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Introduction: A well-connected transportation network unites localities but

also accelerates the transmission of infectious diseases. Subways—an important

aspect of daily travel in big cities—are high-risk sites for the transmission of

urban epidemics. Intensive research examining the transmission mechanisms

of infectious diseases in subways is necessary to ascertain the risk of disease

transmission encountered by commuters.

Methods: In this study, we improve the susceptible–exposed–infected–

recovered (SEIR) model and propose the susceptible–exposed–infected–

asymptomatic infected (SEIA) model. First, we added asymptomatic patients

to the improved model as a parameter to explore the role of asymptomatic

patients in the transmission of infectious diseases in a subway. The numbers of

boarding and alighting passengers were added to the model as two time-varying

parameters to simulate the exchange of passengers at each station.

Results: The improved model could simulate the transmission of infectious

diseases in subways and identify the key factors of transmission. We then

produced an example of the transmission of coronavirus disease (COVID-19) in

a subway using real subway passenger data substituted into the model for the

calculations.

Discussion: We ascertained that the number of exposed people continuously

increased with the operation of the subway. Asymptomatic patients had a greater

impact on the transmission of infectious diseases than infected people in the

course of transmission. The SEIA model constructed in this study accurately

determined the spread of infectious diseases in a subway and may also be

applicable to studies on the transmission of infectious diseases in other urban

public transport systems.

KEYWORDS

SEIA, infectious disease transmission, subway protection measures, asymptomatic

patient, infectious prevention and control

1 Introduction

Infectious diseases pose a long-term threat to human health and disrupt the normal

social order. Infectious diseases are continuous and fast-spreading diseases that can be

transmitted by an infected person to more than one person, exponentially increasing

the total infected population. Common infectious diseases include swine influenza,

avian influenza in birds, severe acute respiratory syndrome (SARS), coronavirus disease
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(COVID-19), dengue fever, and malaria. People are at risk of

exposure to viruses and diseases that can affect their normal lives

during daily commuting or by participating in social activities. The

spread of infectious diseases has accelerated because of population

growth and improved transportation systems.

COVID-19 aroused extensive worldwide attention on

infectious diseases during the related global pandemic. COVID-

19 was rapidly dispersed internationally because of its wide

distribution and difficulties with protection. Research into the

impact of transportation on the spread of epidemics had increased

during the SARS period (1). Some scholars observed that the

contact rate was a key parameter in the study of the evolution of

diseases (2). After the outbreak of COVID-19 in Wuhan, many

scholars paid close attention to the pandemic (3) and conducted

research using mathematical models (4, 5). To predict the trend

of a pandemic slowdown, there are articles which studied the

outbreak of COVID-19 in Greece using a time series model,

probability distribution, and a susceptible–infected–recovered

(SIR) model (6). Some researchers noted that the COVID-19

pandemic could spread in family settings (7). Among the first

scholars to study the spread of COVID-19 on buses, Edwards

et al. (8) confirmed the effectiveness of surgical masks and the

use of air conditioning systems to suppress the spread of the

virus. Moghadas et al. (9) believed that the vast majority of

COVID-19 incidences were related to a silent transmission caused

by a combination of pre-symptomatic diagnosed patients and

asymptomatic infected patients.

The susceptible–exposed–infected–recovered (SEIR) model is

suitable for the study of transmission trends because susceptible

individuals do not always develop symptoms immediately after

infection. Tang et al. (10) used the SEIR model to calculate and

analyze data during the outbreak of the pandemic in Wuhan

and explored the implementation effects of various intervention

measures. Xue et al. (11) observed that the Omicron variant of

COVID-19 was more infectious than the Delta variant and seasonal

influenza; however, its mortality rate was lower. The high infectivity

of the Omicron variant has ensured the continuation of COVID-

19 infections, increasing the risk of infection among people. Prem

et al. (12) used an age-structure-based SEIR model and observed

that measures used to maintain a physical distance had different

implementation effects in different age groups. Maintaining a

certain social distance effectively reduced the incidence rate of

infections in school-age children and the older adult.

Transportation as a requisite for daily commuting should not

only provide travel but also prevent the large-scale spread of

epidemics (13, 14). It is imperative to adopt effective epidemic

prevention measures in transportation. There are researchers who

have found epidemic prevention measures such as city closures

and travel restrictions on domestic airlines were effective (15),

based on passenger volume data from Japan’s public transportation

network. Anderson et al. (5, 16) affirmed the contribution of

vaccine developments, patient isolation, and self-protection to

suppress the spread of epidemics. Some researchers posited that

the channels connecting an epidemic area to other areas should

be controlled during the early stages of an epidemic (17). When

an epidemic spreads, relevant departments can effectively prevent

the further spread of infections such as COVID-19 through the

control of transportation hubs. Liu et al. (18) observed that

the spread of an epidemic could effectively be prevented by

implementing traceability measures to promptly isolate infected

individuals and their close contacts. Rail networks are an important

aspect of an urban public transportation system; they are also a

critical component in epidemic preventionmeasures (19). Research

into the transmission of asymptomatic infections in urban rail

networks has received little attention in consideration of epidemic

prevention measures. In this study, we included asymptomatic

infected patients and explored the spread of infectious diseases

and related factors within the subway system according to subway

passenger flow.

Beginning in 1927, the SIR model (20) marked the inception

of mathematical modeling within the field of epidemiology. Since

that time, a variety of mathematical models built upon this

foundational framework have been continuously developed and

extensively discussed. During the SARS epidemic, many researchers

used the SEIR model developed by the SRI model as the basis

to further explore and change the mathematical model to deal

with the problems at that time (21, 22). In the COVID-19 era,

the SEIR model is still a common tool for many scholars to find

ways to prevent the epidemic in the face of a more complex

environment. Several studies have used SEIR models to talk about

the changing patterns of the global pandemic (23, 24) or to predict

the effectiveness of government anti-epidemic policies (25, 26). In

this study, taking the subway in Z city as an example, the SEIR

model was further innovated, and a model that can be used to

simulate the spread of COVID-19 in the subway was proposed.

We constructed an improved SEIR model called the SEIA

(susceptible–exposed–infected–asymptomatic infected). The SEIA

model considered asymptomatic infected patients to be virus

spreaders. We studied the transmission mechanism of infectious

diseases in subway systems with highly concentrated populations,

based on the impact of changes in passenger flow and infection rates

on the spread of infectious diseases. The key elements influencing

the spread of infectious diseases in the subway were analyzed in

the model calculations on the basis of the scale of exposed people.

This enabled us to understand the spread of infectious diseases in

a subway and further analyze and predict trends in the spread of

diseases. Our research extends and complements prior theoretical

research on the spread of infectious diseases in urban rail systems.

2 Theory

2.1 SIR model

The mathematical models of infectious diseases define the

categories of different populations based on their different states

and then divide them into a square or rectangular warehouse.

Figure 1 depicts a warehouse model in which susceptible (S) is

classified as a susceptible warehouse, infected (I) is classified as

an infected warehouse, etc. The state of different types of people

changes in a warehouse model, so researchers can reassign people

to corresponding warehouses according to their new transformed

state. If a susceptible (S) individual is infected, that individual

is transferred to the infected warehouse. After treatment and

recovery, infected (I) individuals enter the recovered warehouse.

This model is usually represented by differential equations that can
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FIGURE 1

Susceptible–infected–recovered (SIR) model.

be used to predict the number of infected individuals, the scale of

infections, and the duration of the epidemic.

Commonwarehouse models include SI, SIR, and SEIR. The SIR

warehouse model (20) (as illustrated in Figure 1) is a relatively basic

infectious disease model that is suitable for the study of diseases

such as smallpox and parotitis, which occur quickly but produce

antibodies after recovery to ensure no immediate re-infection. The

initial total population is assumed in themodel without considering

the migration status of the population and increases or decreases

in birth and death rates. The number of infected (I) individuals

increases by β ×
S
N × I within a certain period of time, and

the total number of people is N = S+I. Recovered (R) comprises

people who contain antibodies in their body after rehabilitation

and who will not immediately be re-infected, so this number is not

included in the total number of people. Susceptible (S) individuals

are transformed into infected (I) individuals with a probability

of β after contact with infected (I) individuals in the SIR model.

Assuming that the recovery rate of infected (I) individuals from

the state of illness to the state of recovery is γ , then infected

(I) individuals are cured with a probability of γ after a period

of treatment to become a recovered (R) individual. The specific

formula for the SIR model is as follows:











dS
dt

= −β S×I
N

dI
dt

= β S×I
N − γ I

dR
dt

= γ I

and N=S+I (1)

During the transmission process, infected (I) individuals have

the ability to transmit disease after being infected and can spread

to R0 individuals on average during the period of disease (R0
= β/γ in the absence of any intervention measures). When

R0 > 1, the number of infected (I) individuals monotonically

increases toward the highest value; when R0 < 1, the number of

infected (I) individualsmonotonically decreases, leading to the final

elimination of the disease.

2.2 SEIR model

Certain diseases such as COVID-19 have an incubation period.

After a susceptible (S) individual encounters an infected (I)

individual, the susceptible person is not immediately infected with

the disease; a period of incubation is required to develop the

disease. This group is known as exposed (E). Figure 2 presents the

state transition diagram of the SEIR model.

Exposed (E) individuals transform into infected (I) individuals

based on infection rate of σ . The infection rate σ is usually the

inverse of the average incubation period. The differential equation

of the SEIR model is represented as follows:



















dS
dt

= −β S×I
N

dI
dt

= β S×I
N − σE

dI
dt

= σE− γ I
dR
dt

= γ I

, and N=S+E+ I (2)

Susceptible (S) individuals are transformed into exposed (E)

individuals with a probability of β after contact with infected (I)

individuals in the SEIR model. There is an infection rate of σ in

a population of exposed (E) individuals that causes exposed (E)

individuals to be infected with the disease. Thus, infected exposed

(E) individuals move from the exposed warehouse to the infected

warehouse. Patients in the infected warehouse are cured based

on a probability of γ after treatment and become recovered (R)

individuals. Consequently, they move from the infected warehouse

and enter the recovered warehouse.

We primarily considered infectious diseases with latent periods

that result in the creation of antibodies within a short period

of recovery such as H1N1 and COVID-19. The SEIR model

provides a greater alignment with research requirements than

infectious disease models such as SI and SIR because of the addition

of the exposed (E) and recovered (R) categories of population

segmentation. The basic assumptions of classical infectious disease

models do not consider factors such as population migration and

natural death, so they are suitable only for the study of the short-

term process of virus transmission in subway carriages. We chose

the SEIR model as the basic model to study the transmission

mechanism of infectious diseases in subways.

2.3 SEIA model

2.3.1 Model assumptions
The traditional SEIR model involves four types of people:

susceptible (S), exposed (E), infected (I), and recovered (R).

Infected (I) individuals may not experience a secondary

transmission in a single ride because passengers may have a
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FIGURE 2

Susceptible–exposed–infected–recovered (SEIR) model.

limited time traveling on a subway and there is a certain incubation

period for exposed (E) individuals to transform into infected (I)

individuals. The transmission model considers only the process of

susceptible (S) individuals becoming exposed (E) individuals after

they encounter infected (I) individuals.

Susceptible (S) individuals may not actually be infected after

coming into contact with infected (I) individuals. In this study,

this latent population was categorized as exposed (E). The

asymptomatic infected (A) parameter was added to the model to

construct the improved SEIRmodel because asymptomatic infected

(A) individuals also have the ability to spread infections. Our

model included the following four population types: susceptible

(S), exposed (E), infected (I), and asymptomatic infected (A),

abbreviated as SEIA. According to the particularities of the subway

environment, utwas introduced as the number of people boarding

at time t (a certain stop) and gtwas used to depict the number of

people alighting at time t (a certain stop). We studied the spread

of infectious diseases in subways using these two parameters to

simulate the increase or decrease in the number of people in the

subway when a train stops.

In the formula, St is the number of susceptible (S) individuals in

the subway at time t. Et is the number of exposed (E) individuals in

the subway at time t. It is the number of infected (I) individuals

in the subway at time t. At is the number of asymptomatic

infected (A) individuals in the subway at time t. r is the effective

number of infected (I) and asymptomatic infected (A) individuals

who encounter susceptible (S) individuals (the average number

of carriers). β1 is the probability of susceptible (S) individuals

being infected after contact with infected (I) individuals. β2 is

the probability of susceptible (S) individuals being infected after

contact with asymptomatic infected (A) individuals.
∑

gt is the

total number of people alighting at all stops.

2.3.2 Model establishment
The specific formula of the subway infectious disease

transmission model is as follows:























dSt
dt

= −
r×st(β1It+β2At)

Nt
+ ut − gt

dEt
dt

=
r×st(β1It+β2At)

Nt
dIt
dt

= −
gt

∑

gt
× It

dAt
dt

= −
gt

∑

gt
× At

,N = S+ E+ I + A (3)

The improved SEIR model added asymptomatic infected (A)

individuals to the traditional model as the source of infection.

This ensured its suitability for infectious diseases with a silent

transmission such as the influenza of a virus and COVID-19. We

assumed that the initial total population wasN without considering

the migration status of the population and increases or decreases in

births and deaths. The formula for the increase in the number of

exposed (E) individuals over a period of time is as follows:

r × st (β1It + β2At)

Nt
(4)

The total number of people in the SEIA model was calculated

as N = S+E+I+A. Susceptible (S) individuals were transformed

into exposed (E) individuals after contact with infected (I)

individuals or asymptomatic infected (A) individuals. The number

of susceptible (S) individuals changed in different ranges because

trains constantly stop at stations and passengers constantly enter

and leave subways. Correspondingly, the number of exposed (E)

individuals increased as the number of subway stops increased. The

number of exposed (E) individuals reached maximum value when

the train arrived at the final stop.

The model diagram of the improved SEIR model is depicted in

Figure 3.

Not all susceptible (S) individuals are directly exposed to

infection within the contact range of infected (I) or asymptomatic

infected (A) individuals. This may expose certain susceptible

(S) individuals to the range of the virus transmission. It is not

guaranteed that susceptible (S) individuals exposed within the

range of virus transmission will contract the virus; rather, they

have an infection probability of β . Susceptible (S) individuals who

encounter infected (I) individuals may be infected with a virus

at an infection rate of r × β1. Susceptible (S) individuals who

encounter asymptomatic infected (A) individuals may be infected

with the virus at an infection rate of r × β2 and can transform into

exposed (E) individuals. A certain period of incubation is required

before determining whether individuals have been infected with a

disease and for symptoms to appear. The exposed (E) category only

indicates the population that may be infected; it is not equivalent to

those infected during a single ride or encounter with a subway.

2.3.3 Propagation process
Certain susceptible (S) individuals transform into exposed (E)

individuals after contact with infected (I) or asymptomatic infected
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FIGURE 3

Schematic diagram of subway infectious disease transmission model.

(A) individuals with the probability of r × β1 or r × β2.With

each subway or stop, utis added to the number of susceptible (S)

individuals and gtis deducted from the number of susceptible (S)

individuals. Infected (I) and asymptomatic infected (A) individuals

decrease in proportion to
gt

∑

gt
with each stop. The process of virus

transmission begins from the time infected (I) and asymptomatic

infected (A) individuals enter the subway and ends when there are

no infected (I) individuals in the subway. We used MATLAB to

randomly iterate and generate the average passenger flow data of

boarding and alighting.

A scenario analysis can be employed to study the spread of

infectious diseases by assigning different values for the effective

contact number r. The analysis can compare differences in the

number of exposed (E) individuals with the use of protective

measures inside the subway or not and can judge the effectiveness of

the prevention of infection. The degree of transmission of different

infection groups can be studied according to the different values

of the infection rate of infected (I) and asymptomatic infected

(A) individuals. Subsequently, the degree of influence of the two

groups of infected (I) and asymptomatic infected (A) individuals

on exposed (E) individuals can be ascertained. This enables the

identification of key factors in the spread of infectious diseases

in subways, the simulation of trends in the spread of infectious

diseases, and the exploration of disease transmission patterns.

3 Case study

3.1 Background

We used City Z in China as our case study for analysis. City

Z has a population of over 10 million in the central region of

China. City Z is a transportation hub with highways, railways, and

aviation and information facilities. It has a transportation network

composed of three modes of transportation: railways, highways,

and aviation. An integrated urban public transportation system has

also been formed within the city with rail and rapid transport as

the backbone, conventional public transportation as themain body,

and a slow traffic extension. Currently, there are seven rail transport

systems in operation. We selected Line B as our research object

because it was representative and had a large passenger flow. The

comparison between the hourly passenger flow of Line B during

daily periods and the hourly passenger flow during an epidemic

period is illustrated in Figure 4.

Figure 4 illustrates that the hourly passenger flow of Line B

in City Z significantly decreased to fewer than 2000 during an

epidemic period of infectious diseases. However, the passenger flow

Line B was >10,000 during a normal working day. It reached a

peak passenger flow during peak weekdays, with a maximum of

over 50,000 in Line B. The hourly passenger flow was relatively

homogeneous at the weekend, but it still markedly increased during

the peak period.

3.2 Without protective measures

We used the real passenger flow data of Line B subway in City

Z as our original data. As not all newly infected (I) individuals use

a subway on a particular day, the number of cases of infected (I)

and asymptomatic infected (A) individuals on a certain day may be

reduced. This reduced number was used in our model to simulate

the spread of infected (I) individuals in the subway. In different

scenarios, that is, where protective measures are and are not

administered, a change in the number of exposed (E) individuals

can reflect whether the protective measures are effective.

We were able to ascertain the effect of protective measures on

the scale of exposed infections from the simulation results during

the distribution of infectious diseases in a subway.

We assumed that infected individuals encountered 10 stations

accessed by subways during the peak period. The effective contact

number r was set to 9.5 under the scenario of administering no
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FIGURE 4

Comparing of passenger flow rates between normal daily and epidemic periods.

measures (18). The infection rate of infected individuals was β1

= 0.2. Similarly, the infection rate of asymptomatic infected (A)

individuals was β2 = 0.2. The results are depicted in Figure 5.

Figure 5 reveals that the number of susceptible (S) individuals

in the subway gradually increased during the peak period with

continuous stops in the subway system. The change in the number

of susceptible individuals revealed a fluctuating upward trend,

increasing from an initial 98 to 221 at the last stop. The curve

of exposed (E) individuals gradually rose with an increase in

stops, which indicated that the number of exposed individuals was

related to the number of stops of the subway. There were 7.04

exposed individuals after the subway passed through one station;

the number increased to 27.27 when it reached the fifth station.

The number of susceptible dramatically changes in 6 to 7 stations.

Subsequently, the rate of the increase in the number of exposed

individuals becomes more gently until the tenth station, when it

increased to 42.63.

The reason may be that there are many people boarding the

train at the seven stations. We set the number of people who get

on and off at each stop in the model, which is also a feature of our

model. Our data are a random number that are randomly generated

based on real statistics. The sixth station has a large number of

people, and it may be that the sixth station is a larger station or

transfer station. This phenomenon is also common in life.

3.3 With protective measures

We assumed that infected (I) individuals would use the subway

during the peak period. The effective contact number r was set to

3.4 under the scenario of implementing preventative measures (18).

The infection rate of infected individuals was β1 = 0.2. Similarly,

the infection rate of asymptomatic infected (A) individuals was β2

= 0.2. The results are depicted in Figure 6.

Figure 6 reveals that the growth in the number of susceptible

individuals presented a fluctuating upward trend. The number

of susceptible individuals reached 253.02 at the tenth station.

The increasing trend of the number of exposed individuals with

protective measures tended to be more gently than with the

situation without measures. The number of exposed individuals

was only 2.58 when stopping at the first station, but it increased

to 16.47 after passing ten stations.

It was evident that the increase in the number of susceptible

individuals in the scenes with protective measures was greater than

that without protective measures at each station when comparing

the scenes with and without protective measures. The number

of susceptible individuals slowly decreased after administering

protective measures. The rate of transition from susceptible to

infected individuals slowed. The number of exposed individuals

decreased by 32.3 when preventative measures were implemented,

presenting a reduction of 158.83% from the perspective of an

increase or a decrease in the number of infected individuals

and changes in their percentage. Thus, administering relevant

protective measures is effective when using a subway. It is necessary

to use certain protective measures in closed places such as subways,

both for subway operations and personal travel.

4 Results and discussion

As a key parameter in the COVID-19 infection model, the

infection rate β affected the number of exposed individuals. We

analyzed the number of changes of infected and asymptomatic

infected individuals under different infection rates by adjusting

the transmission rate of symptomatic and asymptomatic infections
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FIGURE 5

Number of exposed individuals without protective measures during peak hours.

FIGURE 6

Number of exposed individuals with protective measures during peak hours.
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FIGURE 7

Simulation results of the model for peak hours under Scenario 1.

FIGURE 8

Simulation results of the model for peak hours under Scenario 2.

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1454450
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhou et al. 10.3389/fpubh.2024.1454450

β1 and β2. We determined the extents to which the two types of

infected people had an influence on the trends in the spread of

infectious diseases.

We used the average of the hourly passenger flow during a

peak period of a certain day as the raw data and incorporated it

into the propagation model. We assumed that infected individuals

used the subway through 10 stations in the peak period for the

convenience of comparison. The effective contact number was r =

3.4. We used two types of infection rates and compared them with

two scenarios. The simulation results of the model experiments

for the scenarios are presented in Figures 7, 8. Figure 7 illustrates

Scenario 1, where β1 value was 0.2 and β2 values were 0.2 and 0.5,

respectively. Figure 8 depicts Scenario 2, where β1 value was 0.5 and

β2 values were 0.2 and 0.5, respectively.

In Scenario 1, the transmission rate of infected individuals

was β1= 0.2 and the β2infection rates of asymptomatic infected

individuals were 0.2 and 0.5, respectively. The simulation results

of different infection rates during the peak period are depicted in

Figure 7.

The simulation results illustrated in Figure 7 revealed that the

number of susceptible individuals during the peak period gradually

decreased with an increase in the β2 values during the peak period.

The number of susceptible individuals increased when the trains

continued to stop at stations and new passengers entered the

subway. The change in the number of the susceptible individuals

was not significantly different, indicating that the results of different

values in the scenario had little effect on susceptible individuals.

The curve of exposed individuals revealed a steady upward trend

that decreased after the seventh station; nonetheless, it continued to

grow. The number of exposed individuals increased from the first

station of 2.58 to 16.45 at the tenth station when the β1 value is

0.2. However, the number of exposed individuals increased from

the first station of 5.36 to 33.13 at the tenth station when the β1

value is 0.5. According to the different values of β1, the number of

exposed individuals has a difference of 16.68.

In Scenario 2, the transmission rate of infected individuals

was β1= 0.5 and the β2infection rates of asymptomatic infected

individuals were 0.2 and 0.5, respectively. The simulation results

of different infection rates during the peak period are illustrated in

Figure 8.

The number of susceptible individuals decreased with

an increase in the β2 values in Scenario 2. The β2values

for asymptomatic infected individuals were the highest

because of the β1transmission rate of infected individuals.

Thus, the corresponding curve of the number of exposed

individuals was also the steepest in the two scenarios. The

number of exposed individuals reached 22.69 at the tenth

station of the subway when the β2 value is 0.2. Similarly,

the number of exposed individuals reached 39.09 when

the β2 value is 0.2. According to the different values of

β2, the number of exposed individuals has a difference

of 16.4.

We compared the different values of the β1 infection

rate of infected individuals in the two scenarios. When the

β2infection rate of infected individuals was 0.2, the numbers of

exposed individuals were 16.45 and 22.69, respectively, according

to the different values of β1. When the β2infection rate of

infected individuals was 0.5, the numbers of exposed individuals

were 33.13 and 39.09, respectively, according to the different

values of β1. From a horizontal comparison of the β2 values

in Scenarios 1 and 2, the number of infected individuals

was >16. When comparing the β1infection rate of infected

individuals with the β2infection rate of asymptomatic infected

individuals, we observed that the β2values had a greater impact on

exposed individuals.

Infected individuals may consciously avoid travel and self-

test their health at home when they experience symptoms such

as fevers and coughs. Infected individuals often choose self-

driving, walking, or using well-ventilated public transportation

when there is an essential requirement to travel. Certain passengers

who use the subway may also consciously reduce their contact

with other passengers during the subway ride. It is difficult for

asymptomatic infected individuals to ascertain whether they are

infected as they do not present clinical symptoms. Asymptomatic

infected individuals may maintain normal social activities and may

not consciously maintain a social distance or reduce activities in

crowded places. The transmission caused by asymptomatic infected

individuals in subways is more covert, causing difficulties for

subways and leading to an accelerated spread of infectious diseases.

5 Conclusion

After a pandemic, the aim of prevention and control should

shift to exploring trends in the spread of infectious diseases for

daily epidemic prevention and control. The influence of different

factors on the trend of an epidemic can be identified by exploring

the mechanisms of the transmission of infectious diseases. Cost-

effective dynamic prevention and control measures can be then

administered based on these results.

The patterns of disease transmission must be studied to

ascertain the transmission process of infectious diseases in subways.

In this study, we first determined the number of effective

contacts, the infection rate of infected individuals. We also added

asymptomatic infected individuals to the SEIR model together with

infected individuals as the source of infection in the transmission

process of infectious diseases in subways.

We constructed an SEIA infectious disease transmission model

based on the classic SEIR model. The SEIA model considered

asymptomatic infected individuals and the uniqueness of subway

operating sites. We added changes in the number of people

boarding and alighting the subway to the process of the spread of

an infection using subway passenger flow characteristics.

The model proposed in this study is suitable for the study of the

spread of infectious diseases in subways. It could also be applied to

other transportation systems. The accuracy of the model in future

research could be improved by adding other factors such as the

historical passenger flow of the route stations and if the stopping

stations are in an epidemic area.
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