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Background: This study aimed to investigate epidemiologic characteristics of 
major human infection with avian influenza and explore the factors underlying 
the spatial distributions, particularly H5N6 and H9N2, as H9N2 could directly 
infect mankind and contribute partial or even whole internal genes to generate 
novel human-lethal reassortants such as H5N6. They pose potential threats to 
public health and agriculture.

Methods: This study collected cases of H5N1, H5N6, H9N2, and H7N9 in China, 
along with data on ecoclimatic, environmental, social and demographic factors 
at the provincial level. Boosted regression tree (BRT) models, a popular approach 
to ecological studies, has been commonly used for risk mapping of infectious 
diseases, therefore, it was used to investigate the association between these 
variables and the occurrence of human cases for each subtype, as well as to 
map the probabilities of human infections.

Results: A total of 1,123 H5N1, H5N6, H9N2, and H7N9 human cases have been 
collected in China from 2011 to 2024. Factors including density of pig and 
density of human population emerged as common significant predictors for 
H5N1 (relative contributions: 5.3, 5.8%), H5N6 (10.8, 6.4%), H9N2 (11.2, 7.3%), 
and H7N9 (9.4, 8.0%) infection. Overall, each virus has its own ecological and 
social drivers. The predicted distribution probabilities for H5N1, H5N6, H9N2, 
and H7N9 presence are highest in Guangxi, Sichuan, Guangdong, and Jiangsu, 
respectively, with values of 0.86, 0.96, 0.93 and 0.99.

Conclusion: This study highlighted the important role of social and demographic 
factors in the infection of different avian influenza, and suggested that monitoring 
and control of predicted high-risk areas should be prioritized.
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Introduction

Human infections with avian influenza viruses pose a persistent 
threat to public health. The first human infections with highly 
pathogenic avian influenza (HPAI) H5N1 virus occurred in Hong 
Kong in 1997, with 18 individuals infected, six of whom died (1). In 
2013, China firstly detected cases of human infection with H7N9 
viruses in Shanghai and experienced several waves of H7N9 epidemics 
(2). It was confirmed that the low pathogenic avian influenza H7N9 
virus has evolved into HPAI viruses in February 2017, which may lead 
to wider spread and higher of risk for human or poultry (3).

H9N2 virus has spread more extensively, since it first isolated 
from turkeys in Wisconsin, USA in 1966 (4), causing constant 
infections in various countries. In 2021, H9N2 viruses were observed 
in Sub-Saharan Africa, historically considered a cold spot for animal 
influenza A virus (5). H9N2 virus could cause outbreaks in poultry, 
wild waterfowl and infect human directly despite of its low 
pathogenicity (6). It achieves cross host transmission through 
contributing partial or even whole set of internal protein functional 
segments to other subtypes of avian influenza viruses such as H5N1, 
H7N9, H10N8 and H5N6. In May 2014, the world’s first human 
infection with H5N6 virus was identified in Sichuan, China (7). H5N6 
virus is also a highly pathogenic avian influenza virus and a 
reassortment virus, with both H5N1 and H9N2 viruses involved in 
the reassortment (8).

Countries around the world have reported cases of human 
infection with avian influenza virus through their national surveillance 
systems (9). Currently, few researches have explored what factors and 
how have contributed to the spatial distribution of human infections 
with avian influenza virus, especially H9N2 and H5N6. The aim of this 
study was to describe the characteristics and distribution of global 
human avian influenza cases, and explore the role of ecoclimatic, 
environmental, social and demographic factors which favor the 
occurrence of human infections in China, and thus to optimize 
resources allocated to controlling the disease and reducing the risk for 
human infection with avian influenza infection.

Materials and methods

Data on human cases with avian influenza 
virus infections

The data on human cases infected H5N1, H5N6, H9N2 and H7N9 
from 2011 to 2024 were collected from the World Health Organization, 
including the WHO’s Disease Outbreak News of the Global Alert and 
Response (GAR), the WHO’s Weekly Epidemiological Record and the 
WHO Western Pacific Region’s Avian Influenza Weekly Update and 
ProMed-mail.1 Age, gender, outcome, symptom, the date of onset, the 
date of hospitalization, the date of death, location (country and 
province) of each confirmed patient, and poultry exposure was 
extracted and used in this study. The definitions of human infections 
with avian influenza viruses (H5N1, H5N6, H9N2 and H7N9) have 
been described according to WHO and previous studies (10–12).

1 https://promedmail.org/

Data on ecoclimatic, environmental, social 
and demographic factors

A wide range of environmental and social factors that are commonly 
used in ecological studies on the spatial distribution of human infection 
with avian influenza virus were collected. The selection of factors was 
primarily based on empirical ecological evidence in published literature. 
The province-level ecoclimatic, environmental and social data were 
collected: 19 cross-sectional ecoclimatic variables (BIO01–19) (13), the 
density of human population, the number of live poultry markets, the 
density of pig, land cover variables including the percentage coverage of 
irrigation and wetland. In China, the provincial level is the key 
administrative unit to formulate public health policies and allocate 
health resources. In addition, data from provincial units are more 
complete and systematic, providing a relatively complete surveillance. 
Details on these variables and their estimates in the modeling analysis 
were described in Supplementary Table 1.

Ecological modeling

For each of 4 major human infection with avian influenza 
subtypes in China reported by WHO, predictive machine learning 
models were developed at the provincial level using case–control study 
design. In brief, for each subtype, provinces with at least one reported 
case were recognized as “cases,” while those did not report any cases 
were considered as “controls.” BRT models is an efficient and popular 
approach for ecological studies to map infectious diseases such as tick-
borne pathogens disease (14), anthrax (15), and helminth (16), 
identify risk determiners, and predict distributions of organisms, 
which has an obvious advantage is that allowing nonlinear covariate-
outcome relationships and multicollinearity among covariates (14).

In this study, all provinces reporting cases were considered as 
“cases,” and five-fold “controls” were randomly chosen from the 
remaining provinces without reported cases for each model, and the 
case–control ratio is according to previous research (case–control 
ratio was 1: 5) to compose a balanced bootstrap set. For the 
establishment of BRT model, a bootstrapping procedure was used to 
provide a robust estimation of model parameters.

In BRT model, tree complexity determines the maximum split depth 
of each regression tree and thus controls the ability of the model to capture 
non-linear relationships. We chose a moderate tree complexity to ensure 
that the model could capture the interaction between features without 
resulting in over-fitting. The learning rate controls the weight of each tree’s 
contribution to the overall model prediction. A lower learning rate usually 
improves the predictive performance of the model, but more iterations 
are required to achieve optimal performance. We used a smaller learning 
rate (0.005) to ensure that each update had less impact on the final model, 
to avoid overfitting, and to improve the robustness of the model. Bagging 
fraction controls the proportion of training samples used to build the tree 
in each iteration. We selected an out-of-pocket sampling ratio of less than 
1 (0.7) to introduce randomness, reduce the variance of the model, and 
improve the generalizability of the model. Therefore, a tree complexity of 
4, a learning rate of 0.005 and a bagging fraction of 75% were used for the 
primary analysis to identify the optimal tree as previous studies (11, 17). 
A training set with 70% of the points were randomly selected from the 
current bootstrap data and the remaining 30% served as a test set.
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The ROC curves and areas under the curve (AUC) based on the 
test sets and train sets were averaged separately to represent the final 
predictive performance. ROC curve is a common tool to evaluate the 
performance of classification model. It evaluates the discriminant 
ability of the model by showing the relationship between true positive 
rate and false positive rate under different decision thresholds. And 
AUC indicates the ability of the model to correctly distinguish 
between positive and negative samples, ranging from 0 to 1.

Finally, the mean value and standard deviation of estimated 
weights over 50 resampled datasets were reported. The relative 
contributions of included variables were estimated from the identified 
trees and served as an indicator of each variable’s importance for 
predicting human infection with H5N1, H5N6, H9N2 or H7N9 
presence or absence. Variables that had a high contribution to the 
occurrence of the human infection avian influenza virus disease 
(weight > 2%) were included in the final model. BRT models also 
reported the predicted probabilities of occurrence of human infection. 
R packages dismo and gbm was to conduct models, and predictive 
power was evaluated using pROC (R v4.3.3 environment).

Results

Spatial and temporal distribution of avian 
influenza

A total of 1,123 H5N1, H5N6, H7N9, and H9N2 human cases are 
collected from January 2011 to March 2024  in China. The total 
number of H7N9 cases was greater than other subtypes (Table 1). The 

male-to-female ratio varied across subtypes, with a higher proportion 
of males for H5N1 and H7N9. The human infection with different 
subtypes also shows a very different age-specific epidemiology. The 
median age of H5N1 cases was 38.5 years, with an inter quartile range 
(IQR) from 20 to 49.3 years. The median age of H5N6 and H7N9 cases 
is similar (52 years and 58 years). And H9N2 cases is the youngest 
(median and IQR: 5 and 2–9 years). The proportion of recovery is 
greater than deaths for all subtypes, and most of the cases had history 
of poultry exposure. Compared to other subtypes, H7N9 cases are 
more likely to be severe. Median time from illness onset to hospital 
admission of H5N1 cases was longer than other subtypes. For H7N9 
cases, the median time from hospital admission to death was longer 
than for other subtypes. Median time from illness onset to death of 
H5N6 cases was longer than other subtypes.

The human infections with avian influenza virus (H5N1, H5N6, 
H7N9, and H9N2) from 2011 to 2024 displayed distinct spatial 
distribution in China (Figure 1). It exhibited the spatial distribution 
of human H5N1 cases in 11 provinces, H5N6 cases in 15 provinces 
and one municipality in China, H9N2 cases in 15 provinces and one 
municipality, and the distribution of human H7N9 cases in 26 
provinces and four municipality. Intuitively, H5N1 and H5N6 cases 
are mainly concentrated in Eastern and Southwest China, while H9N2 
and H7N9 infection is more widely distributed even penetrates into 
the northwest China. The annual number of human cases also shows 
significant variations (Figure 2A). The largest number of H5N1 and 
H9N2 cases were reported in 2022, with 12 and 36 patients, 
respectively, and the largest number of H5N6 cases was reported in 
the 2021, with a total of 59 patients, while the majority of H7N9 cases 
were reported in 2017, with a total of 598 patients. Human H7N9 and 

TABLE 1 The characteristics of human case with H5N1, H5N6, H7N9, and H9N2 virus infection, January 2011 to March 2024.

Categories H5N1 (n  =  32) H5N6 (n  =  133) H7N9 (n  =  826) H9N2 (n  =  132)

Age, year (Median, IQR) 38.5 (20–49.3), n = 28 52 (37–58), n = 129 58 (46–67), n = 815 5 (2–9), n = 126

Male (n, %) 19 (67.9), n = 28 60 (45.8), n = 131 576 (70.8), n = 814 45 (37.5), n = 120

Outcome (n, %)

Died 5, 15.6 29, 21.8 136, 16.5 -

Recovered 27, 84.4 104, 78.2 690, 83.5 132, 100

Poultry exposure (n, %)

Any exposure to poultry 14, 43.8 62, 46.6 101, 12.2 44, 33.3

Visited live poultry market 4, 12.5 22, 16.5 286, 34.6 19, 14.4

Exposure to backyard poultry 2, 6.3 21, 15.8 119, 14.4 22, 16.7

Exposure to sick or dead poultry 1, 3.1 7, 5.3 1, 0.1 0, 0

Occupational exposure to live poultry 2, 6.3 0, 0 61, 44.2 0, 0

Contact with human cases of infection 0, 0 0, 0 10, 1.2 0, 0

No exposure or have unclear history of exposure 9, 28.1 21, 15.8 248, 30.0 47, 39.2

Disease severity (n, %)

Mild 23, 71.9 80, 60.6 349, 42.3 130, 98.5

Severe 4, 12.5 24, 18.2 341, 41.3 2, 1.5

Fatal 5, 15.6 29, 21.8 136, 16.5 –

Median time from illness onset to hospital admission, d (IQR) 5 (3–7) 4 (1–5) 3 (1–3) 1 (0–6)

Median time from hospital admission to death, d (IQR) 2 (2–2) 9 (4.5–13.3) 10 (7–13) –

Median time from illness onset to death, d (IQR) 5 (5–7) 13 (8.3–15.8) 11 (8–14) –
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H5N1 infections exhibited seasonality, with more cases occurring in 
the cool/cold season, while there are sporadic H5N6 and H9N2 cases 
were reported throughout the year (Figure 2B).

Risk factors for avian influenza

Further, the results revealed that, for all 4 viruses infection, a 
higher risk of human infection was associated with density of pig and 
density of human population (relative contributions >5%) (Table 2). 
In addition, the relative contribution of the number of live poultry 
markets, precipitation of warmest quarter, precipitation of wettest 
quarter, percentage coverage of wetland, mean temperature of 
coldest quarter, and precipitation of wettest month for H5N1 are 
15.4% (−2.04–32.84%), 15.0% (1.28–28.72%), 14.7% (−2.55–31.9%), 
13.8% (−3.45–31.05%), 8.4% (−4.928–21.728%), and 7.1% (−3.68–
17.88%). The occurrence of human infection with H5N6 were found 
to be  significantly associated with the number of live poultry 
markets, the percentage coverage of irrigation, density of pig, 
precipitation of wettest quarter, precipitation of coldest quarter, with 
relative contributions of 42.9% (33.10–52.70%), 14.4% (9.90–
18.91%), 10.8% (7.08–14.52%),8.9% (0.08–17.72%), and 5.3% 
(2.16%-8.44). The number of live poultry markets (relative 
contribution 22.3%) was found to be the most important variable in 
predicting the risk of human infection with H9N2 in the model, 
followed by percentage coverage of wetland (17.5%), the percentage 

coverage of irrigation (15.6%), mean temperature of warmest quarter 
(11.5%), precipitation of wettest quarter (9.5%), and mean 
temperature of wettest quarter (5.3%). In particular, the percentage 
coverage of irrigation played important roles in the occurrence of 
human infection with H7N9 (BRT mean weights are 68.5%), 
followed by density of pig (9.4%) and density of human 
population (8.0%).

Although the four viruses share several variables as common 
risk factors, the effect patterns differ among them. The fitted 
functions plotted based on the BRT model showed that the 
occurrence of human H5N1 infection increased with the number 
of live poultry markets, precipitation of warmest quarter, 
precipitation of wettest quarter, mean temperature of coldest 
quarter, and precipitation of wettest month, whereas the percentage 
coverage of wetland manifested an opposite trend (relative 
contributions >5%) (Figure 3A). Specifically, the risk associated 
with live poultry markets clearly escalates once the number of such 
markets reaches 30, and it increases even further when this number 
reaches 80, highlighting the importance of regulating and 
monitoring such markets to control virus spread. Similar risk 
patterns are observed in relation to the density of the human 
population, precipitation levels in the warmest and wettest quarters, 
mean temperature during the coldest quarter, and precipitation in 
the wettest month. In these cases, the risk intensifies swiftly after 
surpassing a specific threshold before stabilizing. These results 
emphasizes the need for targeted surveillance and intervention 

FIGURE 1

Spatial distribution of human infections with H5N1 (A), H5N6 (B), H9N2 (C), and H7N9 (D) in China from January 2011 to March 2024.
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efforts during high-risk periods, such as the wettest and warmest 
months. Furthermore, the inverse relationship with the percentage 
coverage of wetland might point to natural ecosystem services 
provided by wetlands that reduce the likelihood of human exposure 
to the virus, perhaps by maintaining ecological balance and 
reducing interactions between wild birds and humans. Therefore, 
preserving wetlands could serve as an indirect but valuable public 
health strategy.

The fitted functions for human infection with H5N6, as 
depicted based on the BRT model, indicated that the occurrence of 
human infection increased with the number of live poultry markets, 
precipitation of the wettest quarter, and precipitation of the coldest 
quarter (Figure 3B). The risk of the number of live poultry markets 
exhibited a stepwise increase, stabilizing after reaching 110, 
underscoring the critical need for stricter biosecurity measures and 
regulation in areas with a high concentration of such markets. 
Policies aimed at reducing market density might be recommended 
to mitigate infection risk. When the precipitation of the wettest 

quarter is below 400 mm, the risk is minimal. It then gradually 
increases as the precipitation levels rise, reaching a stabilization 
point after surpassing 600 mm. Similarly, lower risk is observed 
when the precipitation of coldest quarter is lower than 130 mm, 
with risk escalating as precipitation levels rise, peaking at 135 mm 
before stabilizing. These implied that surveillance efforts should 
be intensified during periods of heavy rainfall. However, the effect 
of the percentage coverage of irrigation, density of pig, and density 
of human population on the risk of H5N6 infection appears to 
be  non-monotone (Figure  3B), indicating a more complex 
relationship between these variables and the risk of infection, which 
may be  associated with local ecological and socio-
economic contexts.

For human infection with H9N2 viruses, the number of live poultry 
markets, mean temperature of warmest quarter, precipitation of wettest 
quarter, density of human population, and mean temperature of wettest 
quarter share a similar risk pattern with increasing trend, while the 
percentage coverage of wetland showed a totally opposite trend 

FIGURE 2 (Continued)
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(Figure 3C). Specifically, when the number of live poultry markets 
exceeds 40, the risk increases significantly. The mean temperature of 
warmest quarter exceeds 27°C, the risk increases evidently; similarly, 
mean temperature of wettest quarter exceeds 27°C, the risk also 
increases evidently. And precipitation of wettest quarter reaches 
400 mm, the risk elevated. In addition, density of human population, 
reaches 500 person per km2, the risk was higher than those lower 500 
person per km2. The risk is high when the percentage coverage of 
wetland is lower than 10% and dropped thereafter. The percentage 
coverage of irrigation and density of pig also shows non-monotone risk 
curve, with the peak risk reached at 85 and 14%, respectively.

In contrast, there are fewer risk factors for H7N9. Generally, a 
higher the percentage coverage of irrigation, density of pig, and 
density of human population were associated with a higher risk of 
H7N9 infection, also in a non-monotone manner, with the peak risk 
reached at 70, 15%, and 1,250 person per km2, respectively 
(Figure  3D). The risk is high when the number of live poultry 

markets is more than 20, although the relative contributionsis only 
4.6%, lower than 5%, which also indicated its role in H7N9 infection. 
Overall, each virus has its own ecological and social drivers for 
human infection. The number of live poultry markets and 
precipitation of warmest quarter contributed the most to H5N1 
infection. For H5N6 infection, the key factors were precipitation of 
wettest quarter and the number of live poultry markets. H9N2 
infection was most influenced by the number of live poultry markets 
and the percentage coverage of wetlands, while the percentage 
coverage of irrigation and pig density were the most significant 
contributors to H7N9 infection.

To acquire the model-fitted probability of occurrence of human 
infection with H5N1, H5N6, H9N2, and H7N9, a bootstrapping 
procedure for the BRT model was performed to create robust 
estimates. The spatial distribution of the model-predicted risk areas 
of occurrence of human infections was demonstrated in Figure 4. 
The distributions of model-predicted risk resembled the regions 

FIGURE 2

Temporal distribution of human infections with H5N1, H5N6, H9N2, and H7N9 in China from January 2011 to March 2024. Distribution by years of 
avian influenza cases (A); distribution by season of avian influenza cases (B).
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where are currently collected. The predicted distribution 
probabilities for H5N1 presence in southwestern China including 
Guangxi, Sichuan, Guizhou, and Yunnan is very high, with values 
of 0.86, 0.82, 0.80 and 0.60, respectively. The predicted map of 
H5N6 showed that the highest risk areas were southeastern China, 
extending from the Pearl River delta near Guangzhou to the Yangtze 
River delta near Shanghai and covering most areas of Jiangsu, 
Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Guizhou, Yunnan, Henan 
Provinces, even Beijing. Notably, hot spots for human infections 

with H5N6 were found in Sichuan, Hunan, Guangdong Province 
and Guangxi Autonomous Region. The distributions of high-risk 
areas of H9N2 were similar with H5N6. Compared to H5N6 and 
H9N2, the high-risk areas of H7N9 are more geographically 
extensive, and might occur even in the most northwestern part of 
China such as Xinjiang and Inner Mongolia Autonomous Region.

To evaluate the discriminatory power, the receiver-operating 
characteristic (ROC) curve was plotted for the BRT model and area 
under the curve (AUC) was calculated. The accuracy metrics of the 

TABLE 2 Results of the boosted regression trees applied to the occurrence of human infection with avian influenza A (H5N1, H5N6, H9N2 and H7N9) 
virus data.

Relative contribution

Human H5N1 infection Human H5N6 infection Human H9N2 infection Human H7N9 infection

Variable
Mean 

(%)
SD 95%CI

Mean 
(%)

SD 95%CI
Mean 

(%)
SD 95%CI

Mean 
(%)

SD 95%CI

LMP 15.4 8.9
−2.04 to 

32.84
42.9 5.0 33.10–52.70 22.3 5.4 11.72–32.88 4.6 1.7 1.27–7.93

Irrigate 4.5 1.8 0.97–8.03 14.4 2.3 9.90–18.91 15.6 2.3 11.09–20.11 68.5 2.2 64.19–72.81

BIO19 –* – – 5.3 1.6 2.16–8.44 – – – – – –

BIO18 15.0 7.0 1.28–28.72 2.1 1.9 −1.62–5.82 – – – 3.2 0.8 1.63–4.77

Density of pig 5.3 3.5
−1.56 to 

12.16
10.8 1.9 7.08–14.52 11.2 2.1 7.08–15.32 9.4 1.1 7.24–11.56

BIO16 14.7 8.8
−2.55 to 

31.95
8.9 4.5 0.08–17.72 9.5 4.1 1.46–17.54 – – –

Density of 

human 

population

5.8 2.4 1.10–10.50 6.4 1.3 3.85–8.95 7.3 1.7 3.97–10.63 8.0 3.8 0.55–15.45

BIO2 2.7 1.0 0.74–4.66 3.2 1.1 1.04–5.36 – – – – – –

BIO10 – – – – – – 11.5 6.5
−1.24–

24.24
– – –

Wetland 13.8 8.8
−3.45 to 

31.05
– – – 17.5 9.4

−0.92–

35.92
– – –

BIO4 2.4 2.4
−2.304 to 

7.104
– – – – – – – –

BIO7 2.8 2.3
−1.708 to 

7.308
– – – – – – –

BIO8 2.5 1.4
−0.244 to 

5.244
– – 5.3 2.1 – –

BIO9 3.8 3.7
−3.452 to 

11.052
– – – – – –

BIO11 8.4 6.8
−4.928 to 

21.728
– – – – – –

BIO12 2.0 1.2
−0.352 to 

4.352
– – – – – –

BIO13 7.1 5.5
−3.68 to 

17.88
– – 2.1 0.8 – –

BIO14 2.5 1.7
−0.832 to 

5.832
– – – – – –

*: “–” These variables were excluded from the final model due to small BRT weights (<2.0%). Variables with mean weights≥5% were considered as significant contributors to the occurrence of 
human infections. LMP, the number of live poultry markets; Irrigate, the percentage coverage of irrigation; BIO02, mean diurnal range; BIO04, temperature seasonality; BIO07, annual range of 
temperature; BIO08, mean temperature of wettest quarter; BIO09, mean temperature of driest quarter; BIO10, mean temperature of warmest quarter; BIO11, mean temperature of coldest 
quarter; BIO12, annual precipitation; BIO13, precipitation of wettest month; BIO14, precipitation of driest month; BIO16, precipitation of wettest quarter; BIO18, precipitation of warmest 
quarter; BIO19, precipitation of coldest quarter.
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predictions produced by the BRT models are excellent, with mean 
AUC values estimated using the evaluation dataset ranging from 0.986 
to 0.997 (Supplementary Figure 1). As expected, the AUC estimated 
based on the training data is always better than that estimated using 
the evaluation dataset.

Discussion

The cases in China were collected from January 2011 to March 
2024. Individual-level characteristics vary between subtypes as 
previous study (18). The spatial distribution of H5N1, H5N6, H9N2, 

FIGURE 3 (Continued)
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and H7N9 indicated some differences. The density of pig and density 
of human population were identified potential warning factors for the 
incidence of H5N1, H5N6, H9N2 and H7N9 subtype infections. 
Furthermore, the distributions of BRT model-predicted risk are 
similar with the areas where are currently collected. To the best of our 
knowledge, this is the first study to predict the geographic distribution 
of human infection with avian influenza A (H5N6) and (H9N2) by 
boosted regression tree model in China.

Prior to the emergence of the highly pathogenic H7N9 avian 
influenza at the end of December 2016, the subtype had mild or even 
no symptoms in poultry, making surveillance difficult. But the highly 
pathogenic strain of H7N9 virus was found in 2017, spreading rapidly 
through poultry in the following months. As for H5N6, the number 
of reported cases suddenly increased significantly in 2021, and 4 new 
genotypes detected in 2021 were the major causes of increased H5N6 
virus infections (19).

Previous studies have indicated that environmental factors also 
affect the spread of avian influenza, such temperature and relative 
humidity (20). In addition, BRT model has been employed in 
predicting the potential geographic distribution of H7N9 and 
H5N1, identifying suitable areas for disease occurrence and 
assessing risk factors. Martin et al. found that HPAI H5N1 clinical 
disease outbreak occurrence in domestic poultry was primarily 
linked to chicken density, human population density, and elevation 
(17). Fang et  al. discovered that live poultry markets, human 
population density, irrigated croplands, built-up land, relative 

humidity and temperature significantly contributed to the 
occurrence of human infection with H7N9 virus (11). In addition, 
Li et  al. reported that live poultry markets, density of human, 
coverage of built-up land, relative humidity and precipitation were 
significant predictors for both viruses (21). As noted by previous 
studies, live poultry markets serve as critical places for avian 
influenza transmission due to the high density of animal–animal 
and human-animal interactions. The present results reinforced 
critical role of the number of live poultry markets in human 
infection risk across multiple avian influenza viruses. The consistent 
findings likely stem from the fact that these markets provide ideal 
conditions for virus transmission, including direct contact between 
humans and infected birds, as well as the potential for virus 
persistence in contaminated environments.

In the present study, it is interesting to note that human infections 
with H5N1, H5N6, H9N2 and H7N9 share similar social demographic 
factors (density of pig and density of human population). High density 
of human population and density of pig lead to a high risk of H5N1, 
H5N6, H9N2 and H7N9 infections. One interpretation is that densely 
populated areas are more likely to be associated with poultry-related 
trading or farming, which may promote the spread of pathogens in 
animal hosts and increase the chances of human infection with avian 
influenza. Another possible reason is that patients are more likely to 
be observed in areas with more people and timely medical facilities. 
When the population density reaches a certain threshold, the risk of 
infection tends to level out, which may be  explained by virus’s 

FIGURE 3

Relationship between risk factors and human infection with avian influenza H5N1 (A), H5N6 (B), H9N2 (C), H7N9 (D) risk. LMP, the number of live 
poultry markets; irrigate, the percentage coverage of irrigation; population, density of human population; pig, density of pig; wetland, the percentage 
coverage of wetland. BIO02, mean diurnal range; BIO04, temperature seasonality; BIO07, annual range of temperature; BIO08, mean temperature of 
wettest quarter; BIO09, mean temperature of driest quarter; BIO10, mean temperature of warmest quarter; BIO11, mean temperature of coldest 
quarter; BIO12, annual precipitation; BIO13, precipitation of wettest month; BIO14, precipitation of driest month; BIO16, precipitation of wettest 
quarter; BIO18, precipitation of warmest quarter; BIO19, precipitation of coldest quarter.
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adaption to man. The ability of a virus to spread from one species to 
another is determined by many factors such as the availability of an 
intermediate host, most commonly pigs, which plays a genetic mixing 
vessel role between birds and humans (22, 23). Therefore, the 
important role of the density of pig for the four subtypes is 
not surprising.

The relationship between occurrence of human cases and the 
percentage coverage of irrigation suggests that waterfowl would act as 
hosts in the transmission of avian influenza viruses. It has been known 
that domestic ducks could excrete large numbers of virus through 
salivary and nasal secretions and feces although seems to be healthy 
(24), thus water is considered as a mediator to facilitate the 
transmission of viruses from waterfowl to human without direct 
contacts. Avian influenza virus has been tested to remain infective for 
up to 207 days at 17°C and up to 102 days at 28°C (25), which increases 
the probability of human infection. From a historical perspective, 
China has developed agriculture from the need to feed the people as 
efficiently as possible, using limited resources. Domestic ducks were 
first migrated from rivers to cultivated rice paddies in the mid-17th 
century during the early Qing Dynasty (26). This practice helps to 
protect the growing rice from pests and reduces usage of chemical 
insecticides. However, it provides a closer proximity for ducks, water, 
food and people.

The live poultry market has always been recognized as the 
reservoir and amplifier of avian influenza viruses, where highly 

crowded environments and frequent poultry exposure are common 
(27–29). In the present study, live poultry markets had a lower 
influence on the occurrence of human H7N9 infection than other 
subtypes infection based on BRT model. This difference might due to 
the different transmissibilities from animal hosts to human across 
viruses but requires further investigation.

Human infection with H5N1 and H9N2 was both affected by the 
percentage coverage of wetland. As mentioned above, domestic ducks 
moved from natural rivers to farmland, the number of important 
hosts in wetland decreased between viruses and human, which may 
partly explain the negative association between occurrence of H5N1, 
H9N2 and the percentage coverage of wetland. In the context of 
continuing the implementation of “return of farmland to lakes” 
policies, attention should be  paid to the ecological impact of the 
migration of wild birds in wetlands.

Precipitation is the principal climatic variables contributing to 
human infections for H5N1, H5N6, H9N2 and H7N9 viruses, while 
mean temperature of warmest quarter only affected the human H9N2 
infections risk. Similar with previous results of the association between 
H5N1 infection and relative humidity (21), BRT models showed that 
higher precipitation created a higher risk of H5N1 and H5N6. Higher 
precipitation always indicates the rainy day. In that case, people prefer to 
stay indoors and increase the physically person-to-person and animal-
to-person distance. Consistent with the finding of precipitation, a higher 
mean temperature of warmest quarter and mean temperature of wettest 

FIGURE 4

Predictive risk maps of probability of occurrence of human infections with H5N1 (A), H5N6 (B), H9N2 (C), and H7N9 (D) in China, and darker red 
indicating a higher risk.
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quarter (after 26°C) was associated with a higher risk of H5N1 and 
H9N2 infection. Global ecosystem is susceptible to impacts from 
changing climate (30). Current evidence suggests that groundwater and 
lake temperatures have been increasing over the past 40 years, causing 
water temperature variation up to 3°C. Warming temperatures are 
considered significant for wildlife disease dynamics and may lead to 
increased avian influenza virus pathogenicity or transmissibility through 
influencing bird migration patterns or other ways (31).

Furthermore, the risk maps provided valuable reference for 
decision-makers and public health officials. For example, the Pearl 
River and Yangtze River deltas, identified as having a high probability 
of H5N6 infection, which was consistent with previous studies (32), 
should be prioritized for enhanced surveillance, stricter biosecurity 
measures in live poultry markets. In areas like southwestern China, 
where H5N1 infection risks are elevated, public health authorities can 
implement targeted vaccination programs for poultry, monitor 
potential outbreaks more closely, and ensure rapid response 
capabilities. Notably, the identification of hot spots for multiple virus 
strains, such as in Guangxi, Sichuan, and Guangdong, suggests that 
these regions may require multi-faceted strategies to address the risks 
of different avian influenza viruses. Understanding these spatial 
patterns facilitates more efficient deployment of diagnostic resources, 
the establishment of quarantine zones if necessary, and the timely 
dissemination of health advice to high-risk populations. The maps can 
also be used by policymakers to assess the need for cross-provincial 
coordination and international collaboration, especially in areas near 
provincial borders or regions with significant poultry trade.

The advantage of this study was that BRT model was used to 
examine the association between ecoclimatic, environmental, social 
and demographic factors and several predominant human infections 
with avian influenza from 2011 to 2024 in China. This study also has 
some limitations. First, the sample of human infection with avian 
influenza viruses was collected from reporting system. It is possible 
that many mild cases have already occurred but were not detected due 
to the incomplete coverage of the sentinel surveillance network in 
several less developed areas of China or not seeking medical care, and 
thus are subject to reporting bias. Second, the relatively smaller cases 
of human H5N6 and H9N2 infections reported in China may limit the 
discriminating power of the BRT models, as demonstrated by the 
lower AUCs compared to H7N9. Third, live poultry movements with 
broiler and layer poultry supply chains (such as breeding, hatching, 
slaughter, wholesale and retail markets) are considered to be  too 
complex to be described on provincial scales (33). So, the number of 
live poultry markets included in the BRT model is not precise. In 
addition, human cases infected with four subtypes were collected the 
provincial level in China during 2011–2024, which may be crude 
scale. And other environmental and socio-economic factors that could 
influence infection risk such as elevation, coverage of built-up land 
and public awareness were not included in the analysis. Finally, it 
should be noted that the BRT model was employed to predict the 
probability of occurrence of human infection with avian influenza 
instead of making causal inferences.

Conclusion

In conclusion, targeted interventions such as continuous 
monitoring of pig density and population density is necessary. In 

addition, mapping predictive risk of various avian influenza viruses 
based on models offers a valuable approach to identify the areas where 
surveillance efforts should be targeted.
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