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Background: Tandem mass spectrometry (MS/MS) is a crucial technique for 
detecting inborn errors of metabolism (IEM) in newborns. However, the high 
false positive rate poses challenges in diagnosing specific types of diseases. 
Therefore, this study aimed to evaluate the role of targeted next-generation 
sequencing (NGS) in the accurate diagnosis of positive samples identified 
through MS/MS screening.

Methods: A cohort study of 260,915 newborns was conducted from January 
2018 to June 2023 in Ganzhou City, southern China. Heel blood samples were 
collected within 72 h of birth and subjected to MS/MS analysis. Infants with 
positive MS/MS results underwent targeted NGS to confirm the diagnosis and 
identify genetic variants.

Results: Among 1,265 suspected cases with positive MS/MS results, 73 were 
confirmed by NGS, and 12 were identified as carriers of recessive diseases. The 
overall incidence rate was 1 in 3,574, effectively ruling out 94.2% (1,192/1,265) of 
the MS/MS false-positive. We found 76 variants in 18 genes associated with 15 
types of IEM. Among these, 64.47% (49/76) were pathogenic, 10.53% (8/76) were 
likely pathogenic. Remarkably, 7.89% (6/76) were identified as novel variants. 
Variants in SLC22A5 (NM_003060.4) gene was most prevalent, accounting 
for 41% (77/188), with hotspot variants including c.51C > G, c.1400C > G, and 
c.338G > A.

Conclusion: Targeted NGS technology can serve as a crucial diagnostic tool for 
neonatal genetic metabolic diseases following MS/MS screening. Additionally, 
we identified IEM variant hotspots and some novel variants in our region, which 
are the underlying causes of disease in patients with IEM.
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1 Introduction

Newborn screening (NBS) is a successful public health project 
that employs advanced testing techniques to detect some serious 
inherited metabolic diseases in newborns. This allows for early 
diagnosis and treatment before clinical manifestations occur, thereby 
preventing irreversible damage in children. According to statistics, 
genetic diseases occur in 3–5% of live births (1). Since Guthrie and 
Susi (2) first reported the bacterial inhibition test for phenylketonuria 
(PKU) screening in 1963, NBS has gained global recognition and is 
now a crucial tool in reducing neonatal morbidity and mortality. The 
implementation of NBS not only provides immediate health benefits 
for children diagnosed and treated early but also enables their 
participation in social activities and alleviates the burden on families. 
Traditional biochemical screening is currently the mainstream NBS 
method, including tandem mass spectrometry (MS/MS), 
electrophoresis technology, enzymology, immunology, and 
electrophoresis technology-high-pressure liquid chromatography (3). 
MS/MS technology is characterized by its high efficiency, sensitivity, 
and convenience, enabling early disease diagnosis (4). However, the 
spectrum of diseases tested by blood MS/MS is limited, and different 
diseases can result in elevations of the same metabolites, blood MS/
MS testing has limited usefulness in accurate disease diagnosis. 
Moreover, metabolites can be influenced by various factors such as 
diet, underlying diseases, and preterm birth, potentially leading to 
false-positive and false-negative results, requiring further 
diagnosis (5).

In recent years, with the development of DNA sequencing 
technology, the focus on inborn errors of metabolism (IEM) screening 
technology has shifted from the metabolite level to the genetic level. 
Next-generation sequencing (NGS) technology was employed to 
discover the genetic factors of thousands of genetic diseases. Therefore, 
NGS is valuable for genotyping and detecting the genetic factors of 
IEM. By comprehensively assessing IEM based on the quantification 
of metabolites and genetic variants, NGS can effectively improve the 
accuracy of IEM screening, compensating for the limitations of MS 
technology (6).

In this study, we analyzed data from the NBS program with MS/
MS over the past 6 years. Target NGS of genes in a custom panel was 
employed as a second critical step to diagnose high-risk infants 
identified by MS/MS, aiming to provide a definitive genetic diagnosis 
and determine IEM’s genetic characterization. This work has enhanced 
the quality of NBS programs, providing a more accurate diagnosis for 
children with IEM and consequently enabling more precise 
targeted therapy.

2 Materials and methods

2.1 Study design and participants

From January 2018 to June 2023, a total of 260,915 newborns 
underwent screening for IEM at the Ganzhou Maternal and Child 
Health Hospital in Jiangxi Province, China. Among these, 1,265 
infants tested positive and received genetic diagnoses through 
NGS. Subjects were all newborns who had completed 72 h after birth 
and had been fed adequately at least eight times. Other inclusion 
criteria were complete medical history. Additionally, newborns were 

excluded if they were undergoing emergency surgery or external 
blood transfusion. The clinical characteristics of newborns with 
suspected IEMs were all fully understood by a single physician. The 
clinical data included sex, major clinical features, and outcomes of 
IEM. The confirmatory tests vary depending on the disease, including 
genetic testing or blood biochemical indices testing, enzyme activities 
testing and urine organic acids analysis, etc. Pretest counseling was 
performed by physicians. The study was approved by the ethics 
committee of the Ganzhou Maternal and Child Health Hospital 
(2020001). The legal guardians of the participating infants gave their 
written informed consent for their children to be included in the study.

2.2 MS/MS screening method

Heel blood samples were collected from newborns, dripped on 
filter paper (Schleicher & Schue11 903, Wallac OY Turku, Finland), 
and dried naturally at room temperature. Dried blood spots were 
pretreated using a non-derivative MS/MS kit per the manufacturer’s 
instructions (Fenghua, China) and then analyzed using a MS/MS 
system (Acquity UPLC-TQD, MA). Newborns with abnormal amino 
acid or carnitine (free carnitine and acylcarnitine) indices were 
recalled for recollection of heel blood (filter paper dried blood spot 
specimens) for rescreening. Additionally, mothers of newborns with 
positive results of free carnitine (CO) and 3-hydroxyisovaleryl-
carnitine (C5OH) were recalled for re-examination to rule out 
maternal origin. If both screens were MS/MS-positive, the newborn 
was suspected of IEM.

2.3 NGS

Blood samples of patients and any participating family members 
were collected, and genomic DNA was extracted using the QIAamp 
DNA Mini Kit (Hilden, Germany) following the manufacturer’s 
protocol. The coding exons of target genes were captured using an 
Agilent High Sensitivity DNA Kit (Agilent, Santa Clara, CA, USA), 
and libraries generated from enriched DNA were sequenced using the 
Illumina NovaSeq 6,000 platform (Illumina Inc., San Diego, CA, USA) 
in the paired-end mode. The average on-target sequencing depth for 
exome sequencing was 90X. The sequencing reads were aligned to the 
human reference genome (UCSC GRCh37/hgl9) using the Burrows-
Wheeler Aligner. Variant filtering was performed with the PhenoPro 
(7) phenotype-scoring algorithm. Detected variants were confirmed 
by PCR and subjected to direct automated sequencing using a 3500XL 
Genetic Analyzer (Applied Biosystems) per the manufacturer’s 
specifications. The variant’s pathogenicity was determined using the 
criteria established by the American College of Medical Genetics and 
Genomics (8).

3 Results

3.1 General results of NBS

A total of 260,915 newborns underwent MS/MS screening and 
1,265 infants (687 male and 578 female) tested positive. The positive 
results were mainly divided into abnormal amino acid and abnormal 
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acylcarnitine markers. There were amino acid abnormalities, such as 
increased phenylalanine (Phe) and citrulline (Cit) (15.3 and 9.4% 
positivity rates, respectively), and carnitine abnormalities, such as 
decreased CO and increased isovaleryl-carnitine (C5) and C5OH 
(21.8, 9.3, and 8.1% positivity rates, respectively). Additionally, 3.7% 
of positive infants had simultaneously elevated or reduced indicators 
for certain amino acids or acylcarnitines. Following clinical and 
genetic diagnoses, 73 cases of IEM in newborns were diagnosed, with 
an overall incidence rate of 1  in 3,574 (Table 1). There cases were 
related to 12 IEM diseases, including 3 cases of fatty acid metabolic 
disease (39/73, 53.4%), 3 cases of amino acid metabolic disease (23/73, 
31.5%), and 6 cases of organic acid metabolic disease (11/73, 15.1%). 
The highest incidence rate was that of primary carnitine deficiency 
(PCD, 1/7,248), followed by that of phenylketonuria (PKU, 1/15,348) 
and citrine deficiency (CD, 1/43,486). Additionally, 5 cases of PCD 
were confirmed in mothers of newborns. The overall detection rate of 
IEM screening in the 260,915 newborn screening population was 
1/3345. Figure 1 shows the workflow of NBS.

3.2 Results of IME genetic diagnosis

Among the 1,265 infants suspected of having IEM, we performed 
genetic diagnosis utilizing targeted NGS technology. Following 
genotyping and interpretation, 73 cases were confirmed as IEM 
(Supplementary Table S1), comprising 46 cases of compound 
heterozygosity and 27 cases of homozygosity. Additionally, 12 cases 
were identified as carriers of recessive disorders 
(Supplementary Table S2). Specifically, among 73 infants with IEM, 
MS/MS testing suggested some forms of IEM in 49 cases (49/73, 
67.1%). The result in P59 via NGS was inconsistent with that of MS/
MS. The results of NGS revealed the homozygosity of SLC25A13 
c.851_854del (p.M285Pfs), classified as CD. In the remaining 48 
infants (48/73, 65.8%), the genetic result was consistent with that of 

MS/MS. Additionally, MS/MS revealed that 24 infants (24/73, 32.9%) 
suffered from certain kinds of IEM, and then disease types were 
identified by NGS. Among 24 infants, 17 (P40–P56) showed an 
increase in Phe and Phe/Tyr by MS/MS detection and 13 were cases 
of phenylalanine hydroxylase deficiency, while four were cases of 
tetrahydrobiopterin deficiency by NGS. Three infants (P70–P72) 
showed an increase in C3 and C3/ C2 by MS/MS detection and two 
were cases of methylmalonic acidemia and one was a case of 
propionic acidemia by NGS. Four infants (P63-P66) were detected by 
MS/MS with C5OH increasing; one was a case of biotinidase 
deficiency and three were cases of 3-Methylcrotonyl-CoA carboxylase 
deficiency by (3MCC) NGS. Results from confirmatory biochemical 
tests were employed to verify the genetic findings 
(Supplementary Table S3). The consistency was observed in the 
outcomes of 73 cases of genetically confirmed IEM abnormalities. 
Overall, 72 true positive cases and one false negative case were 
identified through NGS, and 94.2% (1,192/1,265) of the false 
positivity results were excluded (Supplementary Table S4).

3.3 Analysis of genetic variation

Among 1,265 infants with suspected IEM, 76 variants involving 
18 IEM-related genes were detected by NGS. Approximately 64.47% 
(49/76) of the variants were classified as pathogenic, 10.53% (8/76) 
were likely pathogenic, and 18.42% (14/76) were categorized as being 
of uncertain significance, based on the ACMG guidelines and criteria 
(Supplementary Table S5). The annotation results indicated that 71.1% 
(54/76) were missense variants, 7.9% (6/76) were frameshift variants, 
10.5% (8/76) were splice variants, 6.6% (5/76) were nonsense variants, 
and 3.9% (3/76) were inframe variants. Additionally, 7.89% (6/76) 
were novel variants which has not yet been included in the Human 
Gene Mutation Database, the 1,000 Genomes Project and the Exome 
Aggregation in the Consortium. These six novel variants were located 

TABLE 1 The incidence and spectrum of 260,915 newborns in the screening program.

Types of diseases Cases (n) Accounting for patients (%) Incidence

Fatty acid metabolic disease 39 53.4

Primary carnitine deficiency 36 49.3 1/7,248

Short-chain acyl-CoA dehydrogenase deficiency 2 2.7 1/130,458

Medium chain acyl CoA dehydrogenase deficiency 1 1.4 1/260,915

Amino acid metabolic disease 23 31.5

phenylalanine hydroxylase deficiency 13 17.8 1/20,070

Citrin deficiency 6 8.2 1/43,486

Tetrahydrobiopterin deficiency 4 5.5 1/65,229

Organic acid metabolic disease 11 15.1

3-Methylcrotonyl-CoA carboxylase deficiency 3 4.1 1/86,972

Glutaric acidemia type I 3 4.1 1/86,972

Methylmalonic acidemia 2 2.7 1/130,458

Biotinidase deficiency 1 1.4 1/260,915

Propionic acidemia 1 1.4 1/260,915

Isovaleric acidemia 1 1.4 1/260,915

Total 73 100% 1/3,574
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in four genes, including c.547G > T (p.E183Ter) and c.948delA 
(p.E316Ter) in PAH (NM_000277.1) associated with PKU, c.628G > A 
(p.E228K) and c.79A > C (p.T27P) in ACADS (NM_000017.4) causing 
short-chain acyl-CoA dehydrogenase deficiency, c.1364G > C 
(p.R455P) in SLC25A13 (NM_014251.3) causing CD, and c.493A > C 
(p.T165P) in MCCC1 (NM_020166.5) causing 3MCC. These results 
broadened our understanding of the IEM diseases. Additionally, our 
findings revealed that variants of the SLC22A5 gene were the most 
prevalent, accounting for 41% (77/188) of all identified variants. In 40 
cases of primary carnitine, c.51C > G in NM_003060.4 is one of the 
most common variant, accounting for 36.4% of all variants (28/77) 
and affecting 55% (22/40) of patients, followed by c.1400C > G (17/77, 
22.1% and 17/40, 42.5%). Additionally, variants of the PAH gene were 
also common, accounting for 18.1% (34/188). The most common 
variant was c.728G > A in NM_000277.3, accounting for 26.5% (9/34) 
of all variants and affecting 41.2% (7/17) of patients, followed by 
c.611A > G (5/34, 14.7% and 4/17, 23.5%). Additionally, variants of 
SLC25A13 were also common, accounting for 8.0% (15/188). The 
most common variant was c.852_855del in NM_014251.3, which 
accounted for 66.7% (10/15) of all variants and affecting 66.7% (6/9) 
of patients. These variants are pathogenic. These results reflected the 
variant characteristics of IEM diseases in Ganzhou and provided 
important information for the clinical diagnosis of other samples in 
the future.

4 Discussion

IEM is a group of diseases that affect the growth and development 
of newborns and children and even lead to death. Their occurrence is 

associated with genetic defects in the biosynthesis process of the skin, 
protease, receptor, carrier, and membrane pump, which the body 
needs to maintain normal metabolism (9). IEM often leads to 
progressive and irreversible nerve damage and physical and mental 
disability, posing a major threat to families and society. In this study, 
260,915 neonates were screened for IEM using MS/MS technology, 
and 12 diseases were detected, with an overall incidence rate of 1 in 
3,574. Compared with other regions of China such as Taiwan (10) 
(1/7,030) and Liuzhou (11) (1/3,733), the overall incidence rate is 
higher. Hence, performing early IEM screening and accurate diagnosis 
in this area is of particularly importance.

MS/MS has proven to be a reliable method suitable for clinical 
use, offering many advantages such as high efficiency, sensitivity, and 
convenience (4). However, biochemical screening has limitations and 
in  vivo metabolism is influenced by many factors, leading to the 
existence of false positives and lowering the positive predictive value. 
In this study, 1,265 infants were positive in the MS/MS screening, and 
73 cases were ultimately diagnosed by NGS, indicating a 94.2% false-
positive rate. The simultaneous increase or decrease of several 
indicators of amino acids or acylcarnitines in the positive results of 
MS/MS screening can be  influenced by various factors such as 
gestational age at birth, certain diseases, medications, diet and 
maternal factors, of which can lead to transient or secondary 
metabolic disorders (5). Per our findings, C5 was common in 
acylcarnitine-positive indicators in MS/MS; however, only one case of 
isovaleric acidemia was diagnosed via NGS. False-positive cases 
should be followed up on. It was reported that there was the presence 
of isomers in metabolites, including isovalerylcarnitine, 
tervalerylcarnitine, and 2-methylbutyrylcarnitine, that are difficult to 
distinguish by MS/MS (12). It is critical to further clarify the nature of 

FIGURE 1

Screening and diagnosis of IEM.
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the disease, implement targeted therapy, and exclude false alarms to 
reduce the unnecessary economic, physical, and mental burden on 
children and their families (13).

In recent years, an increasing number of genetic detection 
techniques have been employed in the field of NBS (14, 15). Most 
studies have indicated that the application of targeted NGS technology 
advanced NBS diagnosis and treatment and reduced the diagnostic 
delay (16). In this study, we designed an NGS-based genetic diagnostic 
panel for IEM. All children underwent identification using the NGS 
panel and received a definitive diagnosis. Among the identified IEM 
cases, PCD was the most frequently diagnosed, accounting for 49.3% 
(36/73) of the total. PCD, also known as the carnitine transport 
disorder or carnitine uptake disorder, is a fatty acid beta-oxidation 
disorder resulting from a variant of SLC22A5 that encodes the carnitine 
transporter OCTN2 located in the cell membrane (17, 18). PCD is an 
autosomal recessive inherited disease with an incidence of 
approximately 1/300–142,000, varying across different countries and 
ethnic groups (19). The incidence of PCD in NBS in this area is 1/7,248, 
making it one of the highest incidence areas in China, comparable to 
Liuzhou (11), Quanzhou (20), and other areas. The most reliable and 
rapid method for early PCD diagnosis is the MS/MS detection of the 
CO level (21). However, the CO results of MS/MS screening can 
be  affected by various factors, including the maternal CO level, 
prematurity, and inadequate intake, and other fatty acid oxidation 
defects (22). In this study, we employed targeted NGS to advance the 
differential diagnosis of children with suspected PCD, thereby 
eliminating false positives resulting from these factors. Several 
pathogenic variants of SLC22A5 (NM_003060.4) were found, including 
c.51C > G, c.1400C > G, c.428C > T, c.338G > A, and c.760C > T, with 
c.51C > G and c.1400C > G having the highest frequency. It has been 
reported that c.760C > T (p.R254X) and c.1400C > G (p.S467C) are the 
two most common variants in patients with PCD (20). However, in this 
study, the main variants observed were c.51C > G (p.F17L) and 
c.1400C > G (p.S467C). Previous studies have reported a low variant 
frequency of c.760C > T (p.R254X) in asymptomatic neonates (23). 
This finding is consistent with the results of the present study.

PKU is the most common disease of abnormal amino acid 
metabolism and has the second-highest incidence in this study 
(1/15,348). This incidence is close to the prevalence rate of live births 
(1/15,924) in China (24). The incidence of PKU varies considerably 
between geographical regions, with China having the highest incidence 
among Asian countries (25). Its pathogenesis is associated with the 
variants in PAH, which encodes the phenylalanine lightening enzyme 
(26). If patients are not treated promptly, severe and irreversible mental 
impairment, growth retardation, psychological behavior, acquired 
microcephaly, systemic skin hypopigmentation, and musty sweat odor 
may occur (27). The use of MS/MS to detect the Phe concentration and 
the Phe/Tyr ratio in newborns enable the early detection of PKU in 
children. However, this method cannot distinguish between different 
phenotypes; therefore, it may not be suitable for timely and appropriate 
treatment (28). Thus, the key to treating PKU lies in further clarifying 
the exact type of PKU. This study demonstrates the effectiveness of 
targeted NGS technology in eliminating false positives in MS/MS 
screening and identifying the PKU type and genotype. This enables 
accurate targeted therapy for infants with specific types of 
PKU. Consistent with previous reports, early diagnosis and treatment 
contributed to favorable outcomes for patients with PKU (29). There 
is a high degree of variability in PAH (NM_000277.3), as two of the 

first variants found were c.1315 + 1G > A and c.1222C > T 
(p.Arg408Trp) (30). Within a few years, many new variants were 
discovered, and two of these new variants c.547G > T (p.E183Ter) and 
c.948delA (p.E316Ter) were also found in this study. According to 
ACMG and the available evidence, these new variants were classified 
as pathogenic. To date, over 800 variants in PAH have been identified, 
encompassing more than 100 different types of variants in children 
with PKU in China (31). It is noteworthy that there were variations in 
hotspot variants in PAH among different regions and populations. 
According to the results of large-sample research conducted in 
mainland China (26), the most common variant sites included 
c.728G > A, c.611A > G, c.331C > T, c.1238G > C, and c.442-1G > A, 
with c.728G > A having the highest variant frequency. The variant 
characteristics of PAH in this study were consistent with the results of 
large-cohort studies conducted in mainland China, including eastern 
China (18) and Nanjing (32). However, the hotspot variant c.158G > A 
detected in this study is uncertain and requires further validation.

CD, which is inherited in an autosomal recessive manner, is the 
most common disorder of the urea cycle. It is caused by pathogenic 
variants of SLC25A13 (33) and results in a broad spectrum of phenotypes 
ranging from life-threatening hyperammonemia in neonates to adult-
onset hyperammonemia with mild symptoms or no manifestations at 
all. The detection of neonatal blood amino acids (Cit, Cit/Arg) by MS/
MS has a high sensitivity for the early diagnosis of CD children. 
However, an increasing number of case reports have found that the 
clinical manifestations and laboratory abnormalities of CD patients are 
varied and transient (34). This study identified six cases of CD through 
targeted NGS. One case was detected due to abnormal levels of CO, 
while the initial results for Cit or Cit/Arg were within the normal range. 
Therefore, while highly biochemical indicators are not strictly necessary, 
a combination of clinical manifestations and genetic analyses is essential 
for making an accurate diagnosis (35). With an incidence rate of 
1/43,486, it ranked third in our study. A previous study indicated that 
the incidence rate in southern China is significantly higher than that in 
northern China, with provinces at lower latitudes having significantly 
higher incidence rates than those at higher latitudes (36). In SLC25A13 
(NM_014251.3), c.852_855del, c.1638_1660dup, c.615 + 5G > A, and 
c.1751-5_1751-4ins were the most common variants in China, 
accounting for 82.9% of all variants (37). In our study, we observed that 
c.852_855del was the most prevalent, accounting for 66.7% of cases. 
These findings are in line with results of previous studies (38).

Although targeted NGS technology has demonstrated many 
advantages in clinical applications, its high cost compared with MS/MS 
technology may limit its widespread use in resource-limited areas (39). 
Furthermore, targeted NGS primarily focuses on detecting known 
potential targets and exhibits limitations when addressing complex 
genomic variants, such as structural and copy number variations (40). 
This limitation could lead to the omission of certain disease-associated 
variants, potentially impacting clinical decision-making.

5 Conclusion

In summary, targeted NGS technology can serve as a crucial 
diagnostic tool for neonatal genetic metabolic diseases. Its 
combination with MS/MS technology proves effective and suitable for 
clinical screening and diagnosis. Additionally, we  identified IEM 
variant hotspots and some novel variants in our region. These variants 
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are the cause of IEM in certain patients, helping to elucidate the 
etiology of the disease at the genetic level.
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