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Large-scale epidemics of arboviruses, such as dengue, have heightened societal 
awareness regarding the necessity of combating the primary transmission vectors. 
Equally critical is the identification of environmental conditions and variables 
that influence vector population dynamics. Aedes aegypti, the primary vector 
of arboviruses such as dengue and Zika in Brazil, is closely associated with the 
climatic and geographical conditions of urban environments. This study examines 
the relationship between precipitation and confirmed dengue cases in Recife 
(Brazil), employing regression and quantile analyses to evaluate the influence of 
meteorological conditions on the disease’s spread. The findings reveal a direct 
correlation between monthly averages of precipitation and confirmed cases, 
although this is apparent only when excluding years of epidemic peaks. The highest 
number of cases generally aligns with the rainy season, and the lowest with the dry 
season, with weak, moderate and strong precipitation events being closely linked to 
increased dengue incidence. However, notable discrepancies were identified: four 
out of six major outbreaks occurred in drier months, challenging the assumption 
of a straightforward relationship between rainfall and dengue incidence. These 
findings underscore the multifaceted nature of dengue dynamics, suggesting 
that while precipitation plays a significant role, other factors, including serotype 
circulation and broader climatic phenomena, are equally critical in driving outbreaks. 
This complexity highlights the need for a more comprehensive understanding of 
the mechanisms influencing dengue epidemics.
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1 Introduction

Large-scale epidemics of arboviruses, such as dengue, have raised 
an alert for society regarding the fight against their main transmission 
vectors (1–3). Additionally, there is a need to identify the conducive 
environments, conditions and variables that have greater influence 
and effect on these vector populations.

Aedes aegypti is recognized as one of the primary and most 
effective vectors of arboviruses (3, 45), responsible for significant 
epidemics in Brazil, including Zika, dengue, and chikungunya. 
Despite its widespread adaptation to human-influenced environments, 
particularly in large urban centres, studies have demonstrated that 
A. aegypti populations from distinct geographic regions exhibit 
varying levels of vectorial competence. These differences occur even 
among populations residing near humans, underscoring the influence 
of local environmental and genetic factors on the mosquito’s ability to 
transmit pathogens (2, 4–6). For this reason, combating the 
proliferation of populations of larvae of this insect is extremely 
difficult. It utilises stagnant water sources for the generation of 
breeding sites, which are present in both private and public buildings. 
This requires substantial government investment in control and 
information campaigns about the mosquito, as well as the cooperation 
of the entire community of residents (2, 4–6, 42).

Dengue in Brazil has become an epidemiological problem since 
the 1990s, marked by an increase in the number of cases and its 
presence on a national scale in the following years (2, 4, 5). The disease 
is caused by a virus, and it exhibits four different immune responses 
in the infected individual, known as serotypes (7, 8). Their 
introduction into a population without previous exposure has the 
potential to trigger explosive epidemics. The interrelationship between 
these serotypes in the same population is still not fully understood, 
but studies indicate that their co-circulation has the potential to cause 
more severe forms of the disease and even epidemics (4, 5, 8, 9).

Climate factors also influence the presence and abundance of 
mosquito populations (5). In the city of Recife (Pernambuco state), 
located on the coast of the northeast region of Brazil, precipitation is 
demonstrated to be the most predominant meteorological variable in 
studies that correlate it with the increase and decline of A. aegypti 
mosquito larvae populations (10).

Investigations seeking to identify the points of convergence 
between meteorological and health factors are still sparse. However, 
the work of Lima et al. (11), for example, shows a good correlation of 
precipitation and oceanic conditions with dengue cases, aiming to 
predict this variable through multiple linear regression. Silva et al. (12) 
also show good results in predicting cases of this arbovirus in the city 
of Recife, also applying the multiple linear regression method 
combined with machine learning on meteorological data, including 
precipitation, temperature, and humidity.

The present study focuses on understanding the pattern and limits 
of meteorological variables concerning dengue case counts in the city 
of Recife. For this purpose, the monthly and seasonal patterns for 
precipitation and case counts were described, aiming to identify 
possible confluences in both time series. Furthermore, to determine 
which type of precipitation has more influence, a quantile analysis was 

conducted. Simulations using a negative binomial regression model 
were also performed for the same objective. To the best of our 
knowledge, this is the first time that the negative binomial regression 
model is used for predicting dengue case counts, incorporating not 
only meteorological variables but also serotype information as 
explanatory variables.

2 Methods

2.1 Study area

The municipality of Recife is the capital city of the state of 
Pernambuco, localized in the northeast region of Brazil, as highlighted 
in Figure 1.

The climatology of events on the synoptic scale for the region is 
very diverse. Reboita et  al. (13) carried out a literature review on 
precipitation regimes in South America and described the events that 
influence the annual rainfall regime in the city. The maximum rainfall 
in this location occurs in the first half of the year, as was also 
highlighted by Alvarez et al. (46).

In our study area, it is described that the South Atlantic 
Subtropical High (SASH) has a constant role on the transport of 
moisture to this location, and the intensity may vary according to the 
positioning of this system over the Atlantic (14). The eastern wave 
disturbances (EWD) also play a key role in bringing precipitation to 
the region, being defined as disturbances generated in the pressure 
field with a break in the cloud cover in the tropical region of the globe, 
with a shift from east to west (15–17). The High-Level Cyclonic 
Vortices (HLCVs) are also important for the influence on the rainfall 
regime, being defined as a region of high level vortex driven by the 
increase of warm advection in 850 hPa in the southeastern coast of 
Brazil linked to the displacement of a cold front heading towards the 
tropics (18).

The city of Recife has its rainy season from May to July, while 
December, January and February have the lowest rainfall. Due to its 
geographic position (i.e., on the coast and close to the Equator), the 
temperature and relative humidity of the air do not change 
significantly throughout the year, remaining practically constant 
(Figure 2) (46).

2.2 Data

For the study area, the numbers of notifications of confirmed 
dengue cases were obtained in the period from 2001 to 2019 through the 
public platform provided by the Brazilian Unified Health System (SUS 
in Portuguese), DATASUS, which receives the information and counts 
registered in the health units from the Notification Disease Information 
System (SINAN in Portuguese). These numbers are available on a 
monthly temporal frequency, representing the notifications per health 
unit referring to the patient’s municipality of residence (i.e., Recife). For 
considering only confirmed cases, it was necessary to discard all 
classifications that did not confirm the dengue occurrence. Although for 
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the period of study (i.e., from 2001 to 2019) there are two kinds of forms 
to register the occurrence, one regarding 2001–2013 and another from 
2014 onwards, the “discarded,” “ignored/white” and/or “inconclusive” 
were not included in the counts for this study, being considered all other 
classifications. Thus, for the first form covering 2001–2013, its considered 
an occurrence the classifications classic dengue, dengue with 
complications, dengue haemorrhagic fever (DHF) and dengue shock 
syndrome (DSS). From the second form, covering 2014 onwards, it is 
counted dengue, dengue with warning signs, severe dengue.

Data from the DATASUS public platform, covering the period 
from 2013 to 2019, were used to analyse the isolated serotype count 
per patient. For the period from 2001 to 2012, which is not covered by 
DATASUS, data from case studies analysing the epidemiological 
situation in Recife were used. The information was sourced from 
Montenegro et al. (19) for 2002, Castanha (20) for 2005 and 2006, and 
Silva et al. (8) for 2007 to 2009. In years where data were unavailable, 
the DENV-1 serotype was assumed to be  predominant in 
non-epidemic periods, as discussed by Barreto and Teixeira (4). To 
account for the impact of each serotype on case counts and to simulate 
the interrelation and predominance of each serotype in the population, 
percentage values calculated from the total count were applied.

The meteorological data were collected from the conventional 
station of the National Institute of Meteorology (INMET in 
Portuguese) located in Recife (Curado – code 82900, latitude 
−8.05916666 and longitude −34.95916666) for the same period 

available with the dengue data monthly (2001–2019). The variables 
collected for analysis include insolation, precipitation, temperature, 
days of precipitation, atmospheric pressure and relative humidity.

2.3 Categorizing precipitation

To analyse which type of daily precipitation has the most significant 
impact on dengue cases in Recife, a classification of this variable was 
performed using the quantile technique (21–23). This calculation was 
employed by Monteiro et  al. (21) and Souza et  al. (24) to classify 
precipitation in Recife. Initially, a dry day is considered any value lower 
than 2 mm/day, as values of this magnitude do not generate a significant 
impact with regard to water supply and soil infiltration (24).

Afterward, the remaining values were arranged in ascending 
order, and Equations 1, 2 were applied.
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FIGURE 1

Geographic location of the study region, with the city of Recife highlighted (red).
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Where Q(P) is the quantile corresponding to the quantile order P, 
i the order number of each data arranged in ascending order, y the 
precipitation value (mm) for each order, N the number of elements in 
the series and Pi the quantile order.

In the study by Souza et al. (24), an order of classification of daily 
precipitation is defined with the quantile technique for Recife, as 
illustrated in Table 1, which was also applied in the present work. For 
the characterization of monthly rainfall, the same method was used 
but for different quantile intervals (21) as presented in Table 2.

2.4 Negative Binomial regression models

In this work, a Negative Binomial regression model was employed 
using the Python programming language, applying the Stats models 
library in version 0.13.1 (25). The choice of this method was based on 
the characteristics of the time series of dengue cases in Recife. The 
series data are of the discrete quantitative type and present 
overdispersion in the data distribution (Figure 3), indicating that the 

variance is greater than the average. These characteristics are necessary 
to apply the selected regression model (26, 41).

The Negative Binomial model used is type 2 (NB2), which means 
that the variance of the dependent variable is given by Equation 3:

 
2 2X X= + ∗σ α  (3)

With α being the variance σ determination parameter (26). To 
obtain the same, Cameron and Trivedi (26) describe the use of 
auxiliary ordinary least squares regression without a constant 
(Equation 4):
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αµ
µ

− −
= +

 
(4)

From this expression, yi would be the i-th value of dengue cases, 
μi the occurrence rate vector, characteristic for count data, and μi the 

FIGURE 2

Monthly averages for Recife from the INMET conventional station (Curado) with the data covering from 1980 to 2018 referring to the variables.  
(a) Precipitation, (b) temperature (bars) and relative humidity (blue line).
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associated error. In this way, it is possible to find the variance 
parameter α by isolating it from the expression, once the other terms 
are known and calculated in the software mentioned above.

The equation of the multivariate negative binomial regression 
model is defined by:

 

( ) ( ) ( ) ( )
, ,0expr r r r

i p i p i
p

y xβ β
 
 = +
 
 

∑
 

(5)

The model parameter yi is the number of dengue cases recorded 
in month or day i, β0 is the intercept and xp represents the explanatory 

variables, where p = 1, 2, 3, …, n; βp represents the levels of association 
between each meteorological variable and dengue cases.

Two simulations were conducted for each time series of dengue 
cases: the first with only meteorological data as explanatory variables, 
and the second with the addition of serotype count information, as 
shown in Table 3. In all simulations, by applying Equation 5, each 
variable is isolated, and the others are systematically varied to 
determine their degree of influence on the dependent variable (11, 
39). By obtaining this information, the model predicts values of 
dengue cases chosen randomly throughout the time series.

Furthermore, the performance of the model was measured, in 
both simulations, by calculating the correlation of the predicted cases 
with the data of observed cases, also measuring the uncertainty of the 
forecast based on the average deviations of these same series as 
described by Lima et al. (11) showed in Equation 6.

 predicted observedDeviation Deviation Error− =  (6)

To assess the evolution between the simulations, the standard 
deviations and the correlation coefficients between the predicted and 
observed case series were calculated as follows:
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With N being the number of points in time or space, Cp (Co) the 
predicted (observed) cases, ( ( )p oC C ) the mean of the predicted 
(observed) cases and σCp (σCo) the standard deviation of the series of 
predicted (observed) cases.

3 Results and discussion

3.1 Observation data

Figure 4 shows the comparison of the two time series. From this, 
it is possible to observe that dengue cases do not follow a well-
established pattern compared to precipitation. There are periods with 
high peaks of cases (e.g., 2002, 2008, 2010, 2012, 2015, and 2016) that 
do not correspondingly match the peaks of monthly precipitation. 
Additionally, dengue cases do not present a defined seasonal pattern 
throughout the time series. The same is not observed for precipitation, 
whose monthly records show wave behaviour representing 
seasonal patterns.

A large epidemic period of dengue cases was observed in 2002. 
This year was characterized by significant epidemiological outbreaks 
throughout Brazil. For example, in 2001, the DENV-3 serotype was 
reintroduced in the country (4, 5). In this year, it is possible to suggest 
that the surge in cases is solely attributed to favourable weather 
conditions for vector proliferation, but also to the introduction of a 
new serotype into a previously unexposed population. The dynamic 
of 2010 can also be explained by this phenomenon as it marks the year 
when DENV-4 reemerged in some regions of Brazil after decades (27, 
28). However, in the study area, the DENV-1 and DENV-2 serotypes 
were more prevalent (28). In 2015, however, the dominance of 
DENV-4  in Recife may explain the exponential increase in cases 

TABLE 2 Classification order of monthly rainfall through the quantile 
technique for the city of Recife—PE with the appropriate classes and 
probabilities, with Qy (y  =  15, 35, 65, and 85%) being the quantile limit 
used for each classification and y the sampling rainfall value.

Classification Quantile

Very dry y ≤ Q0.15

Dry Q0.15 < y ≤ Q0.35

Normal Q0.35 < y < Q0.65

Rainy Q0.65 ≤ y < Q0.85

Very rainy y ≥ Q0.85

Adapted from Monteiro et al. (21).

TABLE 1 Classification order of daily precipitation from 2001 to 2019 
using the quantile technique for the city of Recife—PE with the 
appropriate classes and probabilities, where Qy (y  =  5, 25, 50, 75, and 
95%) is the quantile limit used for each classification and y is the 
precipitation value of the sample.

Classification Quantile

Dry day y < Q0.05

Very weak Q0.05 ≤ y < Q0.25

Weak Q0.25 ≤ y < Q0.50

Moderate Q0.50 ≤ y < Q0.75

Strong Q0.55 ≤ y < Q0.95

Very strong y ≥ Q0.95

Adapted from Souza et al. (24).

FIGURE 3

Histogram of time series of dengue cases in Recife from 2001 to 
2019.
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FIGURE 4

Time series of precipitation and confirmed cases of dengue per 100,000 people for the city of Recife from 2001 to 2019.

observed that year (29), making it the second significant 
epidemiological year in the time series.

Although there is a lack of data about serotypes (8), the years 
2008, 2012 and 2016 also exhibited similar dynamics to those of other 
epidemic years, but without the introduction of new serotypes. 
Instead, the co-circulation of existing serotypes may have contributed 
to the peaks in dengue cases. While the absence of specific serotype 
data prevents definitive confirmation, it suggests that such dynamics 
are plausible. In addition, some years with high monthly rainfall did 
not have coincide with significant outbreaks of dengue. For instance, 
in 2005 and 2011, despite high rates of monthly precipitation, there 
were relatively few confirmed dengue cases with monthly maximums 
of 113 cases in 2005 and 515 cases respectively, which are much lower 
when compared to other epidemic years, such as 2010 which saw 
2,677 just 1 month.

A possible factor that may also influence dengue cases is climate 
variability. One of the most important phenomena affecting South 
America and the study region is the El Niño Southern Oscillation 
(ENSO). Approaches investigating the relationship between dengue 
case time series and ENSO variability have shown considerable 
promise. Overall, a correspondence has been identified between 
major epidemics in the Americas and the periodicity phase of ENSO, 
with strong agreement in the 2 to 3-year period isolated from both 
time series (30, 40, 31). In Recife, ENSO positively affects 
precipitation, primarily during its negative phase (La Niña), which 

occurs due to the zonal displacement of the Walker circulation. The 
ascending branch of this atmospheric circulation is present over the 
study region, favouring increased precipitation when La Niña is 
active (32).

In Recife, the epidemiological years 2002, 2010, and 2015 
coincided with El Niño events, which are known to be exceptionally 
favourable for the transmission of vector-borne diseases (31, 33). 
Although the positive phase of ENSO is associated with negative 
precipitation anomalies in the study region, these phenomena may 
also be linked to other weather variables, such as temperature, which 
also influences vector populations. Gonzalez et al. (40) demonstrated 
that El Niño events are correlated with dengue outbreaks in Venezuela 
due to the high incidence of positive temperature anomalies associated 
with the ENSO phase.

Despite the discrepancies between the two time series, the periods 
with a significant increase in dengue cases coincide with the beginning 
of the rainy season in the region. This statement is complemented in 
Figure  5, which presents a correspondence with the periods of 
maximum occurrence between the two variables. For dengue cases, 
the peak is in March, April, and May (Figure 5a), and for rainfall, it is 
in May, June, and July. Similarly, it is also observed that the months 
with the lowest occurrence of precipitation are also the months with 
the lowest incidence of cases, i.e., September, October, November, 
and December.

Considering the possibility that the epidemiological events of the 
years 2002, 2008, 2010, 2012, 2015, and 2016 were mostly caused by 
the influence of the circulation of serotypes, these years were removed 
from the time series, and the monthly averages were recalculated. This 
step made it possible to observe a greater correspondence with the 
months of maximum and minimum between the two variables 
(Figure 5b), aligning the periods of case increases with the arrival of 
the rainy season (i.e., March, April, and May) and the decline of cases 
with the dry season (i.e., August, September, and October).

By removing the epidemiological years from the analysis and 
comparing the two patterns of observed monthly averages, it is 
possible to hypothesize that the count of dengue cases may 

TABLE 3 Variables used in the negative binomial model simulation.

Frequency Simulation Variables

Monthly 1 Insolation; precipitation; temperature; days 

of precipitation; pressure; relative humidity

Monthly 2 Insolation; precipitation; temperature; days 

of precipitation; pressure; relative 

humidity; DENV-1; DENV-2; DENV-3; 

DENV-4

https://doi.org/10.3389/fpubh.2024.1456043
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Borges et al. 10.3389/fpubh.2024.1456043

Frontiers in Public Health 07 frontiersin.org

be  influenced by two factors. First, weather conditions, which are 
subject to seasonal variations, contribute to the persistence of the 
disease through the supply of water in containers and reservoirs 
suitable for the breeding of the mosquito. Secondly, the serotypes 
present in the population may explain the outbreak of cases 
independently of the season. The introduction of a new serotype or 
the interrelationship between those already present has the potential 
to cause much more expressive increases in cases, not following 
seasonal patterns. Evidence for this hypothesis is observed in the years 
2002 and 2015, which show a significant increase in cases during the 
months of January and February, periods characterized by some of the 
lowest rainfall rates, alongside the occurrence of monthly cases. A 
similar pattern was also observed by Conde-Gutierrez et al. (9), who 
identified that during the dengue outbreak of 2022 in Mexico, the 
annual mean precipitation and minimum temperature were lower 
than in the year preceding the outbreak, not indicating a direct 
correlation. Furthermore, they identified that the increase in cases for 

that year occurred after precipitation and temperature reached their 
maximum values.

The first factor is more likely to be predicted than the second, as 
it is linked to weather patterns that can be described and predicted 
concerning the systems that cause precipitation in the study region. 
The second factor, on the other hand, is much more difficult to 
describe and evaluate since information on serotypes is not abundant 
and collected automatically in a unified way, unlike information on 
weather and climate. Furthermore, the true impact and potential 
dangers that the co-circulation of different types of dengue can cause 
are not well understood (2), making the construction of a prognostic 
tool for this factor even more complex. It is important to note that 
while the behaviour of the time series regarding dengue cases may 
be attributed to the two factors mentioned earlier, these factors are 
not independent of each other. In reality, the outbreaks triggered by 
the second factor only reach alarming levels when there is a 
substantial population of disease vectors. This, in turn, hinges on the 

FIGURE 5

Monthly mean of Recife for confirmed cases of dengue (orange) and precipitation (blue). (a) Monthly means from 2001 to 2019. (b) Monthly means 
without the epidemiological years of 2002, 2008, 2010, 2012, 2015, and 2016.
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FIGURE 6

Box diagrams of the time series of dengue and precipitation in Recife from 2001 to 2019 and with the mean calculated after removing the 
epidemiological years of 2002, 2008, 2010, 2012, 2015, and 2016. (a) Monthly mean of confirmed dengue cases from 2001 to 2019; (b) Monthly mean 
of confirmed dengue cases without epidemiological years; (c) Monthly mean of precipitation from 2001 to 2019; (d) Seasonal mean of confirmed 
dengue cases from 2001 to 2019; (e) Seasonal mean of confirmed dengue cases without epidemiological years; (f) Seasonal mean of precipitation 
from 2001 to 2019.

presence of water in reservoirs and containers, which are primarily 
influenced by the first factor. Therefore, the effective control and 
elimination of potential breeding sites are crucial in preventing 
these outbreaks.

Figures 6a,c shows that the months of April, May, June, and July 
have the highest values of maximum in the two variables analysed. 
This similarity is repeated for the months with the lowest incidence of 
cases in the months of October, November, December, and January.

The analysis excluding the epidemic years (Figure 6b) exhibits a 
similar trend in terms of monthly fluctuations compared to the 
analysis that includes these years. The latter, which encompasses the 
epidemiological years, notably display the most significant outliers. 

These outliers represent the epidemiological periods that diverge from 
the pattern associated with the first factor discussed earlier.

The same correspondence can be observed when analysing the 
data by season (Figures 6d–f), with the highest values in the series for 
both variables occurring in autumn (i.e., March, April, and May—
MAM) and winter (i.e., June, July, and August—JJA). Nevertheless, the 
lowest values are found in the summer (i.e., December, January, and 
February—DJF) and spring (i.e., September, October, and 
November—SON) seasons.

Analogously to the analysis of monthly averages, Figure 6 also 
shows that explosive epidemics, such as the one that occurred in 2002, 
occur in such a way that the conjunction of epidemiological and 
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health factors (i.e., influence of serotypes), act to dilute the power of 
statistical correlation with weather variables. This epidemic is 
indicated by the outlier of 14,000 cases, as shown in Figure  6d, 
representing an incidence rate of 852 new cases per 100,000 
inhabitants in just 1 month, February, occurring in the summer whose 
mean values for both have the lowest rates of precipitation and cases 
(Figures 6e,f, respectively).

This outcome substantiates the absence of a direct correlation 
between weather conditions and sudden explosive epidemics. Such a 
correlation would manifest through outliers, signifying instances 
where these explosive episodes transpire during months characterized 
by heavy rainfall and a substantial surge in case numbers. In the 
context of the study in question, these outliers would correspond to 
autumn and winter, despite the conventional expectation that 
epidemics would be more likely to occur under favourable weather 
conditions during these seasons.

3.2 Disease cycle estimation

From the phases of the dengue transmission cycle, mean duration 
values were searched in the literature for each part of the cycle. This 
step is important for estimating the value of days to be used in the 
analysis of the epidemic years. The period of 7–10 days is found for the 
egg hatching to the mosquito adult phase (FIOCRUZ), 8–10 days 
corresponding to the infestation of the virus in the female mosquito 
and incubation to infestation (34) and 3–14 days of incubation until 
symptoms appear in an infected human (34). From these estimated 
values, the average values were selected for each period of each stretch 
indicated in the cycle and the total number of days was added, 
reaching a value of approximately 26 days of duration (Figure 7).

It is important to highlight that, concerning A. aegypti, there is 
evidence of transovarian viral transmission from infected females to 
newly generated offspring, as documented by Teixeira et al. (5) and 
Leandro (35). This means that the entire incubation and infection 
process within adult mosquitoes, which occurs when they feed on 
infected humans, can be  omitted and the estimated period can 
be reduced from 26 days to 17 days, as new larvae are already carrying 
the virus (Figure 7b).

This value makes it possible to estimate the time between the 
creation of the larval proliferation environment, provided by the 
precipitation, and the manifestation of symptoms in the patient 
who sought a health unit that recorded the occurrence of the case. 
Thus, within this range of days, it is important to consider that the 
increase in cases in the respective month may be  linked to the 
increase in vectors provided by a precipitation event that occurred 
in a period of approximately 26 days, which could be either in the 
month of occurrence as in the previous one. It is important to 
highlight that dengue is a disease in which the majority of cases are 
asymptomatic to mild (7), causing large part of those infected not 
to seek a health unit because they do not have symptoms. 
Therefore, it is important to consider a high degree of 
underestimation in the values recorded on public health platforms, 
not due to inefficiency in collection or lack of units, but due to the 
disease clinic itself.

3.3 Precipitation categorized

The values used to define the daily precipitation classes, obtained 
through quantile analysis, can be  found in Section 4 of the 
Supplementary Table  S1. Based on these classes, it is possible to 
determine the distribution profile of precipitation types in the city, as 
shown in Figure 8. The majority of the time series is represented by 
the ‘dry day’ class, characterized by daily precipitation values below 
2.4 mm/day, accounting for 64% of occurrences in the time series, 
followed by weak precipitation (9.40%) and moderate precipitation 
(9.37%). The classifications of very weak and strong precipitation 
comprise 15.35% of the time series (7.88 and 7.47%, respectively), 
while the final classification, very strong precipitation, accounts 
for 1.86%.

Understanding these thresholds is important for other sectors of 
society, such as Civil Defence, which relies on this information for 
planning and managing different regions of the city that may be at risk 
(24). The general precipitation profile in Recife points to a 
predominance of dry days, as well as weak and moderate precipitation 
events. Such a pattern may be related to the geographic position of the 
study area, since it is located in a coastal region that receives daily 

FIGURE 7

Scheme of the Aedes aegypti life cycle and transmission of dengue virus with average duration for each period in days (a) and (b) in case of 
transovarian viral transmission.
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influence from breeze events that cause precipitation according to the 
observed distribution. Additionally, the region also has the frequent 
operation of SASH that provides moisture transport throughout the 
year (13, 14). The position close to the Equator, which establishes little 
temperature variation throughout the year, along with these two 
systems, may be the main factors for maintaining precipitation in a 
weak and moderate regime. Strong and very strong precipitation 
events are likely linked to other systems that do not operate as 
consistently throughout the year as those mentioned above, and thus 
the rainfall associated with them is less frequent. Examples of these 
phenomena are the EWDs, which typically occur in winter (16, 36–
38), and HLCVs in spring, autumn and summer, being more frequent 
in the latter (36).

Analysing the profile of classes by seasons (Figure 9), we can see 
the relationship between the highest average number of occurrences 
of moderate, strong and very strong events with the months with 
the highest monthly rainfall in the autumn (MAM) and winter 
(SON). Both seasons have the lowest average number of dry days in 
the year and the highest averages in the subsequent classes, with 
winter representing the highest values, with the exception of very 
strong daily precipitation, which occurs more in autumn. Similarly, 
spring and summer, characterized by low monthly rainfall, have the 
highest incidence of dry days and low occurrence of 
subsequent classes.

As seen in Figures 5, 6, the average monthly peak of cases in the 
year occurs with the arrival of the rainy season from March to August 
(i.e., autumn and winter). Precipitation in this period is largely 
composed of the weak, moderate and strong classes since, compared 
to the dry season, an average difference of 3–4 days is seen to those 
classes. Thus, the higher incidence of these precipitation categories in 
the rainy season points largely to favour the formation and 
maintenance of A. aegypti breeding sites, consequently leading to an 
increase in the registration of cases, as observed in the respective 
period. Likewise, it is verified that the higher occurrence of dry days 
is related to the fall and low values of dengue cases. This relationship 

is observed in the spring and summer seasons, which signal large 
counts of dry days and a drop in case records.

According to the study by Souza et al. (24), considering days with 
less than 2 mm/day of rainfall as dry is necessary, as this amount of 
precipitation is insignificant for studies evaluating water infiltration 
and retention in the soil. Such small amounts of water typically 
evaporate quickly due to the high temperatures prevalent year-round 
in the studied location. This is also present with regard to the breeding 
sites of the A. aegypti vector through the supply of water by 
precipitation, since dry days, considered in this study as values below 
2.4 mm/day, presented an indirectly relationship with the dengue 
cases. In order to complement the analysis, the average count of 
precipitation classes was calculated for each month of the year and, 
with these values, these counts are compared with the aforementioned 
epidemic periods, referring to the years 2002, 2008, 2010, 2012, 2015, 
and 2016, as shown in Figure 10. With the knowledge of the disease 
cycle duration presented in Section 3.2, the month with the highest 
occurrence of cases and its predecessor month are chosen in the year 
of each epidemic.

Of the 6 years evaluated, four of them present their maximum 
number of dengue cases in months with an low rainfall average, these 
are the years 2002 (January and February), 2012 (February and 
March), 2015 (March) and 2016 (January and February). In January 
and February 2002, there was a lower record of dry days compared to 
the average for the respective months (Figure 10a), with emphasis on 
the 15 dry days recorded in January 2002, which are close to the June 
average of 11.9 days (Figure 10c), characteristic of few dry days and 
high rainfall. However, the lower occurrence of this class also shows a 
greater number of records for weak, moderate and heavy rainfall, with 
January 2002 being the month that most exceeded the average 
(Figure 10a).

As previously discussed, the year 2002 is marked by the 
introduction of the DENV-3 serotype to the national territory and is 
primarily responsible for the magnitude of cases recorded for this 
period. However, the profile of classes of daily precipitation found 

FIGURE 8

Distribution of classes of the 2001–2019 daily precipitation time series in Recife adopting quantile analysis, indicating the city’s precipitation profile 
along with the percentage of occurrences for each class by the total number of days in the series.
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points to a greater likelihood of an increase in cases, as there was a 
lower incidence of dry days and greater for weak, moderate and strong 
precipitation compared to the average. Such factors may have 
influenced the expressive increase in cases, since, for diseases that 
depend on a transmission vector, such as dengue arbovirus, such 
epidemics would only be  possible with the massive presence of 
vectors, which is due by the creation and maintenance of the 
proliferation environment provided by the weather conditions 
highlighted. This year experienced an El Niño event, but it cannot 
be linked to the dengue outbreak that occurred, as the El Niño began 
in the latter part of the year, according to the National Oceanic and 
Atmospheric Administration (NOAA), while the dengue outbreaks 
occurred in the first 2 months.

A similar pattern can be observed for May 2008 (Figure 10b). 
Despite being a typically wettest month when compared to February, 
there is a lower number of dry days than the average, with an excess 
of the same in the very weak, very strong, strong and moderate 
precipitation classes, with emphasis on the last two. Its predecessor 
month (Figure 10b) remained in the average for the dry days but 
presents the occurrence of three very strong events that, on the other 
hand, end up leaving the weak and strong classes below average. These 
months are at the beginning of the rainy season for Recife, making it 
more susceptible to accounting for very strong precipitation events 
that can provide a deviation from the average in the other classes. 
Similar to what was observed in the period of 2002, the creation of 
more suitable environments for the proliferation of vectors may 
be linked to a lower count of dry days and higher for moderate and 
heavy rainfall in May 2008. The events analysed in 2010 (Figure 10c) 
also occurred during the rainy season, specifically in May and June. 
However, both months experienced a higher number of dry days than 
their respective averages, with a significant increase above the average 
occurring only in June for the moderate and very strong classes. 
Additionally, 2010 was marked by an El Niño event during the 
outbreak months, which may explain the increased occurrence of 
dry days.

The 2012 and 2015 bimesters show counts close to the average 
with the exception of March 2015, which accounted for 3 very strong 
precipitation events and March 2012 with dry days above the average 
of the month. However, the subsequent classes do not significantly 
exceed the average and are even below for weak, moderate and strong 
classes for the month of February and March (Figures 10d,e). January 
2016 (Figure 10f) has a lower number of dry days and a higher one for 
very weak rainfall, remaining practically on average in the other 
two-month classes.

From these last 4 years described, it is possible to conjecture that 
the distribution pattern of the classes did not interfere in a consistent 
way with the increases in cases, since dry days were recorded at the 
average or higher in the case of the bimester of 2010 and April of 2015. 
Other classes are on average or do not point to a large deviation that 
signals, at least in terms of precipitation, the high increases in cases in 
these periods.

The values of the quantile intervals obtained for the classification 
of monthly precipitation are showed in Section 4 of the 
Supplementary Table  S2. From these intervals, the six epidemic 
periods separated in the previous analysis are highlighted in Table 4.

From the six bimesters evaluated, only two obtained the dry 
classification, being the month of April 2015 and February 2016. Both 
are presented as peak months of cases in the referring years and, 
nevertheless, are preceded by months with rainy classification (March 
2015) and normal (January 2016). In addition, April 2015 has one of 
the highest values of cases in the time series, even though it is classified 
as a dry month. For the other periods, it is evidenced that either their 
respective peaks are preceded by a rainy or very rainy month, or they 
already have this classification. For example, February 2002, which is 
classified as normal, but is preceded by a rainy month. Still as an 
example, June 2010, which is defined as very rainy, preceded by May 
2010, with normal monthly accumulated. The exception applies to 
2012, which is normal in both months.

From this classification, one hypothesis can emerge by assuming 
that the years 2015 and 2016 are marked by the influence of the 

FIGURE 9

Distribution of the mean occurrence count of the daily precipitation classes from 2001 to 2019 for Recife considering the seasonal mean calculated in 
the four seasons of the year, being Autumn in the months of: March, April, and May; Spring: September, October, and November; Summer: December, 
January, and February; Winter: June, July, and August.
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TABLE 4 Events of dengue epidemic peaks in Recife recorded between 
2001 and 2019 with their proper precipitation classification in the month 
and case count.

Month/
Year

Classification Precipitation 
(mm/month)

Confirmed 
cases

Jan/2002 Rainy 231.6 3,886

Feb/2002 Normal 199.5 14,094

Apr/2008 Rainy 314.2 800

May/2008 Very rainy 415.7 1,090

May/2010 Normal 114.3 1,252

Jun/2010 Very rainy 543.9 2,442

Feb/2012 Normal 189.8 1,831

Mar/2012 Normal 138.8 2,495

Mar/2015 Rainy 341.2 4,059

Apr/2015 Dry 74.6 4,833

Jan/2016 Normal 124 2,670

Feb/2016 Dry 70 3,589

DENV-4 serotype over the weather conditions, since the classification 
of the monthly precipitation of these 2 months was the only one, of the 
six evaluated periods, which present dry months (i.e., February 2015 
and 2016). Together with the analysis for the classes of daily 
precipitation, presenting themselves mostly within the average or even 
below it, as weak, moderate and strong precipitations.

Likewise can be said for the peak referring to 2002, which may 
be governed simultaneously by two factors: serotypes, represented by 
the introduction of DENV-3, whose immunity the population did 
not have until then, and weather, constituted by the rainfall 
classifications, showing a rainy month preceding the maximum 
number of cases and, nevertheless, anomalous values of the 
occurrence of the classes weak, moderate and strong for the bimester. 
The simultaneous action of these factors may be the cause of the 
episode having the highest magnitude of confirmed dengue cases of 
the entire time series.

It should be noted that 2002, 2015, and 2016 were the 3 years that 
had the highest monthly records of confirmed dengue cases, being 
discrepant in order to be recorded as outliers in the analysis of box 
diagrams of Figure 6. Such values may be reached by the aggravation 

FIGURE 10

Comparison between the count of days in the daily precipitation classes for a given month with an explosive epidemic and the mean count of its 
respective month calculated over the entire time series from 2001 to 2019. (a) January and February of 2002; (b) April and May of 2008; (c) May and 
June of 2010; (d) January and February of 2012; (e) February and March of 2015; (f) January and February of 2016.
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of the insertion of new serotypes in the population, as already 
described. The remaining years, as they do not present this same 
particularity, show the values of the peaks of cases much smaller, even 
when measuring favourable precipitation rates for the explosion of the 
vector population. An example of this is the bimester formed by the 
months of April and May of 2008, which are classified as rainy and 
very rainy, respectively, but have two of the lowest values of cases 
recorded between the epidemiological periods evaluated. In this way, 
it may be  possible to affirm that only the factor described by the 
dynamics of serotypes in the population has the potential to raise the 
case count to the levels observed in the years 2002 and 2015.

3.4 Regression model predictions and 
analysis

The predictions of dengue case counts made by the regression 
model are shown in Figure 11. After fitting the model, the program 
selects a set of test data from the observed series of counts and makes 
predictions for these values. For this reason, Figure  11 does not 
present all the peak periods of cases described in the previous analyses, 
highlighting only the epidemics of 2002, 2012, 2015, and 2016. The 
values of precipitation days, present in the monthly time series 
provided by the INMET conventional station in Recife, are replaced 
by the sum of the counts of days corresponding to the very weak, 
weak, moderate, strong, and very strong precipitation classes, as 
calculated in Section 3.3. This substitution is made to exclude 

precipitation values below 2.4 mm/day, classified as dry days, 
generating corrected values of precipitation days for each month.

Similar to the findings of Lima et al. (11), the predicted cases show 
an underestimation during peak periods and an overestimation 
during other months in simulation 1 (Figure  11a), indicating the 
model’s tendency to fail in representing disease peaks when using only 
meteorological data. As a result, the correlation (Equation 7) between 
the predicted and observed cases is calculated to be 0.37 (Figure 11c), 
demonstrating a suboptimal representation of the entire series. The 
only statistically significant independent variable for this first 
simulation is temperature, with a p-value of 0.03.

The calculated error is −350.1, where the negative sign indicates 
that the mean of the predicted cases is more representative than that 
of the observed cases. Mean deviation assesses data variability around 
the mean: greater variability results in a higher deviation, making the 
mean less representative. The observed cases exhibit a higher average 
deviation due to the peaks in the series, while this is not the case for 
the predicted cases in simulation 1, where these peaks are absent.

Performing the χ2 test (43), it is verified that its value for the 
calculated tests (χ2 = 145) is smaller than its critical value (χ2 = 182), 
considering a significance level of 95% (i.e., p < 0.05) and 153 degrees 
of freedom. Thus, the frequency distribution of the series of observed 
cases is different from that predicted by the model, showing that it was 
not able to adequately represent the observed cases of the disease.

As described in Section 2.4.1, the serotype with the meteorological 
data are added in simulation 2 as an explanatory variable (Figure 11b). 
The results show that a large part of the overestimation observed in 

FIGURE 11

Regression analysis forecasts and results of monthly dengue cases for Recife from 2001 to 2019. (a) Simulation 1 considering as independent variables 
insolation, precipitation, temperature, days of precipitation, pressure and relative humidity. (b) Simulation 2 considering the same variables as the 
previous round with the addition of the percentage of DENV-1, DENV-2, DENV-3, and DENV-4 serotypes; (c) Taylor diagram of the time series 
generated from simulations 1 and 2 compared with observed data.
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the previous simulation is mitigated, as well as a peak in predicted 
cases is added referring to the 2002 epidemic, whose magnitude is 
considerably close to the observed. However, the other peaks of the 
years 2012 and 2016 are still not represented satisfactorily, remaining 
underestimated. Thus, the correlation found for both series presented 
a value of 0.88 (Figure 11c), a value much higher than the previous 
simulation of 0.37, demonstrating a better correlation between 
predicted and observed cases. The statistically significant variables 
were insolation, precipitation, DENV-1, DENV-2, DENV-3, 
and DENV-4.

Simulation 2 had an error of 22.5, much smaller compared to the 
previous simulation. This may be  due to the decrease in 
overestimations and mainly to the signalling of peak of cases in 2002, 
which is the most discrepant peak for both the predicted and observed 
series, causing an increase in the mean deviation. The value of χ2 
found for the predicted series is χ2 = 300, being higher than its critical 
value of χ2 = 178, considering the significance level of 95% (i.e., 
p < 0.05) and 149 degrees of freedom. This result indicates that the 
frequency distribution of the series of predicted cases is the same as 
that predicted by the model, and it is possible to affirm that there was 
a satisfactory representation of the cases observed in this second 
round of the model.

The evolution between the two simulations can be  seen in 
Figure  11c, which shows not only the increase in the correlation 
between the predicted cases of the model and the observed ones, but 
also by the approximation of the standard deviation of the series 
generated with the data of reference.

The evaluation of error in the data regression process is crucial, 
given the specific characteristics of the data under analysis. This 
assessment involves scrutinizing the average deviation between 
predicted and observed dengue cases, offering valuable insights into 
the alignment of averages in both data sets. The presence of past 
epidemic peaks can influence the mean deviation value. When the 
error approaches or is very close to 0, it signifies that the means in 
both data series are closely representative of each other. This indicates 
that the regression of confirmed dengue cases effectively captures 
deviations from the mean, particularly when considering epidemic 
peaks as observed values.

4 Conclusion and future perspectives

4.1 Conclusion

The present study investigate the outbreaks of dengue occurred 
between 2001 and 2019 in Recife.

The analysis regarding weather and climate data shows a 
distinguish relationship between the dengue annual cycle and the 
rainy and dry seasons of the city. The classified precipitation also 
indicate a correlation between the rainiest periods and the peak in 
case numbers. A higher occurrence is observed during seasons with a 
greater number of days characterised by weak, moderate, and strong 
precipitation, while a lower occurrence is noted in seasons with more 
dry days. However, it is identified that this relationship is not entirely 
straightforward or deterministic.

The analysis reveals notable discrepancies, particularly regarding 
the outbreaks. Most of the identified epidemiological periods occurred 

outside the expected rainy season, as seen in 2015 and 2016 when severe 
epidemics transpired during the dry season and in months classified as 
dry by the quantile analysis. Moreover, 2015 coincided with an El Niño 
episode, which is characterized by reduced precipitation in the study 
area. A similar pattern was observed in four out of the six identified 
epidemiological periods, where outbreaks occurred in typically drier 
months for Recife, such as January and February. Likewise, the 2-month 
period of 2008 demonstrated that even during traditionally rainy 
months, this condition alone is not enough to create an extreme outbreak.

These findings underscore the multifaceted nature of the interaction 
between precipitation and dengue incidence that is also showed by the 
literature. While rainfall plays a significant role in dengue dynamics, 
other contributing factors and complex dynamics are also at play, 
emphasizing the need for a more comprehensive understanding of the 
underlying mechanisms driving dengue outbreaks in the city.

Consideration of the influence of circulating serotypes within 
the population is crucial for accurately representation and 
justifying the identified epidemic periods. This information might 
explain the outbreaks that only weather conditions fail to explain. 
When combined with the last, these serotypes emerge as a pivotal 
variable contributing to the explosive rise in cases. Their inclusion 
significantly enhances the correlations between the initial and 
subsequent simulations of the monthly frequency data, further 
reinforcing their importance in the recommended 
regression model.

It is important to highlight that a single database was not found 
that provided information on serotype counts in the population for 
the entire period of analysis considered by this research (i.e., 2001–
2019). As a result, it was required to search for other sources in 
addition to those provided by the public platform DATA-SUS health 
system. This consideration holds significance because, while the 
inclusion of these available data has notably enhanced the 
representation of the dengue case series, a more extensive coverage 
of these data during the missing periods could yield even more 
promising results.

The discrepancies observed in the time series analysis, especially 
the mismatch between substantial peaks in precipitation and the 
absence of corresponding dengue cases (e.g., in 2005), may 
be explained by government-led initiatives to combat A. aegypti. These 
measures, which involved extensive mosquito control campaigns, 
including home inspections by public agents and the application of 
insecticides, potentially acted as a deterrent to dengue epidemics 
during years with favourable weather conditions.

Nonetheless, it is essential to note that no concrete data or 
information could be  found to quantify the exact impact of these 
measures. Consequently, we  cannot definitively ascertain the 
predominance or effectiveness of the mitigation actions taken by 
public policies during the study period. The precise influence of these 
interventions on the observed dengue patterns remains uncertain and 
warrants further investigation.

4.2 Perspectives for future work

The significance of information on the prevalence of serotypes in 
the population cannot be overstated when it comes to representing 
and predicting the most intense dengue outbreaks. Expanding the 
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coverage and frequency of testing them daily can enhance the 
performance of regression analysis at this temporal scale and provide 
more detailed insights for monthly analyses.

This study considered the city of Recife, a locality whose 
geographic position has little seasonal variation in weather variables 
such as temperature and relative humidity. A study using the same 
methods for a region whose weather conditions vary drastically 
throughout the year, such as southeastern Brazil, can serve to better 
understand the influence not only of precipitation, but also of 
temperature and humidity.
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