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The key role of our microbiome in influencing our health status, and its relationship 
with our environment and lifestyle or health behaviors, have been shown in 
the last decades. Therefore, the human microbiome has the potential to act 
as a biomarker or indicator of health or exposure to health risks in the general 
population, if information on the microbiome can be collected in population-
based health surveys or cohorts. It could then be associated with epidemiological 
participant data such as demographic, clinical or exposure profiles. However, to 
our knowledge, microbiome sampling has not yet been included as biological 
evidence of health or exposure to health risks in large population-based studies 
representative of the general population. In this mini-review, we first highlight 
some practical considerations for microbiome sampling and analysis that need 
to be considered in the context of a population study. We then present some 
examples of topics where the microbiome could be included as biological evidence 
in population-based health studies for the benefit of public health, and how this 
could be developed in the future. In doing so, we aim to highlight the benefits of 
having microbiome data available at the level of the general population, combined 
with epidemiological data from health surveys, and hence how microbiological 
data could be used in the future to assess human health. We also stress the 
challenges that remain to be overcome to allow the use of this microbiome data 
in order to improve proactive public health policies.
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1 Introduction

In recent years, several large studies have been carried out sequencing thousands of human 
genomes (1, 2). However, it is now known that humans are holobionts, or meta-organisms, 
living in the presence of thousands of microbes on different parts of the body, such as the gut, 
vagina, skin, mouth and nose (3, 4), constituting a second genome (5). These organisms have 
a symbiotic interaction with our bodies and play an important role in our health from birth, 
for example by programming our immune system, providing nutrients for cells and preventing 
colonization by pathogens (6). Over the past decade, alterations in the microbiome have been 
associated with the occurrence of a plethora of diseases and conditions, including diabetes, 
obesity, inflammatory bowel disease, autism and mental health (7, 8). Microbiota 
transplantation is now even being used as a validated treatment for recurrent Clostridium 
difficile infections (9). However, the causal effects of the microbiome on health outcomes, or 
vice versa, are still not fully documented or understood (10–12). Studies have shown that the 
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FIGURE 1

The pivotal place of the microbiome in population-based health studies. Biological data from non-invasive microbiome (gut, oral, nasal, skin…) testing 
performed at population-scale, can be associated with information from health, epidemiological surveys and human biomonitoring, with information 
on environmental and health behavior parameters (exposome, e.g., diet, pollution, stress….) affecting the population through life as well as the 
prevalence or development of health conditions (e.g., body composition, allergies, diseases, mental health…). After (bio)informatic and statistic 
processing, this population-level data could be used to drive proactive public health policy by giving information on the health status of the population 
(and therefore monitor the impact of new policies to improve health) or to identify population groups at risk for specific diseases or health problems 
and by allowing information-based policy-making on the environment and monitoring of the mitigation and adaptation actions put in place.

microbiome, which is even thought to be initiated in the prenatal state 
(13), is also shaped by exposures throughout our lives (i.e., our 
exposome). Our microbial diversity begins to expand after the 
introduction of solid foods and then continues to vary according to 
health behavior (14, 15), including the diet, stress or activity levels 
(16), antibiotic use (17), but also our environment (18, 19), including 
exposure to pollution and environmental contaminants (20, 21) and 
the biodiversity in the surrounding landscape (22). Infection by a 
pathogen (23) or non-communicable diseases have also been 
associated with changes in the microbiome, e.g., metabolic syndrome 
(24), cancer (25) or pulmonary damage after pollution exposure (26). 
In addition, the microbiome could predict the severity of the infection, 
as reported for COVID-19 (27–29). The microbiome has also been 
shown to indicate how individuals respond to certain drugs, e.g., how 
cancer patients respond to chemotherapy (30). These recent data 
suggest that microbiome analysis, when combined with 
epidemiological data, has the potential to provide valuable information 
for assessing population health. Furthermore, as the microbiome is 
influenced by the exposome, the microbiome could also be used to 
assess environmental exposures. Therefore, combining the 

determination of the microbiome with population-based 
epidemiological data (e.g., from national health examination surveys, 
food consumption surveys or national cohorts) would make it possible 
to obtain information on the general health status of the population 
as well as the impact of environmental and health behavior parameters 
(exposome) on this health or to identify population groups at risk for 
specific diseases or health problems through biological sampling 
(Figure  1) (31, 32). Hence, through further research combining 
epidemiological and microbiome evaluations, microbiome data has 
the potential to be  used as biomarker, i.e., a kind of proxy or 
measurable indicator of health and exposure determinants in the 
general population. This would provide relevant authorities with 
important insights to drive a proactive public health policy (Figure 1).

In this paper, we  discuss various practical considerations and 
benefits of including the microbiome in population-based health 
studies. We present the potential samples that can be collected to 
analyze the human microbiomes and how this sampling can 
be standardized for large-scale public health studies. We describe the 
different technologies now available to analyze the microbiome of 
these samples and how this analysis will affect the information that 
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can be obtained from the study. We then discuss how this approach 
can be implemented in population-based surveys and cohorts, using 
examples of studies that could benefit from the addition of the study 
of the microorganisms that live in and on us. Finally, we highlight the 
opportunities and challenges of including the microbiome in such 
population-based health studies.

2 Considerations on microbiome 
sample type selection and collection

The purpose of the research will determine the type of biological 
sample. The skin or vaginal microbiome may not answer the same 
biological questions as the microbiome from the nose, mouth or gut. 
Therefore, the specific microbiome community to be studied must 
be carefully chosen. Gut and oral microbiomes are very diverse and 
have been most studied in relation to diseases and environmental 
exposures. They are therefore promising options for use in population-
based health studies. The collection of feces (i.e., stool) to study the gut 
microbiome is non-invasive, allows self-sampling and has therefore 
been documented in large-scale studies (33, 34). The oral cavity has 
been described as the second largest human environment after the gut 
in terms of diversity and abundance of microorganisms (35). Samples 
of the oral microbiome are also easy to collect and preserve, although 
the exact sample type or location (saliva, tongue swab, biofilm at tooth 
surface, subgingival plaque…) may give different results (36). Saliva is 
the easiest to collect by the participants without external intervention 
and offers the possibility to also investigate the human genome or 
epigenome (37). Finally, nasal or skin swabs have been shown to 
be relevant when investigating environmental parameters such as air 
pollution or greenness and biodiversity levels of the surrounding 
landscape (38). The lung microbiome can also be of interest when 
studying respiratory diseases and exposure to air pollution (39–41), 
although the sampling collection methods are commonly invasive. The 
collection of sputum is the least invasive sampling of the lung 
microbiome, although the microbiome obtained is inheritably 
contaminated by the oral microbiome, and therefore does not 
represent the ‘pure’ respiratory microbiome. Furthermore, healthy 
participants may not have sufficient phlegm, which can hinder 
sampling (42, 43). Once the sample type has been selected, the 
sampling method (e.g., self-sampling or interviewer-led) needs to 
be  determined. To conduct large-scale studies, self-sampling, 
preferably without the need for the presence of a health practitioner, 
as well as the existence of a standardized sampling protocol, will 
be crucial to limit bias, as has been extensively reviewed (44, 45). This 
standardization includes the collection [e.g., for nasal swabs, the depth 
(46)], the timing [e.g., first feces of the day (47)] as the microbiome is 
affected by circadian changes (48), the collection tubes and the 
transport and storage conditions (44, 45). Importantly, in Europe, in 
the context of the General Data Protection Regulation (GDPR), each 
donor must be  (pseudo-)anonymized and the samples must 
be  carefully stored in a biobank (49, 50) and linked to the donor 
consent. Moreover, although studies have reported relationships 
between the microbiome and human genome markers, making a 
combined collection interesting (51), this may raise some ethical 
issues. Notwithstanding, for GDPR reasons, it is common practice to 
remove all human genetic data from publicly stored microbiome data 
to avoid re-identification of the donor.

3 Approaches to analyze the 
microbiome

Until recently, microorganisms have mainly been studied in 
isolation after being cultured on plates. This is a tedious task for 
complex environments and communities, and not all organisms living 
in the human microbiomes can be cultured (52), including viruses. In 
recent decades, new culture-independent methods have been 
developed that allow a better understanding of the diversity of the 
human microbiomes in a single test. These methods are based on 
sequencing the nucleic acids (mostly DNA) extracted from the 
microbiome sample. The quality, abundance and unbiased 
representation of the microbes in the genetic material extract is 
important to consider for standardization and data comparison (53).

The most widely used method of microbiome analysis is 
metabarcoding or sequencing of the 16S rRNA subunit gene, a 
highly conserved gene shared by bacteria and archaea, but 
presenting hypervariable regions that allow one bacterium to 
be distinguished from another. Two methods can be used, based on 
a selection of hypervariable regions of the gene (V1 to V9, of which 
V3-V4 are the most frequently selected), which may differ in 
resolution, or based on the sequencing of the entire gene. However, 
when only regions of the gene are sequenced, it has been reported 
that this differentiation is limited to accurately determine the genus 
level for most species (54, 55), whereas the species or strain level 
may be  required to determine accurate biomarkers from the 
microbiome (56). The sequencing of the entire gene may improve 
species level identification but still only allows taxonomic 
classification and not functional analysis (55). Importantly, the use 
of different hypervariable regions leads to different results (44, 57), 
which may also bias conclusions from meta-analyses (58). 
Moreover, this method does not report the presence of fungi (which 
could be  analyzed by the ITS region), eukaryotes (which could 
be analyzed using the 18S rRNA subunit), but also viruses, which 
are not targeted by any metabarcoding method (59).

An alternative method that has been developed is shotgun 
metagenomics or the sequencing of all nucleic acids in the sample, 
which theoretically allows the entire genome of all the species in the 
sample to be  obtained, including non-bacterial species (60). This 
includes the information on the different taxa present at the strain level 
(61), but also allows the functional analysis through the genes present 
in each genome. In particular, the presence of antimicrobial resistance 
genes can also be analyzed which is of particular importance for public 
health. Recently, a team of scientists even defined statistically relevant 
associations of the donor body mass index at SNP (single-nucleotide 
polymorphism) level, which is only possible when the entire genome of 
each microorganism in the sample is sequenced (56). As this method is 
still expensive, it could be used in a public health setting for pioneering 
studies to define markers to look for, but may not be feasible for a whole 
cohort or population, depending on the budget available. This method 
also allows access to the sequence of the genetic material from the 
donor as well, which could be of interest for some studies targeting the 
human DNA, making it more cost-effective. If biomarkers are defined 
at species, gene or SNP level after sequencing, more targeted methods 
can be used to test for them (62), providing a much faster and less 
expensive alternative. However, target-based methods could not be used 
when the microbiome change of interest is a variation in diversity, 
richness or evenness, requiring a view of the entire microbiome at once.
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Finally, promising alternative methods are being developed. For 
example, optical mapping, which is based on the examination of 
fluorocoding labels on the DNA with a high-resolution microscope to 
visualize structural variations within a microbial genome, allows species 
identification at a lower cost and in a shorter time frame (63). However, 
it does not provide information on the gene content. Specific genetic 
markers can be detected at a lower cost without the need for shotgun 
sequencing using hybridization capture sequencing (64), but the gene 
cannot be linked to the genome and species harboring it. Depending 
on the scientific question to be  answered, multiple microbiome 
characterization methods could be  coupled together to provide a 
complete view of the samples and limit the bias of each individual 
method (65). Alternatively, RNA sequencing using metatranscriptomics 
may also be of interest to study RNA viruses, which have also been 
reported to be present in microbiomes (66). It is important to note that 
the handling of the sample, storage, DNA extraction, library 
preparation, sequencing and data analysis all introduce bias. Therefore, 
regardless of the method chosen, in addition to including appropriate 
controls during the analysis (45), the data must be correctly stored in a 
database with accurate annotation and metadata to allow further 
analysis and comparison between different studies or approaches (67, 
68). Furthermore, as reviewed elsewhere (45), microbiome analysis 
requires appropriate bioinformatics and biostatistics.

4 Including the microbiome as a 
potential biomarker in 
population-based health studies –
examples of possible applications

As discussed in the introduction, non-population-based studies 
have revealed various associations between the microbiome and various 
aspects of health (as reflected in Table 1), and between environmental 
exposures and microbial composition, diversity, and function (Table 1), 
although the biomarkers that have been described are not yet validated 
at the whole population level. Conducting microbiome studies at the 
population level offers additional advantages, including broader 
representation (general population), longitudinal analysis (temporal 
patterns, causal relationships, i.e., cohorts), large-scale data (higher 
reliability), and translational impact (actionable insights). Once 
biomarkers can be clearly defined, by integrating the biological measures 
from the microbiome data that can be correlated with health disturbance, 
with the data typically collected during population-based health studies 
(questionnaires, chemical exposure), we could assess the population’s 
health status and the impact of environmental and health behavior 
parameters on that health (Figure 1). This has the potential to improve 
our understanding of disease etiology, risk factors, and prevention 
strategies, ultimately contributing to improved population health 
outcomes through information-based policy making (Figure 1; Table 1).

4.1 Defining a “healthy” representative 
microbiome

To date, several hundred thousand microbial genomes have been 
reported in the human microbiomes, originating from over 5,000 
different species (74), of which an estimated 50% is still undefined 
(75). In addition, a high degree of inter-individual variation has been 

observed (76). Therefore, the first step to enable population-based 
microbiome studies is to obtain an image of the general population’s 
microbiome by sampling the general public, without specific focus on 
certain (known) diseases, and thus representing a more or less 
“healthy” microbiome. This makes it possible to identify and study the 
diversity of species present in the microbiome of the country. Such 
projects are currently underway in several countries or regions (34, 
77, 78) These projects are all based on convenience sampling with no 
random selection of participants from the “healthy” population (i.e., 
participation in these studies was at participant’s own initiative) and 
are therefore not representative of the general, national population. 
These samplings need to be conducted randomly at all levels of the 
population that is studied to cover not only different genders, ages and 
diets but also the diversity of socioeconomic status, ethnicities, 
childhood conditions or social behaviors (79). Indeed, most studies 
have tested a particularly high proportion of highly educated males 
(79), while it has previously been shown that the lack of representation 
of certain minority groups within the subjects tested can bias the 
interpretation of the results when applied to a more diverse group 
(80), as has been the case with the human genome (81). Including 
microbiome sampling in national health studies would allow to obtain 
information which is more representative of the general population, 
although some bias may remain due to non-response of some invited 
participants. Ensuring the representation of minorities among the 
participants could be  attempted by oversampling of usually 
underrepresented groups, replacing non-respondents with people 
belonging to the same category, offering incentives (e.g., vouchers) or 
by adapting communication strategies (e.g., adapted study material, 
multiple languages, simplified languages, pre-testing of the 
communication material in a minority group) in order to ensure 
acceptability for specific minority groups that usually show a lower 
positive response to studies (82, 83). In addition, downstream 
analytical methods (e.g., weighting) can be used to aim for results as 
representative as possible.

4.2 Biological data from the microbiome in 
population-based health studies: added 
value

In previous studies (Table 1) alterations in the microbiomes have 
been associated with several parameters that could be  measured 
during population-based health studies, such as diet, mental health 
or exposure to pollution. Population-based health studies cover 
demographic, clinical and/or exposure data. When combined with 
microbiome analysis, it would allow to gather biological evidence for 
a variety of factors in the population. Sampling of the microbiome 
could be included in ongoing population-based health studies such 
as food consumption surveys, human biomonitoring studies related 
to environmental chemical exposure (measurement of chemical 
concentrations in human samples), mental health assessments or 
projects related to climate change and environmental biodiversity 
alterations. Associations of this type of data with the microbiome have 
previously been reported for smaller population groups (Table 1). 
However, although it is generally assumed that microbiome shifts are 
observed in association with various lifestyle or health parameters, 
the causality link is often not established (10–12), and different 
studies may report contradicting biomarkers. The study of larger 
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TABLE 1 Examples of scientific publications focused on various exposures, including microbiome samples of smaller populations and their main 
observations, as biological evidence obtained from the microbiome, that could be implemented in future population-based health studies in support of 
policy when biomarkers are clearly defined.

Exposure Examples 
(references)

Microbiome 
investigated 
(sample type)

Sample size 
(number of 

subjects 
included)

Analysis 
method

Observations Possible 
contribution to 
policy in the 
future

Food 

consumption

David et al., 2014 (69) Gut (feces) 11 16S rRNA V4 Short-term alterations of 

the microbiome after 

short-term shift to 

animal-based diet or 

plant-based diet
Monitor mitigation 

actions to promote 

healthy diet (such as 

nutri-score)

Oliver et al., 2021 (70) Gut (feces) 26 Shotgun 

metagenomics

Increasing the intake of 

dietary fiber over the 

course of two weeks 

significantly altered the 

composition of individual 

gut microbiomes

Chemical 

exposure

Abdelsalam et al., 

2020 (71)

Review based on gut 

microbiome studies

Not applicable (review) Favors shotgun 

metagenomics to 

16S rRNA

The human microbiome 

has a metabolizing 

potential on xenobiotics 

but the xenobiotics can 

also alter the composition 

of the microbiome, 

leading to dysbiosis

Recommendation 

from the European 

Food Safety Authority 

to use the human gut 

microbiota for risk 

assessment analysis of 

cumulative xenobiotic 

exposure (62)

Thompson et al., 2022 

(20)

Gut (feces) 124 Shotgun 

metagenomics

Association between 

lifetime exposure to 

organochlorine 

compounds (including 

pesticides), PFAS and 

mercury and alterations in 

the gut microbiome

Mitigation actions to 

limit exposure to 

contaminants, 

monitoring of effects 

of those mitigation 

actions on the 

population in 

combination with 

other well-validated 

clinical measures

Fournier et al., 2023 

(72)

Gut (infant in vitro gut 

model)

4 16S rRNA V3-V4 Exposure to polyethylene 

microplastics of an infant 

in vitro gut model induced 

a microbial shift and 

increase of abundance of 

potential harmful 

pathobionts

Anxiety Radjabzadeh et al., 

2022 (73)

Gut (feces) > 2,500 16S rRNA V4 Association between the 

gut microbiome (13 

microbial taxa) and 

depressive symptoms

Biological measure to 

associate with mental 

health questionnaires 

at population level

Environment/

biodiversity/air 

pollution

Hanski et al., 2012 

(22)

Skin (forearm) 118 16S rRNA V1-V3 Correlation between the 

environmental 

biodiversity, skin 

microbiota and allergies

Biological measure 

associated with the 

health status and the 

biodiversity or air 

pollution that the 

population is exposed 

to, e.g., to identify 

vulnerable populations 

or to monitor the 

impact of mitigation 

and adaptation actions 

for climate resilience

Gisler et al., 2021 (38) Nose (nasal swabs) 47 16S rRNA V3-V5 Distinct microbiota 

profiles for different air 

pollution levels in the 

nasal microbiota of 

healthy infants
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groups at different time points may address this issue (11, 84), as 
suggested by collaborations with national population-based 
health studies.

Through population-based health surveys, microbiome data 
could be associated with donor characteristics such as smoking 
status, region of residence and hence pollution data, diet or hygiene 
(Figure 1). Artificial intelligence, particularly machine learning and 
deep learning approaches, has been described as an interesting new 
tool for predicting health or exposure status (75, 85), but the 
population size needs to be sufficient to draw robust conclusions 
(86). Such associations could provide insights for public health 
policy and guidelines recommendations (Figure  1; Table  1). 
However, spurious associations (confounding effects) may 
be obtained if insufficient donor characteristics are collected. It is 
therefore important to collect sufficient donor information to limit 
this effect. Gender, age and body mass index have been shown to 
be important to include, as well as other specific factors depending 
on the type of microbiome being studied (87). Nevertheless, as 
unobserved data can also lead to these spurious associations, 
specific analysis methods that are available in the field of causal 
inference should be used to try to account for this.

National public health institutes can also sometimes have access 
to population cohorts for their studies. These are representative groups 
of people who are followed up year after year for environmental and 
health-related aspects. This allows longitudinal studies to be conducted 
on a random panel of the population. Longitudinal studies of cohorts 
have already been conducted to understand the evolution of the 
microbiome over time, particularly in the first years of life (3, 88, 89). 
Studying the microbiome of cohorts over time would also make it 
possible to uncover, at individual level (since the healthy microbiome 
varies greatly from person to person), but on a large scale, the 
dynamics related to the development and progression of diseases, the 
impact of pre-and post-exposure to pollution, the association with 
climate change as well as to observe at the biological and physiological 
level the impact of the implementation of new public health policies 
aimed at mitigating and adapting to certain adverse health and/or 
environmental impacts (e.g., air pollution, chemical exposure, loss 
of biodiversity).

Finally, other types of epidemiological data collection for 
microbiomes could be  envisaged, beyond population surveys or 
cohorts. Indeed, human biomarkers can be studied at the population 
level in non-human samples such as sewage (90). For example, the gut 
microbiome detected in wastewater has previously been linked to 
obesity rates in the population (91). Taking advantage of the revised 
European Wastewater Treatment Directive (91/271/EEC), which 
requires the establishment of national wastewater-based surveillance 
by 2026, analyzing the sewage also through the lens of the microbiome 
it contains, would be an interesting, anonymized and non-invasive 
way to gather large-scale information at the population level and 
should be  further investigated for its association with various 
exposures or health problems.

5 Discussion

The human microbiome has been studied for over a century 
and new high-throughput technologies have recently allowed to 

unravel an impact of environmental factors and medical 
conditions on these microbial communities but also hint to their 
influence on our health and well-being. However, such studies are 
not yet commonly conducted at the population level. Therefore, 
the integration of this biological data into health information 
systems has the potential to first define a representative 
microbiome of the general (“healthy”) population, and then, 
based on further research, to establish microbiome-based 
biomarkers that can be  associated with exposures, health or 
population groups at risk. However, the integration of 
microbiome data into population-based health studies is complex 
and there are challenges to be overcome for the success of such 
large-scale studies, some of which have already been 
mentioned above such as standardization and the inclusion of 
minority groups. Another challenge is the high cost of advanced 
analytical methods. Although sequencing of the entire genetic 
material of a microbiome (shotgun metagenomics) would be ideal 
for higher accuracy and comparability of the taxonomic 
classification and even SNP-level information, metabarcoding is 
more cost-effective for a general idea of the species present in a 
sample. However, once biomarkers can be  confirmed at the 
population level, some studies may only need to analyze a subset 
of species or genes using less advanced methods, further reducing 
costs. Proper data management will also be critical. Microbiome 
information will need to be collected anonymously in databases, 
along with the relevant additional donor characteristics. This 
should be harmonized within and between studies to avoid bias 
or errors in downstream analysis and interpretation. 
Subsequently, (bio) informatics tools will need to be developed, 
possibly using artificial intelligence-based methods to mine the 
data, to produce informed reports based on biological data, 
human biomonitoring, the exposome (including health behavior 
parameters) and population health to guide new policies. As 
discussed elsewhere (45), this will also require training of public 
health stakeholders in the interpretation of microbiome-
based data.

Particularly at a time when various mitigation and adaptation 
actions measures are being implemented to reverse or cope with some 
of the detrimental anthropogenic environmental impacts of the past, 
microbiome data would eventually provide competent authorities 
with informed data on the whole population to monitor and evaluate 
the impact of these implemented actions. Therefore, including 
microbiome characterization in population-based studies is 
meaningful to further our knowledge of how microbiological data 
could be  used in the future to assess health outcomes and 
environmental exposures.
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