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Background: Malaria is a major global health hazard, particularly in developing 
countries such as Ethiopia, where it contributes to high morbidity and mortality 
rates. According to reports from the South Omo Zone Health Bureau, despite 
various interventions such as insecticide-treated bed nets and indoor residual 
spraying, the incidence of malaria has increased in recent years. Therefore, this 
study aimed to assess the spatial, temporal, and spatiotemporal variation in 
malaria incidence in the South Omo Zone, Southwest Ethiopia.

Methods: A retrospective study was conducted using 4 years of malaria data 
from the South Omo Zone District Health Information Software (DHIS). The 
incidence rate of malaria per 1,000 people was calculated using Microsoft 
Excel software. Kulldorff SaTScan software with a discrete Poisson model was 
used to identify statistically significant spatial, temporal, and spatiotemporal 
malaria clusters. Graduated color maps depicting the incidence of malaria were 
generated using ArcGIS 10.7 software.

Results: Spatial clusters were identified in the districts of Dasenech (RR = 2.06, 
p < 0.0001), Hamer (RR = 1.90, p < 0.0001), Salamago (RR = 2.00, p < 0.0001), 
Bena Tsemay (RR = 1.71, p < 0.0001), Malie (RR = 1.50, p < 0.0001), Nyngatom 
(RR = 1.91, p < 0.0001) and North Ari (RR = 1.05, p < 0.0001) during the period 
from 08th July 2019 to 07th July 2023. A temporal cluster was identified as 
the risk period across all districts between 08th July 2022 and 07th July 2023 
(RR = 1.59, p = 0.001). Spatiotemporal clusters were detected in Dasenech 
(RR = 2.26, p < 0.001) Salamago, (RR = 2.97, p < 0.001) Hamer (RR = 1.95, 
p < 0.001), Malie (RR = 2.03, p < 0.001), Bena Tsemay (RR = 1.80, p < 0.001), 
Nyngatom (RR = 2.65, p < 0.001), North Ari (RR = 1.50, p < 0.001), and Jinka 
town (RR = 1.19, p < 0.001).

Conclusion: Significant spatial, temporal, and spatiotemporal clusters in malaria 
incidence were identified in the South Omo Zone. To better understand the 
factors contributing to these high-risk areas, further research is needed to 
explore individual, household, geographical, and climatic factors. Targeted 
interventions based on these findings could help reduce malaria incidence and 
associated risks in the region.
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1 Introduction

Malaria is an infectious disease prevalent in tropical and 
subtropical regions worldwide. It is caused by Plasmodium Protozoa 
and transmitted by Anopheles mosquitoes (1). The majority of human 
malaria cases, along with associated morbidity and mortality, are 
attributed to two Plasmodium. Species: P. falciparum and P. vivax (2). 
Malaria epidemics have been reported among populations living at 
altitudes as high as 2,500 meters above sea level (3). Between 2000 and 
2015, the number of malaria cases decreased by 27%, while the fatality 
rate decreased by 60%.

However, since 2015, the drop has halted and even reversed in 
several nations (4). However, the decrease in malaria occurrence in some 
regions of the world does not minimize the substantial risk that each 
person faces when visiting a currently endemic area because travelers 
from non-endemic areas have not developed immunity to malaria (5). 
The global tally of malaria cases reached 249 million in 2022, which is 
up by five million from 2021. The World Health Organization (WHO) 
African Region accounted for approximately 93.6% of cases and 95.4% 
of fatalities globally (6). Approximately 35% of the world’s population 
lives in areas where there is some risk of malaria transmission (7). 
Among them, approximately 1 billion people reside in regions with a low 
but still present risk of malaria transmission (7).

In Sub-Saharan Africa, estimates showed a decline in the malaria 
burden and similar trends, but there was also a resurgence of the 
malaria burden empirically in some areas (8). In 2020, there were 
over 200 million malaria cases and 403,000 deaths in Sub-Saharan 
Africa. Furthermore, in 2022, approximately 249 million malaria 
cases were reported, with 94% of the cases and 95% of the deaths 
occurring in the WHO African Region (9). Nigeria (27%), the 
Democratic Republic of Congo (12%), Uganda (5%), Angola (3.4%), 
Burkina Faso (3.4%), and Mozambique (4%) accounted for more than 
half (55%) of all malaria cases worldwide (4). In Ethiopia, 68% of the 
areas are endemic to malaria, and 60% of the country’s population is 
prone to infection of malaria (10). In Ethiopia, malaria transmission 
is seasonal, increasing in September and December following the 
main rainy season; April and May are months with decreased 
transmission rates (11). The Ethiopian Ministry of Health reported 
that 75% of the country, including the Southwest region, is malarious. 
As a result, approximately 70% of the population is at risk for 
developing malaria (12–14). Malaria prevention and control services 
are provided free of charge in the country, and Ethiopia is currently 
implementing a malaria elimination effort to abolish the disease by 
2030 (15, 16).

The implementation of different malaria control initiatives in 
Ethiopia, such as the use of insecticide-treated bed nets, indoor 
residual spraying, and treating cases with artemisinin-based 
combination therapy, resulted in encouraging gains (10, 17). Despite 
those interventions, malaria contributed to 3% of the total Disability-
adjusted life years (DALY) due to all causes in Ethiopia (18). In 2021, 
Ethiopia constituted 1.7% of the global malaria cases, and there were 

2,783,816 cases and 8,041 deaths (19). In addition, malaria cases 
have soared from the beginning of 2023 to the end of June, and 
1,251,910 cases of malaria have been reported in Ethiopia (20). 
Severe malaria, which causes major organ damage, is more likely in 
children under the age of five in malaria-endemic nations than in 
older children and adults, which has a significant impact on local 
children’s development (21). The South Omo Zone, situated in 
southwest Ethiopia, is a high-risk area for malaria due to its lowland 
environment and climatic conditions that support mosquito 
breeding (22). Malaria incidence in this region, as in other lowland 
areas of Ethiopia, is heavily influenced by seasonal changes, with 
transmission rates peaking during the rainy season (23). According 
to the reports of the South Omo Zone health bureau, despite 
different interventions such as insecticide-treated bed nets and 
indoor residual spraying, the incidence of malaria has shown an 
increment in recent years in the South Omo Zone. Accordingly, this 
study aims to determine the spatial, temporal, and spatiotemporal 
variations of malaria incidence in the South Omo Zone, 
Southwest Ethiopia.

2 Materials and methods

2.1 Study setting

A retrospective study was conducted from 08th July 2019 to 
07th July 2023. The South Omo Zone’s 4 years’ worth of malaria 
data from the District Health Information Software (DHIS) 
reporting system was used. The South Omo Zone is located 
approximately 750 km from Addis Ababa, the capital city of 
Ethiopia, and 299 km from Hawassa, the capital city of Southern 
Nations, Nationalities, and Peoples (SNNP) (24). The boundaries 
of the South Omo Zone are adjoined with the Southwest Ethiopia 
Peoples Region in the Northwest and North, the Gofa Zone and 
Basketo Zone in the North, the Gamo Zone in the Northeast, the 
Oromia Region, Alle Zone, and the Konso Zone in the East, Kenya 
in the South and South Sudan in the Southwest. The South Omo 
Zone comprises 10 districts and three administrative towns. These 
are Salamago, Debub (South) Ari, Semen (North) Ari, Wub Ari, 
Boko Dawula, Hamar, Bena Tsemay, Dassenech, Malie, and 
Nyangatom. Currently, there are three administrative towns: Jinka, 
Gelila, and Turmi. The eight largest ethnic groups are Ari 
(44.59%), Malie (13.63%), Dasenech (8.17%), Hamer (8.01%), 
Bena (4.42%), Amhara (4.21%), Tsemai (3.39%), and Nyangatom 
(2.95%) (25). According to 2023 South Omo Zone plan 
commission estimates, the total population residing in South Omo 
Zone is estimated to be 918,440, with 459,586 Malies and 458,854 
feMalies in all woredas/districts (woredas, also known as districts, 
representing the third level of administrative divisions in Ethiopia) 
(Figure 1).

The South Omo Zone has a large land area and sparsely 
distributed agro-pastoral communities in the lowlands (while the 
highland areas are densely populated), and it is overwhelmingly rural 
(26). The zone is located approximately 400 m above sea level. The 
average yearly temperature ranges from 18 to 32°C. The average 
annual rainfall is approximately 390 mm, and rainfall in the study area 
is irregular and bimodal, falling between September and November 
and March and May (27). The administrative center of the South Omo 

Abbreviations: ArcGIS, Arc Geographic Information System; CSV, comma-separated 

values; DALY, disability-adjusted life years; DHIS, District Health Information 

Software; LLR, Log-Likelihood Ratio; RDT, Rapid diagnostic test; RR, Relative ratio; 

SNNPR, Southern Nations, Nationalities, and Peoples’ Region; WHO, World Health 

Organization.
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Zone is Jinka. The South Omo Zone has four general hospitals and 32 
health centers, which serve approximately 1.2 million people in the 
catchment area.

2.2 Data collection

Two nurses and one environmental health professional, all 
holding Bachelor of Science degrees, extracted data from the DHIS 
reporting system on a case-by-case basis. They were proficient in 
DHIS data management and used Microsoft Excel. DHIS refers to the 
District Health Information Software System, a digital platform used 
for collecting, managing, and analyzing health data at various 
administrative levels in Ethiopia. It is used at national, regional, and 
local levels to track health metrics, including disease surveillance, 
immunization, maternal and child health, and more. The system 
integrates data from health facilities nationwide, enabling decision-
makers to use this information for planning, monitoring, and 
evaluation purposes. It supports both communicable and 
non-communicable diseases and includes tools for data validation, 
analytics, and reporting. Health facilities in each district treat and 
record malaria cases based on the World Health Organization 
(WHO) guideline that defines malaria as the occurrence of malaria 
infection in a person in whom the presence of malaria parasites in 
the blood has been confirmed by a Rapid Diagnostic Test (RDT) (28) 

was collected as confirmed malaria cases. Shapefiles, spatial 
coordinates (latitudes and longitudes), and population data for each 
year and each district were obtained from the Ethiopian 
Statistical Service.

2.3 Quality control

The obtained data (confirmed malaria cases) collected by two 
BScs in nursing and one BSc in environmental health personnel were 
cross-checked with the district (Woreda and city administration) 
reporting system. District health offices obtained the missing reports 
from the zonal health department (DHIS). We  cross-verified the 
DHIS data to ensure the accuracy of the malaria cases entered into 
the system. The review also aimed to identify any missing reports 
within the DHIS reporting system. Although the DHIS database is 
generally reliable, occasional data gaps can occur when some entries 
fail to reach the zonal health department, where the DHIS is 
maintained. Our study’s total percentage of missing data in the DHIS 
was less than 2%. However, we addressed the missing data from the 
district reporting system. Consequently, our study contains no 
missing data. The data collectors were informed about the research 
objectives and data collection procedures. After collection, the data 
completeness and consistency were checked by the study’s principal 
investigators before analysis. The final collected data was cleaned, 

FIGURE 1

Map of South Omo Zone, Source of shapefile: Ethiopian Statistical Service, own map output from ArcGIS V.10.7.
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aggregated, edited, checked, and sorted using Microsoft 
Excel software.

2.4 Data management and analysis

Since the study was conducted for district-level malaria incidence 
cluster detection, the annual population malaria incidence for each 
district and the average cumulative annual population malaria 
incidence from 08th July 2019- 07th July 2023 were calculated using 
Microsoft Excel software and associated with their respective 
coordinates. The incidence rate is a new case divided by the total 
population of each district and multiplied by 1,000. Finally, the data 
was stored in CSV format and exported to ArcGIS version 10.7 (29) 
and SaTScan™ version 9.6 (30) for further analysis. ArcGIS version 
10.7 software was used to analyze spatial autocorrelation (Global 
Moran’s I) and plot the graduated color map. SaTScan™9.6 software 
was used for purely spatial, temporal, and spatiotemporal analysis. 
Since the data was counted, the discrete Poisson model was utilized 
during the spatial, temporal, and spatiotemporal analysis in 
SaTScan™9.6 software (31).

Spatial autocorrelation analysis (Global Moran’s I): A value of −1 
indicates that the spatial units are negatively correlated, whereas 1 
suggests a positive spatial correlation. If Moran’s I is around 0, there is 
no spatial correlation (32). A statistically significant Moran’s I with a 
p-value less than 0.05 indicates spatial autocorrelation (32, 33). This 
analysis was done using ArcGIS version 10.7 software.

Hotspot and Cold Spot Analysis: Identifies statistically significant 
clusters of high values (hotspots) and low values (cold spots) across 
the entire study area (34). This analysis was conducted using ArcGIS 
version 10.7 software.

Purely spatial clusters analysis: A circular window was used to 
scan the entire study area. The circle’s radius continuously changes 
from zero to a specified maximum size. The maximum size represents 
the percentage of the total at-risk population within the scanning 
window (32). Researchers recommend that the maximum size should 
not exceed 50%, meaning a reported cluster can include at most 50% 
of the total population at risk (32, 35, 36). The alternative hypothesis 
is that the risk within the window varies from the outside risk, while 
the null hypothesis is that the disease risk is identical inside and 
outside the scanning window in space (32, 36). The Poisson 
distribution determines the number of predicted incidences for each 
circle, which is then compared to the number of observed occurrences 
inside and outside the window (31, 32, 36). The circle with the 
maximum Log-Likelihood Ratio (LLR), containing more cases than 
expected, is identified as the most likely (primary) cluster, indicating 
it is the least likely to have occurred by chance (36). Based on this, the 
likelihood ratio within each circle is calculated (36). Under the Poisson 
assumption, the likelihood function for a specific window is 
proportional to.
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(1)

C is the total number of malaria incidences, c is the observed 
number of malaria incidences within the window, and E[c] is the 

expected number of malaria incidences within the window under the 
null hypothesis (32, 36). Since the analysis will be based on the total 
number of malaria incidences observed, C − E[c] is the expected 
number of malaria incidences outside the window. I() is an indicator 
function (32). The program will be adjusted to scan for clusters with 
either high or low rates, then I() = 1 for all windows (32). The expected 
number of malaria incidences in each area under the null hypothesis 
will be calculated using the formula:

 [ ] /E c p C P= ∗  (2)

Where c is the observed number of malaria incidences, p is the 
malaria population in each district, and C and P are the total numbers 
of malaria incidences and populations, respectively (32). The 
significance of the spatial cluster was tested at an alpha threshold of less 
than 0.05. This analysis was conducted using SaTScan™ 9.6 software.

Purely temporal scan statistics for the temporal cluster: A 
one-dimensional moving window is only employed when the 
cylindrical window’s height serves as the time dimension (32). Monte 
Carlo simulations were used to produce a p-value. A significant 
district was determined by applying a significance criterion of p < 0.05. 
For purely temporal analyses, only the most likely cluster was reported 
(32). The scan was performed to look for high-rate regions or clusters 
(32). Analysis was computed using SaTScan™ 9.6 software.

Space–time scan statistics for spatiotemporal clusters: This 
technique was used to find clusters in time and space (32, 35). It is 
presumed that the relative risk of malaria incidence within and outside 
of the window was equal. A cylindrical window with a circular base 
was used to detect spatiotemporal clusters (32). As in the purely 
spatial scan statistic, the cylinder’s base represents space, while its 
height represents time (32, 37). Using a p-value found through Monte 
Carlo simulations, districts with substantial malaria incidence within 
the corresponding period (time) were found (32). The primary cluster 
that was least likely to have happened by chance was determined to 
be the circle with the biggest likelihood ratio and the highest observed 
incidence of malaria (31, 32). For spatiotemporal analysis, an iterative 
method outlined by Kulldorff was used to identify secondary clusters 
for each spatial and space–time scan statistic in addition to the most 
likely (primary) cluster (32, 36). 50% of the population at risk was 
designated as the maximum cluster size. Similar to the previous one, 
a significant district was determined by applying a significance 
criterion of p < 0.05. The analysis was performed using SaTScan™ 
9.6 software.

3 Results

3.1 Distribution of malaria incidence in the 
South Omo Zone at the district level for 
each year

The incidence rate showed significant spatial and temporal 
variation over the study period. Between 2019 and 2023, the highest 
and lowest incidence rates were 990.4 per 1,000  in Salamago in 
2022/2023 and 1.59 per 1,000 in 2019/2020 in the Wub Ari districts, 
respectively (Figure 2).
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3.2 Spatial autocorrelation result and 
graduated color map of malaria incidence

The spatial autocorrelation results indicate that the incidence of 
malaria was clustered, with a z-score of 2.00 and a p-value of 0.045.

Districts with the highest incidence rates of malaria in the zone 
were marked in red on the map and were clustered in the southern, 
southwestern, and northern parts of the study area, including 
Dasenech, Nyangatom, Hamer, and Saramago. Districts with the 
second-highest malaria incidence rates were shown in orange and 
included Bena Tsemay and Malie. Areas with the third-highest malaria 
incidence rates were shaded in yellow and included North Ari. The 
districts with the low malaria incidence were located in the northern 
part of the zone and were indicated by light blue, covering South Ari, 
Wub Ari, Boko Dawula, and Jinka town (Figure 3).

3.3 Hotspot detection

Hotspot areas with a high cluster of malaria incidence were 
identified. A hotspot area with high-rate clusters at 90% 

confidence was observed in Dasenech and Hamer. The hotspots, 
Dasenech and Hamer, are separated from the cold spots by 
Nyangatom and Bena Tsemay, which are neither cold nor hot 
spots. The cold spots include North Ari, Wub Ari, South Ari, Jinka 
Town, Malie, Salamago, and Boko Dawula. The maximum peak, 
where spatial clustering was highly pronounced, was at a distance 
of 62866.1413 meters with a corresponding Z score of 2.001446 
(p-value <0.05). This distance band was used to analyze hotspot 
clusters (Figure 4).

3.4 Spatial clusters

Primary spatial clusters were identified in Dasenech (RR = 2.06, 
p < 0.0001), while secondary clusters were detected in Hamer 
(RR = 1.90, p < 0.0001), Salamago (RR = 2.00, p < 0.0001), Bena 
Tsemay (RR = 1.71, p < 0.0001), Malie (RR = 1.50, p < 0.0001), 
Nyangatom (RR = 1.91, p < 0.0001), and North Ari (RR = 1.05, 
p < 0.0001) districts between 08th July, 2019, and 07th July, 2023. No 
clusters were identified in Jinka Town, South Ari, Wub Ari, or Boko 
Dawula (Table 1 and Figure 5).
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FIGURE 2

Annual malaria incidence from 2019 to 2023 in districts of the South Omo Zone, Southwest Ethiopia. Source of population data: South Omo Zone plan 
commission.
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3.5 Temporal cluster

Temporal malaria clusters were observed across all districts from 
08th July 2022 to 07th July (RR = 1.59, p = 0.001) (Table 2).

3.6 Spatiotemporal clusters

Spatiotemporal malaria clusters were detected in eight districts, 
namely Jinka town from 2022/08/07 to 2023/07/07 (RR = 1.19, 
p < 0.001), North Ari from 2021/08/07 to 2022/07/07 (RR = 1.50, 
p < 0.001), Nyngatom from 2022/08/07 to 2023/07/07 (RR = 2.65, 
p < 0.001), Bena Tsemay from 2021/08/07 to 2022/07/07 (RR = 1.80, 
p < 0.001), Malie from 2022/08/07 to 2023/07/07 (RR = 2.03, 
p < 0.001), Hamer from 2021/08/07 to 2022/07/07 (RR = 1.95, 
p < 0.001), Salamago from 2022/08/07 to 2023/07/07 (RR = 2.97, 
p < 0.001), and Dasenech from 2022/08/07 to 2023/07/07 
(RR = 2.26, p < 0.001), hierarchically from least to most clusters 
(Table 3).

4 Discussion

This retrospective study revealed spatial, temporal, and 
spatiotemporal clusters of malaria incidence in the South Omo Zone. 
The rationale for conducting spatial, temporal, and spatiotemporal 
analyses of malaria incidence separately lies in each analysis’s unique 
insights, collectively offering a comprehensive understanding of malaria 
patterns. Spatial analysis identifies high-risk regions or hotspots, 
guiding targeted interventions, but lacks information on temporal 
changes. Temporal analysis detects trends, seasonality, or heightened 
transmission periods, which are essential for timing interventions but 
treat all regions as a single unit. The spatiotemporal analysis integrates 
both dimensions (spatial and temporal), providing a dynamic view of 
disease spread over time and space, though it requires complex models 
and may obscure specific insights. Using all three approaches uncovers 
complementary aspects—spatial analysis reveals static hotspots, 
temporal analysis identifies timing, and spatiotemporal analysis captures 
evolving patterns—ensuring robust, actionable findings for effective 
resource allocation and interventions for malaria.

FIGURE 3

Graduated color map that depicts the spatial distribution of malaria incidence in the South Omo Zone, Southwest Ethiopia, 08th July 2019- 07th July 
2023. Source of shapefile: Ethiopian Statistical Service, own map output from ArcGIS V.10.7.
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Between 2019 and 2023, spatial malaria clusters were detected, 
with primary clusters identified in Dasenech and secondary clusters 
in North Ari, Nyangatom, Malie, Bena Tsemay, Salamago, and Hamer. 
Our findings are consistent with studies conducted in northwest 

Ethiopia and at the village level in areas with unstable malaria 
transmission in Ethiopia, which similarly identified spatial variations 
across their respective study areas (38, 39). These can be due to several 
environmental factors in these woredas, such as temperature and 

FIGURE 4

Hot spot detection based on average cumulative annual malaria incidence in the South Omo Zone, Southwest Ethiopia, 08th July 2019- 07th July 
2023. Source of shapefile: Ethiopian Statistical Service, own map output from ArcGIS V.10.7.

TABLE 1 Spatial clusters of malaria incidence in the South Omo Zone, Southwest Ethiopia, 08th July 2019- 07th July 2023.

Cluster Woreda/
district

Population XY coordinates Observed 
number of 

malaria 
incidence

Expected 
number of 

malaria 
incidence

Relative 
ratio

LLR

1 Dasenech 79,867 (4.684659 N, 36.090778 E)/0 km 205,846 109536.05 2.06 37995.52

2 Hamer 83,803 (4.955257 N, 36.502528 E)/0 km 200,608 114934.09 1.90 29584.85

3 Salamago 42,217 (5.951219 N, 36.165150 E)/0 km 110,235 57900.00 2.00 19878.06

4 Bena Tsemay 80,156 (5.451280 N, 36.666493 E)/0 km 176,260 109931.29 1.71 18971.83

5 Male 126,941 (5.763219 N, 36.880938 E)/0 km 242,765 174096.70 1.50 14431.17

6 Nyngatom 26,348 (5.240837 N, 35.973667 E)/0 km 67,166 36135.06 1.91 11027.9

7 North Ari 95,200 (6.175410 N, 36.649943 E)/0 km 136,606 130564.84 1.05 154.97

LLR, log-likelihood ratio; RR, relative ratio.
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rainfall. Since most of these woredas are lowlands (40, 41), the 
temperature makes it easier for mosquitos to reproduce and survive 
(42). In addition, rainfall creates stagnant water bodies, which are 
ideal breeding grounds for mosquitos (43). The majority of these 
districts are lowlands with poor drainage and heavy rainfall, resulting 
in additional breeding areas (43, 44). Furthermore, high humidity 
levels, which are common in many lowland environments, promote 
mosquito breeding and survival in this district (44). Finally, the 
population in this district (Dasenech, Hamer, Salamago, Bena Tsemay, 
Malie, Nyngatom, and North Ari) has higher poverty rates, which 
makes people more vulnerable to malaria because they have limited 
access to preventive measures such as bed nets and insecticides, as well 
as proper healthcare (45).

This study showed there were temporal malaria clusters between 
08th July 2022 and 07th July 2023. This can be due to disruptions in 

the economy, social infrastructures, health facilities, and services 
caused by the Coronavirus Disease 2019 (COVID-19) pandemic. The 
sudden surge in malaria cases in 2022/23 may be attributed to ongoing 
armed conflicts and unrest, which disrupted health services and 
interventions (46–48). Disruptions caused by the COVID-19 
pandemic and ongoing conflicts have severely impacted malaria 
prevention and treatment (49). Overburdened health systems have 
deprioritized control measures such as insecticide-treated nets (ITNs) 
and indoor residual spraying (IRS), while conflicts damage 
infrastructure and disrupt antimalarial supply chains (49). Displaced 
populations face overcrowded, unsanitary conditions with inadequate 
mosquito control, increasing malaria risk (50). Finally, significant 
spatiotemporal malaria clusters were detected in Jinka town from 
2022/08/07 to 2023/07/07, North Ari from 2021/08/07 to 2022/07/07, 
Nyngatom from 2022/08/07 to 2023/07/07, Bena Tsemay from 

FIGURE 5

Spatial clusters of malaria incidence in the South Omo Zone, Southwest Ethiopia, 08th July 2019- 07th July 2023. The red circles in the figure 
represent woredas (districts) with spatial clusters of malaria incidence where the p-value is less than 0.0001. Source of shapefile: Ethiopian Statistical 
Service, own map output from ArcGIS V.10.7.

TABLE 2 Temporal clusters of malaria incidence in the South Omo Zone, Southwest Ethiopia, from 08th July 2019 to 07th July 2023.

Cluster Woreda/
district

Period Observed 
number of 

malaria 
incidence

Expected 
number of 

malaria 
incidence

Relative 
ratio (RR)

LLR p-value

1 All 08th July 2022 to 

07th July 2023

420,847 304241.45 1.59 28010.61 0.001

LLR, log-likelihood ratio.
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2021/08/07 to 2022/07/07, Malie from 2022/08/07 to 2023/07/07, 
Hamer from 2021/08/07 to 2022/07/07, Salamago from 2022/08/07 to 
2023/07/07, and Dasenech from 2022/08/07 to 2023/07/07, 
hierarchically from least to most clusters. The primary reason for this 
phenomenon could be that pastoralist groups in the South Omo Zone 
are susceptible to the introduction of malaria parasites into new areas 
and the facilitation of disease transmission between communities due 
to their distinctive patterns of human movements, such as seasonal 
migrations in search of water and grazing pasture for cattle. 
Furthermore, poor infrastructure, rural locations, cultural barriers, 
and limited access to healthcare services can all contribute to limited 
access to healthcare services in pastoralist areas, which can delay 
diagnosis and treatment and raise the incidence of malaria. These 
findings are supported by a study conducted in Northeast Ethiopia, 
Southern Ethiopia, and Senegal (51–53).

The incidence of malaria exhibited interannual variability across 
districts and survey years. This finding is supported by a study 
conducted in Mozambique (54), Senegal (55), Zimbabwe (56), 
Burkina Faso (57), West Gojjam (58), and Northwest Ethiopia (59, 
60). They revealed spatiotemporal variation of malaria incidence.

This variation could be due to geographical and meteorological 
differences, WASH infrastructure conditions, and socioeconomic and 
environmental factors.

5 Conclusion

This study found spatial, temporal, and spatiotemporal clusters in 
malaria incidence in the South Omo Zone. Further research is needed 
to investigate the factors driving the elevated malaria risk in the 
identified clusters. This should include an examination of individual, 
household, geographical, and climatic characteristics to gain a more 
thorough understanding of malaria risk.

5.1 Strength of the study

This study is the first attempt in the region. This study will provide 
a baseline for evaluating the progression of malaria elimination 
programs, as the spatial, temporal, and spatiotemporal analysis 
enables tracking changes in malaria incidence over time and across 
the study area, assessing the effectiveness of strategies such as case 

management, vector control, and surveillance efforts. Moreover, it is 
methodologically solid and thoroughly explains the spatial, temporal, 
and spatiotemporal clusters in malaria incidence across populations. 
It also serves as a starting point for further investigation into what 
distinguishes hot spot districts from cold spot districts, allowing us to 
focus on these risk factors.

5.2 Limitations of the study

The data were gathered using a passive surveillance system, 
meaning that individuals may not report to formal governmental 
health institutions when they fall ill. Instead, they choose traditional 
medicine or purchase drugs from pharmacies while they are at home. 
Moreover, biases can occur with Rapid Diagnostic Tests (RDTs) for 
malaria due to factors such as user-related biases, where 
misinterpretation by untrained healthcare providers can lead to 
overdiagnosis, especially in areas with high malaria prevalence. RDTs 
might be more accurate in some regions of the study area due to better 
healthcare infrastructure or availability of resources. In contrast, 
limited access to quality testing or treatment options in underserved 
areas could lead to biased results.

Additionally, the data collected during the COVID-19 pandemic 
may have introduced bias. Furthermore, this study should include 
host (individual) variables and household, socioeconomic, 
environmental, and organizational aspects. Unfortunately, data for 
these factors were not available.
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