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Objective: Due to the high global prevalence of silicosis and the ongoing

challenges in its diagnosis, this pilot study aims to screen biomarkers from routine

blood parameters and develop a multi-biomarker model for its early detection.

Methods: A case-control study was conducted to screen biomarkers for the

diagnosis of silicosis using LASSO regression, SVM and RF. A sample of 612

subjects (half cases and half controls) were randomly divided into training and

test groups in a 2:1 ratio. Logistic regression analysis and receiver operating

characteristic (ROC) curves were used to construct a multiple biomarker-based

model for the diagnosis of silicosis, which was applied to both the training and

the testing datasets.

Results: The training cohort revealed significant statistical di�erences (P <

0.05) in multiple hematologic parameters between silicosis patients and healthy

individuals. Based on machine learning, eight silicosis biomarkers were screened

and identified from routine blood cell, biochemical and coagulation parameters.

D-dimer (DD), Albumin/Globulin (A/G), lactate dehydrogenase (LDH) and white

blood cells (WBC) were selected for constructing the logistic regression model

for silicosis diagnostics. This model had a satisfactory performance in the training

cohort with an area under the ROC curve (AUC) of 0.982, a diagnostic sensitivity

of 95.4%, and a specificity of 92.2%. In addition, the model had a prediction

accuracy of 0.936with an AUCof 0.979 in the independent test cohort. Moreover,

the diagnostic accuracies of the logistic model in silicosis stages 1, 2, and

3 were 88.0, 95.4, and 94.3% with an AUC of 0.968, 0.983, and 0.990 for

silicosis, respectively.

Conclusion: A diagnosticmodel based onDD, A/G, LDH andWBC is successfully

proposed for silicosis diagnostics. It is cheap, sensitive, specific, and preliminarily

o�ers a potential strategy for the large-scale screening of silicosis.
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Introduction

Silicosis is a chronic, debilitating and irreversible fibrotic lung
disease resulting from the inhalation of crystalline silica particles,
posing a significant occupational health challenge worldwide.
Characterized by inflammation, nodular lesions, and pulmonary
fibrosis, silicosis leads to severe complications such as tuberculosis,
respiratory failure, and increased mortality (1). The mechanism
of silica-induced pulmonary lesions is multifaceted, involving
direct cytotoxic effects on macrophages, cytokine and chemokine
production, cell apoptosis/necrosis, pulmonary fibrosis, lysosomal
rupture, macrophage surface receptor activation, generation of
reactive oxygen species and inflammasome activation (2–4).
Despite all efforts to improve occupational health, silicosis is still
one of the most prevalent occupational diseases in the world,
afflicts workers in hazardous environments, and kills thousands
of people every year (5). Even worse, silicosis cases still increase
obviously in some specific industries, such as jewelry, glass
production, nanomaterial production, and manufacturing (6, 7).
Recent research indicated that over 230,000 workers in China
were directly exposed to respirable crystalline silica (RCS). Silicosis
has become a huge burden in China, which demonstrated the
highest age-standardized rate (ASR) of silicosis (113.149, 95% UI:
92.924–136.700, per 100,000 population, in 2019) (8, 9). A recent
study from Xin Liu et al. shows that ASRs due to silicosis vary
widely among 204 countries worldwide. Of these, four countries
(Italy, Chile, North Korea, and China) had an ASIR of more
than 1/100,000, and 101 countries had an ASIR of <0.1/100,000,
with the lowest being Iceland at <0.001/100,000, and the highest
being China at 5.92/100,000. Similarly, Iceland had the lowest
ASPR, while China still had the highest (113.15/100,000), followed
by North Korea, Chile, Mexico, Italy, Brazil, Palau, Albania and
Slovenia (10). Therefore, early diagnostics and therapeutics are
critical for slowing disease progression and improving patient
quality of life. Currently, the chest X-ray test is the gold standard
of silicosis diagnosis. Additional tests, such as a breathing test,
chest CT scan, bronchoscopy test, and tissue biopsy of the lungs,
may be required to assess silicosis and associated diseases (11, 12).
However, these traditional examinations rely heavily on pulmonary
functional abnormalities and radiographic changes that occur in
the moderate and late stages of silicosis disease. To reduce delays in
diagnosis and treatment, liquid biopsy techniques based on various
biomarkers are expected to reliably screen and detect the early
stages of silicosis without invasive and expensive examinations (13).

Screening and identification of key biomarkers for specific
diseases are the most crucial in liquid biopsy (14). In the past
decade, various biomarkers have been proposed for the early
diagnosis andmanagement of silicosis (15). Tumor necrosis factor–
α (TNF–α) and interleukins (ILs) are the first to be discovered
as contributors in silicosis progression and potential biomarkers
of silicosis diagnostics. After capturing silica particles, alveolar
macrophages will release many inflammatory cytokines, such as
TNF-α and ILs. These mediators may maintain the inflammatory
process, and then damage cells and the extracellular matrix (16).
The marked increases in TNF-α and ILs could be observed in
silicosis patients before the onset of clinical signs and radiographic
changes, making them promising biomarkers for early diagnosis

of silicosis (17). In addition to inflammatory markers, some
peripheral markers of epithelial destruction have also been regarded
as potential biomarkers of silicosis (16). For example, Clara cell
protein 16 (CC16) plays vital roles in anti-inflammatory, anti-
fibrotic, and immunosuppressive processes. Serum CC16 level was
reported to decrease in silicosis patients due to inflammation and
cell damage (18, 19). Krebs von den Lungen-6 (KL-6) is a mucin-
like glycoprotein on type 2 pneumocytes. The serum level of KL-6
can reflect the extent of alveolar epithelial damage. It is a potential
biomarker for lung fibrosis in general, but its value for specific
diagnosis of silicosis is not yet defined (20–22). Besides, mucin 5B
(MUC5B), neopterin, and matrix metalloproteinases (MMPs) have
also been considered as potential biomarkers of silicosis (23–25).

To date, several silicosis-specific biomarkers have been
discovered in cohort studies and animal experiments. However,
accurate detection of these biomarkers requires delicate
instruments, expensive reagents, and professionally trained
analysts, making large-scale screening difficult to implement in
occupational populations. Since the combination of multiple
biomarkers could improve the specificity and sensitivity of early
diagnostics (14), this pilot study aims to construct a rapid and
cost-effective multiple biomarker-based model for diagnosing
silicosis based on routine laboratory results.

Methods

Study design

This retrospective case-control study aims to develop a
multiple blood biomarker model for diagnosing silicosis in silica-
exposed workers.

Setting

The West China School of Public Health/West China Fourth
Hospital of Sichuan University is one of the most famous public
health colleges in China and the only tertiary Grade A occupational
disease specialist hospital among the 44 commissioned hospitals
of the National Health Commission. It features geriatric medicine,
occupational disease, and minimally invasive treatment. The
West China Fourth Hospital has diagnostic qualifications for
pneumoconiosis and all ten major occupational diseases, which
can meet the testing needs of all occupational disease projects in
the industry.

Participants

We extracted a random sample of patients hospitalized in
the West China Fourth Hospital of Sichuan University between
2021 and 2024 who had documented exposure to silica dust
in occupational settings. Since silicosis is caused by silica dust
exposure and is usually diagnosed as an occupational disease, we
controlled for these factors to reduce bias. Cases were defined as
patients diagnosed with silicosis based on the revised edition (2011)
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of the International Labor Office guideline (26). Controls were
defined as patients who were silicosis-free. We excluded all patients
with severe lung diseases other than silicosis, as well as those
with severe or complex systemic conditions that could confound
the analysis such as malignant tumors, severe arrhythmias, heart
failure, abnormal thyroid function, blood disease, recent surgery,
trauma, long-term alcohol abuse, and poisoning. All experiments
were approved by the ethics committee at West China Fourth
Hospital of Sichuan University (HXSY-EC-2023025). The need
for written patient informed consent was waived as this was a
retrospective study, which did not affect the welfare and rights of
the patients.

Variables

The study outcomes are the diagnosis of silicosis and the
classification of the disease into stages 1–3. The predictor
variables are:

1. Complete blood count testing such as: basophil count (Bas#,
cells/µL), basophil ratio (Bas%, %), eosinophil count (Eos#,
cells/µL), eosinophil ratio (Eos%, %), hematocrit (HCT, %),
hemoglobin (HGB, g/dL), immature granulocyte count (IMG#,
cells/µL), immature granulocyte ratio (IMG%, %), lymphocyte
count (Lym#, cells/µL), lymphocyte ratio (Lym%, %), mean cell
hemoglobin (MCH, pg), mean cell hemoglobin concentration
(MCHC, g/dL), mean corpuscular volume (MCV, fL), monocyte
count (Mon#, cells/µL), monocyte ratio (Mon%, %), mean
platelet volume (MPV, fL), neutrophil count (Neu#, cells/µL),
neutrophil ratio (Neu%, %), neutrophil-to-lymphocyte ratio
(NLR, ratio), platelet large cell count (P-LCC, 103/µL), platelet
larger cell ratio (P-LCR, %), platelet crit (PCT, %), platelet
distribution width (PDW, %), platelets (PLT, 103/µL), red blood
cell count (RBC, 106/µL), red blood cell distribution width
coefficient of variation (RDW-CV, %), red blood cell distribution
width standard deviation (RDW-SD, fL), white blood cell count
(WBC, cells/µL). The complete blood counts were performed
by the BC-6800PLUS Analysis System (Mindray, China). PLCC,
P-LCR, RDW-CV, and RDW-SD were presented as ratios.
2. Biochemical testing such as: albumin/globulin ratio (A/G,
ratio), albumin (ALB, g/dL), alanine transaminase (ALT,
U/L), aspartate transaminase (AST, U/L), blood urea nitrogen
(BUN, mg/dL), cholesterol (CHOL, mg/dL), creatine kinase
(CK, U/L), creatine kinase muscle and brain isoenzyme
(CKMB, U/L), creatinine (CREA, mg/dL), C-reactive protein
(CRP, mg/L), direct bilirubin (DBIL, mg/dL), gamma-glutamyl
transferase (GGT, U/L), glucose (GLU, mg/dL), hydroxybutyrate
dehydrogenase (HBDH, U/L), high-density lipoprotein-
cholesterol (HDL-C, mg/dL), lactate dehydrogenase (LDH,
U/L), low-density lipoprotein-cholesterol (LDL-C, mg/dL),
total bilirubin (TBIL, mg/dL), triglyceride (TG, mg/dL), total
protein (TP, g/dL), and uric acid (UA, mg/dL). The biochemical
analysis was performed by Atellica CH930 (Siemens, Germany).
3. Coagulation testing such as: activated partial thromboplastin
time (APTT, s), D-dimer (DD, µg/mL), fibrinogen (FIB, g/L),
prothrombin time-international normalized ratio (PT-INR,
ratio), prothrombin time (PT, s), thrombin time (TT, s). The

TABLE 1 Comparison of whole blood cell parameters between the

silicosis group and the control group.

Parameters Control
group
(204)

Silicosis
group
(204)

t-
values

P-
values

Bas# 0.03± 0.02 0.02± 0.01 −2.63 <0.050

Bas% 0.51± 0.28 0.40± 0.22 −5.37 <0.001

Eos# 0.17± 0.15 0.15± 0.12 −1.83 0.068

Eos% 2.89± 2.25 2.46± 2.01 −2.52 <0.050

HCT 47.88± 3.62 42.91± 5.08 −13.95 <0.001

HGB 155.4± 12.12 139.18± 17.94 −13.11 <0.001

IMG# 0.01± 0.02 0.04± 0.12 4.39 <0.001

IMG% 0.22± 0.31 0.43± 0.84 4.26 <0.001

Lym# 1.71± 0.56 1.30± 0.48 −9.54 <0.001

Lym% 29.02± 7.51 20.72± 8.02 −13.21 <0.001

MCH 30.77± 1.80 30.14± 2.63 −3.48 <0.001

MCHC 324.56± 7.38 324.01± 10.72 −0.74 0.457

MCV 94.79± 5.08 92.92± 6.61 −3.93 <0.001

Mon# 0.36± 0.12 0.46± 0.19 8.43 <0.001

Mon% 6.00± 1.47 6.99± 1.98 6.95 <0.001

MPV 11.53± 1.59 10.86± 1.76 −4.95 <0.001

Neu# 3.72± 1.27 4.87± 2.38 7.45 <0.001

Neu% 61.57± 7.99 69.43± 9.14 11.33 <0.001

NLR 2.37± 1.07 4.61± 4.04 9.38 <0.001

P-LCC 63.46± 16.33 57.3± 16.63 −4.62 <0.001

P-LCR 36.6± 10.81 32.12± 11.74 −4.91 <0.001

PCT 0.21± 0.05 0.2± 0.06 −0.47 0.64

PDW 16.48± 0.33 16.34± 0.38 −4.82 <0.001

PLT 183.79± 55.23 195.21± 71.27 2.21 <0.050

RBC 5.06± 0.43 2.91± 0.97 −35.59 <0.001

RDW-CV 13.32± 0.76 13.63± 1.35 3.5 <0.001

RDW-SD 44.74± 2.64 44.72± 3.76 −0.07 0.946

WBC 5.99± 1.65 3.19± 2.52 −16.2 <0.001

coagulation analysis was performed by a CS-5100 analyzer
(Sysmex, Japan).

Study size

The sample size was estimated using G∗Power version 3.1.9.2.
The minimum sample size required for power analysis (b-error
95%; effect size 0.5) was 105 samples. An equal number of cases and
controls were randomly selected. The control sample was retained
if there was no statistically significant difference in age and gender
compared to the silicosis. Subsequently, subjects were randomly
divided into training and testing cohorts in a 2:1 ratio. Training and
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TABLE 2 Comparison of biochemical parameters between the silicosis

group and the control group.

Parameters Control
group
(204)

Silicosis
group
(204)

t-
values

P-
values

A/G 1.99± 0.33 1.55± 0.32 −16.63 <0.001

ALB 48.06± 2.74 39.94± 4.13 −28.64 <0.001

ALT 26.4± 25.86 27.92± 49.57 0.47 0.635

AST 24.19± 11.08 31.73± 63.32 2.05 <0.050

BUN 5.65± 1.49 5.64± 1.78 −0.05 0.958

CHOL 4.89± 0.93 4.26± 0.83 −8.93 <0.001

CK 131.44±
299.12

88.38± 48.47 −2.49 <0.050

CKMB 15.16± 4.84 20.51± 6.32 11.77 <0.001

CREA 82.43± 15.97 75.21± 32.79 −3.46 <0.001

CRP 1.48± 2.01 19.87± 23.37 13.71 <0.001

DBIL 5.18± 1.89 4.96± 5.77 −0.65 0.516

GGT 40.35± 29.89 45.58± 49.09 1.59 0.111

GLU 5.88± 1.44 2.71± 1.61 −25.67 <0.001

HBDH 130.22± 21.69 157.78± 34.76 11.77 <0.001

HDL-C 1.32± 0.34 1.10± 0.31 −8.42 <0.001

LDH 174.66± 30.26 233.88±
166.76

6.11 <0.001

LDL-C 3.19± 0.83 3.01± 0.87 −2.74 <0.050

TBIL 14.52± 6.19 13.34± 8.14 −2.02 <0.050

TG 1.91± 1.38 1.40± 0.61 −5.86 <0.001

TP 72.69± 4.28 66.68± 5.86 −14.48 <0.001

UA 385.84± 83.04 348.7± 93.2 −5.21 <0.001

testing samples were retained if there was no statistically significant
difference in age ranges.

Statistical analysis

Data processing and statistical analysis were conducted using
Excel (Version 2016) and R programming (R Foundation for
Statistical Computing, Version 4.2). Three machine learning
algorithms Random Forest (RF), Least Absolute Shrinkage and
Selection Operator (LASSO) regression, and Support Vector
Machine-Recursive Feature Elimination (SVM-RFE) were
employed for biomarker selection. RF models, implemented using
the randomForest package, consist of multiple decision trees
constructed from random subsets of predictors. LASSO regression,
executed with the glmnet package, is an extension of generalized
linear regression that reduces model complexity by penalizing the
loglikelihood function. SVM-RFE is a supervised learning method
used for classification and feature selection with the e1071 package.
To enhance robustness, biomarkers common to all three methods
were selected if statistically different in case and control groups. For

TABLE 3 Comparison of coagulation parameters between the silicosis

group and the control group.

Parameters Control
group
(204)

Silicosis
group
(204)

t-
values

P-
values

APTT 30.44± 4.98 31.48± 4.33 2.77 <0.050

DD 94.95± 80.31 341.83±
425.36

9.98 <0.001

FIB 2.78± 0.51 3.54± 0.92 12.74 <0.001

PT-INR 0.99± 0.21 1.06± 0.25 3.67 <0.001

PT 10.99± 2.29 11.8± 2.68 4.02 <0.001

TT 14.91± 1.65 14.69± 1.68 −1.58 0.113

categorical variables, comparisons between groups were evaluated
through the chi-square test. For continuous variables, we used
the t-test in case of normally distributed variables and the Mann-
Whitney test otherwise. Differences between the two groups in
selected biomarkers were further evaluated through the heatmap,
the Venn diagrams and line plots generated using the ggplot2
package. Finally, confounding variables were excluded from the
potential set of selected predictors and the multicollinearity was
studied. The remaining biomarkers were included in a logistic
regression model implemented in R using the glm function,
refined through stepwise regression (using the step function) and
multicollinearity analysis. The receiver operating characteristic
(ROC) curves were generated using the pROC package to assess
the diagnostic performance of the selected biomarkers individually
and in combination. All statistical analyses were two-tailed, and
results were considered statistically significant if the P-value was
<0.05. The diagnostic accuracy of the selected model was further
evaluated across the different stages (1–3) of the disease.

Results

Participants

We analyzed 306 silicosis cases and 306 controls. Of the 306
patients with a diagnosis of silicosis, 75 had stage 1 silicosis, 65 had
stage 2 silicosis, and 166 had stage 3 silicosis. The training cohort
included 204 silicosis patients and 204 controls, while the testing
cohort included 102 silicosis patients and 102 controls.

Descriptive data

The mean age of the silicosis group and control group was
55.54 and 55.15 years, respectively. Specifically, since high-intensity
physical industries such as coal mining and stone tool making have
a clear gender preference, the gender of the silicosis group and the
control group in this study was male. There was no statistically
significant difference in age and gender between the silicosis group
and the control group (P > 0.05). Moreover, the mean age of the
case and control groups in the training dataset was 55.22 and 55.02
years old, respectively. The mean age of the case and control groups
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FIGURE 1

Screening of potential biomarkers with machine learning algorithms. (A) LASSO coe�cient profiles of the variables. A vertical line was drawn at the

value chosen by 10-fold cross-validation. As the value of λ decreased, the degree of model compression increased and the function of the model to

select important variables increased. (B) The cross-validation results. The value in the middle of the two dotted lines is the range of the positive and

negative standard deviations of log(λ). The dotted line on the left indicates the value of the harmonic parameter log(λ) when the error of the model is

minimized. Nineteen variables were selected when log(λ) = −7.02. (C) Twenty genes were selected based on the SVM-RFE algorithm with the

highest accuracy. (D) Twenty genes were selected based on the SVM-RFE algorithm with the lowest error accuracy. (E) The error rate of random

survival forest. (F) The top 30 genes were selected and ranked based on the RF algorithm’s importance score.

in the test data set was 56.18 and 55.39 years old, respectively. There
were no statistically significant differences between the case and
control groups in the training dataset and the test dataset in terms
of age range or gender (P > 0.05, Supplementary Table S1).

Blood cell parameters, biochemical and
coagulation characteristics

As shown in Table 1, the silicosis patients had significantly
lower levels of Bas#, Bas%, Eos%, HCT, HGB, Lym#, Lym%, MCH,
MCV, MPV, P-LCC, P-LCR, PDW, RBC, and WBC (P < 0.05).
Meanwhile, significantly higher levels of IMG#, IMG%, Mon#,
Mon%, Neu#, Neu%, PLT, NLR, and RDW-CV were observed in
silicosis patients (P < 0.05). However, the blood cell parameters
Eos#,MCHC, PCT, and RDW-SD showed no significant differences
between the two groups (P > 0.05).

Among the biochemical parameters, there were no significant
differences in ALT, BUN, DBIL, and GGT levels between the two
groups (P > 0.05). However, other biochemical parameters were
altered to varying degrees. Specifically, the levels of A/G, ALB,
CHOL, CK, CREA, GLU, HDL-C, LDL-C, TBIL, UA, TG, and TP
were significantly lower in the silicosis group, and the levels of

AST, CKMB, HBDH, LDH and CRP were significantly higher in
the silicosis group (P < 0.05, Table 2).

Compared with the control group, coagulation parameters of
PT, PT-INR, DD, FIB, and APTT from the silicosis patients were
increased (P < 0.05), while there was no significant difference in
the level of TT between the two groups (Table 3).

Machine learning for screening silicosis
biomarkers

The LASSO regression, SVM-RFE, and RF yielded 18
(Figures 1A, B), 14 (Figures 1C, D), and 13 (Figures 1E, F)
biomarkers, respectively. To improve the robustness of the
biomarker set, we crossed the biomarkers screened by the three
machine learning algorithms, LASSO, SVM, and RF, and finally
developed a biomarker set that included eight potential diagnostic
biomarkers for silicosis (A/G, ALB, CRP, DD, GLU, LDH, RBC,
and WBC).

Violin diagrams were further applied to visualize eight potential
silicosis biomarkers (Figures 2A–H). Among selected biomarkers,
WBC, RBC, ALB, GLU, and A/G showed lower levels in the silicosis
group, while LDH, DD and CRP had the opposite trend.
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FIGURE 2

Violin plots of eight biomarker levels from two groups in the training cohort. (A) A/G; (B) ALB; (C) CRP; (D) DD; (E) GLU; (F) LDH; (G) RBC; (H)WBC. *P

< 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.

Construction of logistic regression model
based on selected biomarkers

The heatmap (Figure 3A) showed the distribution of
differential parameters between the silicosis group and the
control group. The Venn diagram (Figure 3B) showed the
intersection of screening results of three machine learning
algorithms. Line diagrams (Figure 3C) showed the differences
between the two groups for eight potential key biomarkers.
Each of these graphs provided valuable information for assessing
the diagnostic potential of these biomarkers. Subsequently, a
multi-parameter logistic regression model was developed based
on the biomarker set. Among eight selected parameters, GLU
and ALB are usually influenced by the short/long-term dietary
pattern, and CRP is often increased by stochastic factors such
as upper respiratory tract infections. Thus, GLU, ALB and CRP
were eliminated from the set. The model was further optimized
by eliminating non-significant parameters (RBC) through stepwise
regression and eliminating parameters with multicollinearity
problems. Given the multicollinearity of strongly correlated
independent variables in the logistic model, this study analyzed
the correlation between eight key biomarkers, and no strong
correlation was observed (Figure 3D). A model composed of
A/G, DD, LDH and WBC that independently influenced silicosis
diagnosis was established by the logistic regression (P < 0.001,
Table 4). The logistic regression model is represented as logit
P/(1–P) = −1.985 – 3.113∗A/G + 7.162∗DD + 3.393∗LDH
– 6.841∗WBC. By inputting the predictive indicators into the
model, the predicted value (probability P) can be obtained.
Encouragingly, the model demonstrated a diagnostic accuracy
of 0.931.

Independent evaluation of the proposed
multi-biomarker logistic model

To assess the predictive value of the proposed multiple
biomarker-based logistic model for silicosis diagnostics, the AUC
of the logistic model was compared with each of the separate
biomarkers. The ROC curve showed that the logistic model had an
AUC of 0.982, which was better than that of any single biomarker
(Figure 4A). By utilizing themaximumYouden index as a criterion,
the cut-off values, AUC, sensitivity, and specificity for each
biomarker and the logistic model were determined (Table 5). The
logistic model exhibited a sensitivity of 94.6% and a specificity of
95.6% at a threshold value of 0.500. The predictive nomogram was
constructed, whereby each biomarker’s relative level corresponded
to a score, and the total score was obtained by the summation of
the score of each biomarker (Figure 4B). Next, the performance of
this model was tested in the independent test cohort, obtaining a
predictive accuracy of 0.936 and an AUC of 0.979 (Figure 4C).

To explore the diagnostic performance of the logistic model
in different stages of silicosis, the diagnostic accuracy and AUC
of the model at stages 1, 2, and 3 of silicosis were compared. The
results showed that the diagnostic accuracy of the logistic model
for stage 1, stage 2, and stage 3 silicosis was 88.0, 95.4, and 94.3%,
respectively, with AUC of 0.968, 0.983, and 0.990 (Figures 4D–F).

Discussion

Silicosis is a progressive pneumoconiosis characterized by
interstitial fibrosis following exposure to silica dust. According
to the Guidelines for the use of the International Labor
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FIGURE 3

Di�erence indicators between the two groups and the correlation between eight intersecting biomarkers. (A) Heatmap of indicators that di�erentiate

between silicosis patients and controls; (B) Venn diagrams of three machine algorithms; (C) line graph of eight intersecting biomarkers between

silicosis patients and controls; (D) the correlation between eight intersecting biomarkers.

Organization (ILO) International Classification of Radiographs
of Pneumoconiosis, the diagnosis of silicosis primarily includes
X-ray posteroanterior chest radiographs and a clear history of
silica dust exposure (26). Although silicosis patients may exhibit
varying degrees of respiratory symptoms and signs, as well as
abnormalities in certain laboratory tests, none of these are specific.
In recent years, with the continuous deepening of research on
silicosis, some valuable silicosis diagnostic biomarkers have been
proposed, such as interleukin-6 (IL6), interleukin-8 (IL8), TNF-α,
Clara cell secretory protein 16 (CC16), nephronectin (NPNT), and
serum HO-1, shedding light on the pathogenesis and progression
of silicosis (19, 27, 28). Furthermore, studies have found that KL-
6, surfactant protein D (SP-D) and MMPs are potential biomarkers
for diagnosing and monitoring the progression of various fibrotic
lung diseases (29). These findings suggest the necessity of applying
biomarkers to detect silicosis, in addition to imaging studies and
a clear occupational exposure history. However, these biomarkers
rely on specialized equipment and expensive consumables, making
it difficult to adapt to the widespread regional and population
distribution of silicosis. For example, IL-6 and TNF-α are measured

by enzyme-linked immunosorbent assays (ELISAs), while KL-6 is
measured by electrochemiluminescent immunoassays (ECLIAs),
which are expensive and time-consuming. Therefore, we screened
routine physical examination indicators with shorter turn-around
time (TAT), lower test costs and wider popularity for potential
biomarkers related to the progression of silicosis cases. In addition,
laboratory indicators have been integrated using mathematical
statistical techniques, which is more beneficial than focusing on
a single indicator or system to comprehensively describe the
pathological process of the disease and improve the sensitivity and
specificity of diagnosis.

Previous studies have shown that inhaled silica particles
(<10µm) reach the distal lung chambers via the mucociliary
defenses and may interact with mononuclear alveolar macrophages
to induce silicosis (30). Alveolar macrophages either leave the
lung when exposed to silica or migrate to the lung interstitium
where they are transformed into activated interstitial macrophages.
They play a critical role in the progression of silica-induced lung
lesions. Our study found that monocyte-related parameters, such as
Mon#, Mon%, Neu#, and Neu%, were significantly increased in the
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TABLE 4 . Construction of a logistics regression model for the diagnosis of silicosis by multiple biomarkers.

Parameters β-values Wald-values OR (95% CI) P-values

Intercept −1.985 0.102 – <0.001

A/G −3.113 12.124 0.044 (0.007–0.232) <0.001

DD 7.162 38.091 1,289.736 (160.029–15,530.358) <0.001

LDH 3.393 19.861 29.762 (7.276–146.968) <0.001

WBC −6.841 52.803 0.001 (0–0.006) <0.001

“–” indicates that there is no data here.

OR,. odd ratio; CI, confidence interval.

FIGURE 4

Evaluation of the logistic model. (A) ROC curves for the logistic model used to predict silicosis vs. single laboratory biomarkers. (B) The Nomogram of

the logistic model. (C) The ROC curve for the logistic model in the evaluation set. (D) ROC curve of the logistic model for stage 1 silicosis. (E) ROC

curve of the logistic model for stage 2 silicosis. (F) ROC curve of the logistic model for stage 3 silicosis.

TABLE 5 A/G, DD, LDH, and WBC diagnostic value for silicosis.

Biomarkers AUC (95% CI) Cut-o� values Sensitivity Specificity P-values

A/G 0.832 (0.794–0.87) 3.762 0.721 0.779 <0.001

DD 0.896 (0.867–0.926) 3.772 0.917 0.745 <0.001

LDH 0.811 (0.765–0.856) 3.807 0.902 0.691 <0.001

WBC 0.889 (0.852–0.925) 3.707 0.902 0.824 <0.001

Logistic model 0.982 (0.972–0.992) 0.553 0.954 0.922 <0.001

silicosis group (P < 0.05), while Lym# and Lym%were significantly
decreased, ultimately leading to a reduction in the WBC count.

Macrophages originate from monocytes entering the lung from the
bloodstream, and alveolar macrophage activation leads to changes
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within the mononuclear cell system. The increased NLR in the
silicosis group is attributed to increased neutrophils and decreased
lymphocytes in silicosis patients. Serum ALB and globulin
are generally used to indicate nutritional status and chronic
inflammation, respectively. Recently, the A/G ratio has emerged as
a novel prognostic factor (31). In this study, a lower A/G ratio was
observed in the silicosis group, which may be due to both lower
ALB levels in the silicosis group and an increase in inflammation-
related globulin. Inflammation-associated pulmonary fibrosis has
been reported in many studies on the pathogenesis of silicosis,
confirming that silicosis is closely associated with inflammatory
factors. Clinical biochemistry in the silicosis group confirmed
significant increases in inflammatory markers including AST,
CKMB, CRP, HBDH, and LDH. In particular, the elevation of
LDH in patients with silicosis has been confirmed previously,
and evaluations of agate and cowboy sandblasting workers have
shown that plasma LDH levels are associated with exposure
to silica and the severity of the disease (17). Several other
conditions, including systemic infection or inflammation, muscle
injury, hemolysis, thromboembolism or malignancy, may also
result in elevated plasma LDH concentrations. Finally, in the
assessment of coagulation function in silicosis patients, we found
that APTT, DD, FIB, PT-INR, and PT were higher in silicosis
patients compared with the control group, indicating a coagulation
dysfunction in silicosis patients. The coagulation and fibrinolysis
system maintains a balance under normal conditions, which may
be disturbed by hypoxia. A study by Sabit et al. in 2010 showed
that 2 h of hypoxic stimulation led to coagulation activation
(32). As a product of the degradation of fibrin, the elevation of
DD is indicative of hyperfibrinolysis and a hypercoagulable state
(33). We speculate that as silicosis progresses, the increasingly
severe pulmonary interstitial fibrosis leads to tissue hypoxia and
intravascular microthrombosis, which activates the coagulation
system and increases DD. This is consistent with the results of Song
et al. in pneumoconiosis (34).

The advent of machine learning has facilitated the integration
of artificial intelligence with medical data analysis. Through
the utilization of its powerful autonomous learning capabilities,
machine learning is capable of constructing complex, multivariate
predictive models involving multiple parameters. To enhance the
efficacy of machine learning in screening, three distinct machine
learning algorithms (LASSO, SVM, and RF) were employed to
analyze the training set data and to derive their cross-tabulation
results. As a new attempt in the study of diagnostic biomarkers for
silicosis, this study identified four conventional indicators (A/G,
DD, LDH, and WBC) most clinically associated with silicosis,
which constitute a validated model for the prediction of silicosis.

Previous research has proposed a few potential biomarkers for
silicosis. However, the diagnostic efficacy of a single biomarker
is limited when investigating the complex etiology and long
incubation period of occupational diseases (13, 35, 36). Therefore,
the combination of several biomarkers is necessary to improve
diagnostic efficiency. For example, the combined use of KL-6, SP-
D and matrix metalloproteinase-2 (MMP-2) for the diagnosis of
asbestos and silicosis achieved a sensitivity of 83% and a specificity
of 62% (17). In our study, a statistical synthesis approach based
on mathematical statistics was proved to provide better analytical
results in the investigation of occupational silicosis. The ROC curve
analysis showed that the sensitivity of the combination of the

four biomarkers was higher than that of any of the single blood
biomarkers. The combination of A/G, DD, LDH and WBC can
improve the diagnostic efficacy for silicosis. In addition, due to its
simplicity, non-radioactive, and non-invasive nature, this model
is expected to be widely used for silicosis diagnostics. However, it
should be noted that the application of any diagnostic index for
silicosis should be carried out in a population exposed to silica dust.

Several limitations of this pilot study should be also
acknowledged. Firstly, given the constraints of retrospective data,
we were unable to continuously monitor the biomarker levels of
each patient to evaluate the dynamic changes in the progression
of silicosis. Secondly, further validation through a large-scale,
prospective, multicenter cohort study is expected in the future.
Additionally, since lung imaging alterations are critical for the
current diagnosis of silicosis, future research might integrate
patient imaging characteristics to enhance diagnostic precision.

Conclusions

Based on machine learning, eight potential silicosis biomarkers
were selected from routine blood parameters in the clinic, and four
biomarker-based (A/G, DD, LDH and WBC) logistic regression
model was further developed for the silicosis diagnosis in this
study. These routine blood indicators may be used as readily
available biomarkers for the adjuvant diagnosis of silicosis. Our
study provided a potentially economical, convenient, and efficient
strategy for early diagnosis andmonitoring of occupational silicosis
in occupational disease clinics and primary healthcare institutions.
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