = 0.1

Learning rate = 0.001
0.707 (0.023)/0719 (0.063) 0.076 (0.027)/0.075 (0.037)

0.931 (0.751–1.00)/0.921 

(0.741–0.99)

MP-LogitR (26/16)

Regularization type: Lasso/L2

Regularization strength = 0.1

Learning rate = 0.001

Convergence threshold = 1e-6

0.719 (0.022)/0.722 (0.042) 0.075 (0.031)/0.074 (0.041)
0.927 (0.732–1.00)/0.917 

(0.722–0.99)

C-index, Concordance index; B-score, Brier score; ICC, Intraclass correlation coefficient; CI, confidence interval. Texts in bold are indicative of the highest performance measure or stability 
evaluator, i.e., concordance index, integrated B-score, and ICC.
aNot statistically significant at probability values below 5% (one-way analysis of variance).
bStatistically significant at probability values below 5% (one-way analysis of variance).

https://doi.org/10.3389/fpubh.2024.1445425
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2024.1445425

Frontiers in Public Health 11 frontiersin.org

performance on training data but poor generalization to new data 
(38). This is especially true for models like ThresReg and MP-LogitR, 
where analyzing the relevance of each parameter is vital to prevent 
them from negatively impacting prediction accuracy. In the context of 
deep learning, techniques such as Dropout have been shown to 
mitigate the effects of irrelevant parameters, effectively reducing 
overfitting risks while still benefiting from a higher parameter count 
(39). Thus, applying appropriate measures during the training of deep 
learning models can control overfitting, significantly improving their 
capability to predict the risk of PICC-RVT.

Through an in-depth analysis of deep learning and machine 
learning models in this study, it was discovered that certain variables, 
notably albumin levels and the type of locking solution used, play a 
pivotal role in predicting the risk of venous thrombosis associated 
with PICC. Albumin levels, in particular, are of paramount 
importance. As the most abundant protein in plasma, albumin not 
only reflects a patient’s nutritional status and inflammatory response 
but also is vital for maintaining intravascular colloid osmotic pressure 
(40). Low albumin levels can signify inflammation, malnutrition, or 
protein loss, factors that elevate thrombosis risk. In the context of 

FIGURE 3

Seven survival analysis models based on 26-parameter survival curves.

FIGURE 4

SHAP diagram of deep learning algorithm.
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PICC catheterization, hypoalbuminemia can increase blood viscosity, 
thereby heightening the risk of thrombus formation. Furthermore, the 
choice of locking solution, especially the use of heparin saline, is 
critical in mitigating the risk of PICC-RVT. Unlike saline, which is 
commonly used, heparin saline possesses anticoagulant properties 
that prevent thrombosis. Its action mechanism involves activating 
antithrombin, thus inhibiting blood clot formation and minimizing 
the interaction between PICC lines and endothelial cells, effectively 
reducing thrombosis risk (41). Recent studies and clinical practices 
have demonstrated that saline is as effective as heparinized saline in 
preserving catheter patency, avoiding complications associated with 
heparin use (42). Consequently, the effect of heparin saline on 
PICC-RVT risk warrants additional investigation.

The primary diagnosis of patients has been identified as a crucial 
factor influencing the risk of PICC-RVT. Pathological conditions such 
as malignancies, infections, and other chronic diseases can elevate 
thrombosis risk due to their inherent pathophysiological traits. In 
particular, certain cancers are known to increase blood coagulation, 
thereby heightening the risk of PICC-RVT (43). Additionally, the use 
of targeted therapies and platinum-based drugs significantly affects 
this risk, mainly due to their pharmacological effects and potential 
harm to endothelial cells. While targeted therapies aim to attack 
tumor cells, they may also impair endothelial functions, fostering a 
procoagulant environment and enhancing thrombus formation 
likelihood (44). Similarly, platinum-based chemotherapy agents can 
damage blood vessels and encourage coagulation, increasing the 

probability of PICC-RVT (45, 46). Consequently, these treatments 
necessitate closer monitoring of PICC lines and vigilance for signs of 
thrombosis during therapy.

This investigation employed retrospective multi-center cohort 
designs, utilizing both deep learning and traditional machine learning 
models to predict the risk associated with PICC-RVT. Although the 
study benefited from extensive patient data, the exclusion of 1,815 
patients due to incomplete records may have impacted the findings. 
While seven survival analysis models were evaluated, further 
improvements in variable selection and model optimization are 
needed to enhance predictive performance and clinical relevance. To 
integrate these predictive models into real-time clinical workflows, 
we  propose embedding the models into electronic health record 
(EHR) systems for automatic data extraction and real-time risk 
prediction, developing real-time alert systems to notify healthcare 
providers of high-risk patients, implementing continuous model 
updates with new patient data, creating user-friendly interfaces and 
visualization tools for clear presentation of risk predictions, facilitating 
interdisciplinary collaboration between data scientists, clinicians, and 
IT specialists, and providing regular training and support for clinical 
staff to ensure effective use and acceptance of the predictive tools.

A key limitation of this research is the lack of prospective clinical 
validation, which is crucial for confirming the practical effectiveness 
of the predictive models. Nonetheless, the study has demonstrated 
notable successes in forecasting PICC-RVT risk. The integration of 
deep learning and machine learning models has markedly refined the 

TABLE 4 Top 8 important variables of deep learning prediction models.*

Rank Models

DeepSurv DeepHit Cox-Time

1 Albumin Albumin Albumin

2 Pre-filled tube sealing fluid Activated partial prothrombin time Pre-filled tube sealing fluid

3 Activated partial prothrombin time Pre-filled tube sealing fluid Activated partial prothrombin time

4 Main diagnosis of admission Targeted drugs Main diagnosis of admission

5 Targeted drugs Platinum drugs Targeted drugs

6 PICC catheter opening PICC catheter opening PICC catheter opening

7 Platinum drugs Tube placement method Platinum drugs

8 Tube placement method Main diagnosis of admission Tube placement method

*Variable importance is determined by Shap value.

TABLE 5 Top 8 important variables of machine learning prediction models.*

Rank Models

MP-RSF MP-AdaBoos ThresReg MP-LogitR

1 Albumin (rise) Albumin (rise) Albumin (rise) Albumin (rise)

2 Pre-filled tube sealing fluid (yes) Platele Main diagnosis of admission Main diagnosis of admission

3 Activated partial prothrombin time Targeted drugs Normal saline Normal saline

4 Blood system Main diagnosis of admission Platele Targeted drugs

5 Targeted drugs Alkylating agents Age Activated partial prothrombin time

6 Platinum drugs Front opening Targeted drugs Education

7 Front opening Age Education Alkylating agents

8 Age Prothrombin time Front opening Age

*Variable importance is determined by the frequency of selection of the variable as a decision node in the logistic model.
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accuracy of survival probabilities and relative risk predictions for 
specific conditions. These models have also facilitated the 
identification of critical factors influencing PICC-RVT risk, such as 
albumin levels and the type of locking solution used.

Additionally, the study highlighted the influence of targeted 
therapies and platinum-based drugs on thrombosis risk, underscoring 
their importance in clinical assessments. Through meticulous feature 
selection and model refinement, the predictive models’ accuracy and 
reliability were significantly improved, providing a valuable and 
practical tool for clinical risk assessment. This breakthrough enhances 
the capability for early detection and intervention for high-risk 
individuals, greatly supporting clinical decisions concerning the 
management of PICC lines. Such advancements not only promise to 
optimize individual patient care but also have the potential to inform 
broader public health strategies aimed at preventing serious 
complications associated with PICC use.

5 Conclusion

This research evaluated seven time-to-event algorithms designed 
to predict the risk of PICC-RVT. Each model demonstrated high levels 
of prediction accuracy, calibration, and stability. Deep learning 
technologies, in particular, surpassed traditional machine learning 
methods in forecasting medical outcomes. Among them, the 
DeepSurv model was notably effective in distinguishing between 
high-risk and low-risk patients, thus facilitating more informed 
treatment decisions. Key predictors of PICC-RVT risk identified 
include albumin levels, the type of pre-filled sealant, and partial 
thromboplastin time. Moving forward, it will be crucial to further 
validate these models to enhance their predictive accuracy and clinical 
utility. Continued efforts to refine model performance and identify 
crucial predictors are essential for improving the clinical application 
viability of these models, ultimately enhancing patient outcomes in 
the management of PICC.
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