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Background: Childhood multimorbidity, characterized by the simultaneous 
occurrence of multiple medical conditions in children, is a global concern. 
Notably, exposure to household air pollution has been linked to various health 
issues, particularly affecting vulnerable segments of the population residing in 
poorly ventilated homes. However, evidence regarding the impact of household 
air pollution on the risk of multimorbidity in low-income settings remains scarce. 
Therefore, this study aims to investigate the association between household air 
pollution and childhood multimorbidity in Jimma, Ethiopia.

Methods: A comparative cross-sectional study was conducted to collect data 
from 280 children under the age of five who lived in households using solid fuel 
(n  =  140) and clean fuel (n  =  140). The Demographic Health Survey morbidity 
questionnaire was used to collect information from mothers about common 
childhood illnesses. Multiple logistic regression analysis was employed to 
explore the relationship between the use of solid fuel for cooking in households 
and the likelihood of childhood multimorbidity. In addition, Poisson regression 
estimation was used to determine if exposure to solid fuel could increase the 
number of morbidities.

Results: The overall prevalence of childhood multimorbidity was 34.3% [95% 
CI: 0.29–0.40]. Among these cases, 23.9% were among children from solid fuel 
user households, whereas about 10.4% were from clean fuel user households. 
Adjusted for all possible socioeconomic, demographic, water, sanitation, 
hygiene, and health care covariates, children living in solid fuel user households 
had more than three times the odds of childhood multimorbidity compared to 
children living in clean fuel user households (AOR  =  3.14, 95% CI [1.42–6.95], 
p <  0.001). Moreover, household air pollution from solid fuel use was positively 
associated with an increased number of individual morbidity conditions, with an 
adjusted β coefficient of 0.46 (IRR  =  1.58, 95% CI [1.17–2.13], p =  0.003).

Conclusion: Solid fuel use was an independent predictor of childhood morbidity 
risk. Efficient policies and strategies, such as the integration of environmental 
regulation policies into the healthcare system aimed at the reduction of 
harmful air pollutants and their adverse health effects on children, need to 
be implemented.
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Introduction

The use of polluting biomass fuels in the kitchen is the main cause 
of household air pollution, which has emerged as a serious global 
health problem (1). The World Health Organization (WHO) estimates 
that over 3 billion people depend on these contaminating energy 
sources, and a staggering 95% of these individuals live in low- and 
middle-income countries (2). In this region, including Ethiopia, apart 
from the widespread use of biomass fuels, several factors such as 
poverty, substandard housing conditions, overcrowding, poor kitchen 
ventilation, the prevalent use of unimproved traditional cooking 
stoves, and cohabitation with pets and livestock in the main living 
room all amplify the exposure of households to air pollution (3, 4).

The incomplete combustion of biomass fuels like wood, crop 
residues, charcoal, and animal dung releases several harmful 
substances detrimental to human health (5, 6). These include carbon 
monoxide (CO), carbon dioxide (CO2), and fine particulate matter 
(PM2.5, PM10). Due to their small size, these particles have the ability 
to infiltrate the lungs, enter the circulatory system and reach major 
organs potentially resulting in acute and chronic illnesses (7, 8). The 
WHO attributes 6.67 million global deaths to household air pollution 
(HAP) related to cooking (9). This figure represents 6.7% of global 
mortality, surpassing the combined death tolls from malaria, 
tuberculosis (TB), and HIV/AIDS (10, 11). Most of this mortality is 
associated with respiratory infections, cardiovascular disease, low 
birth weight, and infant mortality (12).

Individuals of all ages are at a significant risk of severe health 
effects due to exposure to household air pollutants (13). In particular, 
children are exceptionally vulnerable to the adverse health impacts of 
these pollutants due to various behavioral and biological factors. 
When using polluting fuels for cooking, children often spend a 
substantial amount of time indoors, in close proximity to their 
mothers (14, 15). Their organs, being immature and less developed, 
along with their tendency to breathe, absorb, and retain more toxic 
substances from the air than adults, make them more susceptible to 
the impact of household air pollution (HAP) (16).

A recent report by the WHO states that 93% of all children, which 
includes 630 million under-five children, live in polluted environments 
around the world and are consequently exposed to unsafe levels of air 
pollution that exceed WHO air quality standards (13, 17). Because of 
the widespread use of biomass fuels for cooking, heating, and lighting 
in Sub-Saharan Africa, 98% of children are disproportionately affected 
by air pollution, putting them at higher risk for morbidity and death 
(18). As per a WHO report, HAP from the use of solid fuel resulted in 
an estimated 3.8 million premature deaths in 2016, with 543,000 of 
these deaths occurring among children under the age of five (3).

Air pollution is harmful at any exposure level, as low levels of 
pollution can hinder children’s development, increase the risk of 
illness, and inflict long-term damage to their immune systems, brain, 
lungs, and reproductive organs (19, 20). The effect of household air 
pollution begins early in fetal life. Exposure to household air pollution 
during pregnancy is linked to a 51% increased risk of stillbirths and a 
38% increased risk of low birth weight (21, 22). In addition, household 
air pollutants increase the risk of respiratory conditions like 
pneumonia, allergic rhinitis, asthma, and recurrent chest infections 
(23). Acute lower respiratory infections (ALRI) are the second-leading 
cause of death for children under five, and almost all of these deaths 
happen in low and middle-income countries (LMICs). Moreover, air 

pollution causes more than half of all ALRI in children under five in 
LMICs (17, 24), with HAP resulting in approximately 40 million 
disability-adjusted life years (DALYs) and 441,000 deaths in 2016 (25).

Ethiopia bears a significant burden of illness and death among 
children under the age of five (13). The Ethiopian Demographic 
Health Survey (EDHS) revealed a 7% prevalence of acute respiratory 
infections (ARI) among children under five, with fever at 14% and 
diarrhea at 12% (26, 27). ARI, specifically pneumonia, is one of the 
primary causes of illness and death, accounting for 18% of all deaths 
(28). In Ethiopia, household air pollution (HAP) results in 50,320 
deaths annually, contributing to nearly 5% of the national disease 
burden (26). Moreover, an Ethiopian Ministry of Health report 
suggests that 5% of acute upper respiratory infections and 5% of 
pneumonia cases, which account for 7% of hospital admissions, are 
believed to be linked to household air pollution (29).

Multimorbidity, the presence of more than one medical condition 
in a single individual, along with increased exposure to household air 
pollution, has become a significant public health threat in low-income 
countries (30, 31). In recent years, in particular, multimorbidity in 
children under the age of five has become an emerging public health 
threat in LMICs (32–36). It imposes a significant impact, including 
societal and economic burdens, mortality, and morbidity, and can 
endanger the future survival and wellbeing of children (37, 38).

Studies have shown that several individual and household-level 
factors, such as low socioeconomic status (39), poor water, sanitation, 
and hygiene conditions, and a lack of access to quality healthcare 
services, were consistently reported as major contributors to the high 
prevalence of childhood multimorbidity (35, 36, 40). However, there 
is sparse evidence for the potential role of household air pollution in 
the development of childhood multimorbidity, and the few available 
studies primarily focus on the relationship between exposure to 
household air pollution and the development of different single 
disease conditions (14, 41, 42). Hence, this study aims to examine the 
association between exposure to household air pollution and the risks 
of childhood multimorbidity in the study settings.

Materials and methods

Study design and setting

The study was conducted in Jimma town, located in the Oromia 
region of Ethiopia, 352 km southwest of the capital city, Addis Ababa 
(Figure 1). Jimma town is the capital and administrative center of the 
Jimma Zone. The town has an estimated population density of 
239,430, divided into 12 urban and 5 semi-urban kebele (43).

Study participants

The study included 280 under five children, 140 of them from 
solid fuel (wood, charcoal, crop-residues and animal dung) user 
households and 140 from clean fuel (electricity) user households in 
Jimma town Ethiopia. In the study areas, the most commonly used 
types of fuelwood for domestic cooking energy are branches, leaves, 
and twigs from species like Acacia Etbaica, Podocarpus Falcatus 
(yellowwood, African pine tree), and Eucalyptus (gum trees, 
Ironbark). The households for the study were chosen from various 
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administrative districts/Kebeles in Jimma town, specifically Kofe, 
Garuke, Babala, Ginjo Guduru, and Awetu Mendera. The household 
selection was based on basic household fuel types used for cooking, 
which were the main factors in exposure to household air pollution.

Sample size and sampling techniques

The sample size was determined using G-Power V.3.1.9.7 software, 
considering an equal allocation for the two groups (1:1), a 95% 
confidence level, 90% power, a design effect of 1.5, a medium effect 
size of 0.5, and a 10% nonresponse rate. Accordingly, the result yielded 
a total sample size of 280 children (140 from solid fuel user households 
and 140 from clean fuel user households). The study is part a cohort 
study aimed at examining the effect of HAP on children linear growth 
and multimorbidity (44). The initial sample size calculation takes into 
account the need for an adequate sample size to answer the two 
primary end points (linear growth and multimorbidity). As a result, 
we calculated different sample sizes and chose the larger sample size 
and greater power adequate enough to answer the study questions. 
Hence, we used an average HAZ score of 1.5 in exposed groups (solid 
fuel users) and − 1.3 in non-exposed groups (clean fuel users) from a 
longitudinal data analysis in LMICs (45). Study participant selections 
involved the selection of a study Districts and Villages from the 

selected Districts, followed by a selection of eligible households. 
Household selection was done using systematic random based on 
primary fuel types used for cooking and the presence of under five 
children. The systematic random selection method was employed to 
ensure a fair and unbiased selection of participants for the study. In 
accordance with this, first our population of interest was defined, the 
required sample size was determined and list households with under-
five children were obtained from Health Extension workers in each 
district, which we entered into a random number generator in Excel. 
The sampling interval/fraction was then calculated using the formula 
K = N/n, and the first sampling unit was chosen randomly, followed by 
the selection of households every Kth interval to reach the required 
sample size. Finally, children under the age of five were selected from 
each eligible household. Eligible households were identified with the 
help of health extension workers in the Districts.

Data collection procedures, techniques, 
and tools

Sociodemographic and household data
Information related to study participants’ demographics (such as 

age, sex, and educational status) and housing characteristics was 
gathered using a structured questionnaire through face-to-face 

FIGURE 1

Map showing the area.

https://doi.org/10.3389/fpubh.2024.1473320
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Mulat et al. 10.3389/fpubh.2024.1473320

Frontiers in Public Health 04 frontiersin.org

interviews. Data related to socio-demographics and economic status, 
such as, family size, wealth index, household energy source, and 
cooking-related activities, were also gathered.

The Laser PM2.5 Meter-5800D/5800E was used to measure 
PM2.5 and PM10 concentrations, with a detection range of 
0–999.9 μg/m3 and a minimum particle detection diameter of 0.3 μm. 
The device uses an internal laser scattering measuring principle with 
a relative accuracy of ±20% or ± 15 μg/m3 MAX, which can be adjusted 
in real-time. Similarly, Aeroqual’s TM series 500 portable air quality 
monitors were used to measure the levels of indoor air pollutants such 
as carbon monoxide (CO), carbon dioxide (CO2), and volatile organic 
compounds (VOC). The CO2 level was measured using a 
non-dispersive infrared (NDIR) sensor with a detection range of 
0-2000 ppm, a minimum detection limit of 10 ppm, and a resolution 
of 1 ppm. Similarly, CO detection ranges from 0 to 100 ppm, with a 
minimum detection limit of 0.2 ppm and a resolution of 0.1 ppm. The 
detection range for VOC is 0–2000 PPM, with a minimum detection 
limit of 1 PPM at 1-PPM resolution. The monitors were calibrated to 
a zero filter prior to and following each sampling period (46).

Children’s multimorbidity status
Multimorbidity was defined as the co-occurrence of two or more 

diseases in the same child. The presence of the most common 
symptoms of childhood illnesses, including episodes of diarrhea, fever, 
cough, shortness of breath, runny nose, wheezing, acute respiratory 
infections (ARI), and skin rash, were gathered using clinical signs and 
symptoms from mothers’ responses in a two-week recall (47). 
Furthermore, multimorbidity status was constructed by counting the 
number of individual diseases recorded for each child for a total of 
eight morbidity conditions and combining these eight morbidity 
conditions into a count variable of multimorbidity status. Accordingly, 
children are categorized as those who did not experience any of the 
eight morbidity conditions: no condition, single condition, up to a 
maximum of having all eight conditions, respectively. Furthermore, 
the individual morbidity counts were regrouped as no multimorbidity 
(zero or one morbidity condition) and those with multimorbidity 
conditions (two or more morbidity conditions).

Water, sanitation, and hygiene (WASH) practice
Household drinking water sources, sanitation status, and 

hygiene practices were assessed using a standardized questionnaire 
(48). Based on the EDHS, household water sources are categorized 
as improved sources of drinking water, including piped water, 
public taps, boreholes, protected dug wells, and springs. 
Unimproved water sources include water from a dam, pool, or 
stagnant water source from a river, stream, or rainwater tank, an 
unprotected well, and an unprotected spring (48). Poor sanitation 
status is a household that has no latrine or toilet facility or a bucket 
system; an open latrine, an outside yard or compound, a shared 
private facility, an outside yard/compound, or a shared public 
facility. Good sanitation status is household having any non-shared 
toilet of the following types: flush/pour flush toilets to piped sewer 
systems, septic tanks, and pit latrines; ventilated improved pit 
(VIP) latrines; pit latrines with slabs; and composting toilets. Poor 
hygiene practices include individuals who have no hand washing, 
bathing facilities, or detergents in the house. Wash their hands 
with water but have no soap or other detergents. Good hygiene 
practices include individuals having hand washing and bathing 

facilities with the availability of soap and other detergents in the 
house (49).

Dietary assessment
A previously validated Food Frequency Questionnaire (FFQ) 

containing 28 food items most commonly consumed in the 
community was used to assess the minimum dietary diversity (MDD) 
of the children (50). The 28 food items in the food frequency 
questionnaire were grouped into nine food groups. A Dietary 
Diversity Score (DDS) was constructed by counting the intake of the 
food groups over 1 week and it is defined as the sum of food groups 
consumed over the reference period (51).

Data processing and analysis
Data were entered into Epi Data version 4.6 statistical software, 

checked for missing values and outliers, and there were no missing 
data. Data were exported to Statistical Package for Social Science 
(SPSS) version 26 for analysis. Descriptive statistics were performed 
to summarize the results of the outcome and independent variables 
using frequencies, mean, and standard deviation. Bivariate and 
multivariate analyses were carried out to test differences in children’s 
multimorbidity and households’ exposure to household air pollution. 
For comparison of the occurrence of multimorbidity across 
household fuels, different predictor variables were used: Pearson’s 
chi-square test for categorical variables and the Student’s t-test for 
continuous variables. To minimize the effect that could arise from 
combinations disease categories we made a rigorous data analysis 
first we categorized the multimorbidity as the presence of more than 
one disease condition and performed logistic regression and further 
we  computed poison regression using individual disease count. 
Accordingly, a Poisson regression was run to predict the count of 
individual morbidities based on household solid fuel use. 
Furthermore, the individual morbidity counts were regrouped as 
binary outcome as no multimorbidity (zero or one morbidity 
condition), and those with multimorbidity conditions (two or more 
morbidity conditions), and multivariate logistic regression models 
were performed to explore the association between household fuel 
use and the risk of multimorbidity. Accordingly, four models were 
fitted to investigate the relationship: Model I was the crude model; 
Model II controlled for biological factors (child’s age and sex); Model 
III controlled for household WASH conditions based on model II; 
model IV further controlled for deworming, vitamin-A and iron 
supplementation, vaccination status, and minimum dietary diversity 
scores based on model III. To identify the predictors of child 
morbidity, a multivariable logistic regression model was fitted with 
child morbidity as a binary dichotomous dependent variable and 
other covariates. Model goodness of fit was evaluated using Hosmer 
and Lemeshow goodness of fit test. The results are presented as odds 
ratios (OR) with 95% confidence intervals to show the degree of 
association between dependent and independent variables at 
p < 0.05.

Ethics approval and consent to participate
The Jimma University Institutional Review Board (IRB) approved 

this study. Informed consent was obtained from a parent and legal 
guardian for study participation. All methods were performed in 
accordance with the Declaration of Helsinki.
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Results

Demographic and socioeconomic 
characteristics

Two hundred and eighty children under the age of five participated 
in the study. Of these, 140 were from solid fuel user households, and 
140 were from clean fuel user households. The mean (SD) age of 
children in the solid fuel group was 3.0 (1.3) years, and that of clean 
fuel was 3.1 (1.2) years. More than half, 52.1% of the children in the 
solid fuel group and 44.3% in the clean fuel group were female. The 
mean (SD) family size of respondents in solid fuel and clean fuel user 
households was 5.2 (1.8) and 4.3 (1.8), respectively. Similarly, about 
37.1% of participants in solid fuel households and 28.6% in clean fuel 
households had a low wealth tertile. The two study groups were similar 
in terms of these background characteristics (Table 1).

Household fuel sources and pollutant 
concentrations

In the study, 36.4 and 13.6% of the households used wood and 
crop residues as the main sources of energy for cooking, respectively, 
while the remaining 50% used electricity as the main source of 

cooking energy. Additionally, about 80.7% of solid fuel user 
households primarily relied on traditional three stone stove while the 
remaining 19.3% used improved cooking stove. A statistically 
significant difference was observed in the concentration of indoor air 
pollutants between solid and clean fuel user households (p < 0.001) 
(Table 2).

Household drinking water sources, 
sanitation, and hygiene practices

A statistically significant difference was observed on drinking 
water sources, sanitation status and hygiene Practice between both 
group (p < 0.001). The majority of solid fuel user households had 
unimproved drinking water sources (53.6%), unimproved sanitation 
facilities (62.9%), and poor hygiene practices (77.9%) as compared to 
clean fuel user households, where about 40% of households had 
unimproved sanitation facilities, and 55.7 percent had poor 
hygiene practices.

Nearly all households (99.3%) in clean fuel households had 
access to improved drinking water supply from tap water piped 
into a dwelling, in contrast to solid fuel households, where more 
than half (56.3%) had no access to improved drinking water 
sources and depended on water supply either from an unprotected 

TABLE 1 Demographic and socioeconomic characteristics of study participants, Jimma, Ethiopia, 2023.

Variables Clean fuel, n (%) Solid fuel, n (%) p-value

Age: Mean (SD) 3.1 (1.2) 3.0 (1.3) 0.23

Sex

Male 78 (55.7) 67 (47.9) 0.23

Female 62 (44.3) 73 (52.1)

Wealth index

Low 40 (28.6) 52 (37.1) 0.044*

Medium 39 (27.9) 47 (33.6)

High 61 (43.6) 41 (29.3)

Family size: Mean (SD) 4.3 (1.8) 5.2 (1.8) < 0.001*

Household head

Father 116 (82.9) 122 (87.1) 0.403

Mother 24 (17.1) 18 (12.9)

Father education

No formal education 17 (12.1) 42 (30.0) < 0.001*

Primary 31 (22.1) 65 (46.4)

Secondary 92 (65.8) 13 (23.9)

Mother education

No formal education 37 (26.4) 100 (71.4) < 0.001*

Primary 58 (41.4) 38 (27.1)

Secondary/higher 45 (32.1) 2 (1.4)

Occupation

Unemployed 100 (71.4) 131 (93.6) < 0.001*

Employed 40 (28.6) 9 (6.4)

p values denote p < 0.05* (χ2 test).
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dug well, spring, or borehole. The large majority (53.6%) of solid 
fuel households used pit latrines, and about 22.9% of them 
practiced open defecation compared to their counterparts, where 
about 66.3% of them used pit latrines, (9.3%) composting toilets, 
and (7.9%) flush/pour latrines. Similarly, most of the children 
(60.7%) in the solid fuel group and (94.9%) in the clean fuel group 
commonly defecated in chamber pots, with about 39.3% of 
children in solid fuel households defecating in the compound or 
surrounding bush. Furthermore, about 49.3% of mothers from the 
solid fuel group and 74.3% from the clean fuel group reported 
washing their hands after the toilet only sometimes, and only 22.1 
percent of mothers in the solid fuel group and 44.3% of the clean 
fuel group used soap for hand washing. Additionally, only a few 
(10%) mothers in the solid fuel group and (7.3%) in the clean fuel 
group reported washing their hands before feeding their children 
and preparing the children’s food. In a large proportion of the 
study households in both groups, utensils were washed with soap 
before cooking, and leftover food was commonly covered and 
heated before consumption. Likewise, about (20.9%) of households 
in the solid fuel group and 39.1% in the clean fuel group reported 
washing fruit and vegetables with water and salt.

Minimum dietary diversity score, 
immunization status and supplementation 
for children

Children from solid fuel user households had a significantly low 
mean dietary diversity score (3.10 ± 1.28) compared to children from 
clean fuel user households (4.56 ± 1.30), p < 0.001. Furthermore, the 
study findings also indicated that the majority of the children from 
solid fuel user households had a significantly low dietary diversity 
score, representing 63.6% of the study respondents, compared to 

19.3% of children from clean fuel user households, p < 0.001. Similarly, 
a large proportion of children in both groups had consumed more 
cereals, vegetables, eggs, starchy foods, and staple foods at least once 
over 1 week. There was a significant difference in the intake of dairy 
(p < 0.001), flesh foods (p < 0.001), eggs (p < 0.001), and fruit (p < 0.001) 
among children from clean fuel user households compared to their 
counterparts (Table 3).

In the study, the majority (60.7%) of children in solid fuel user 
households and (72.1%) in clean fuel user households, were fully 
immunized (Figure 2).

Regarding supplementation, 48.6% of children in solid fuel and 
66.4% in clean fuel user households received vitamin A 
supplementation; only 13.6 and 15.7% of children in solid and clean 
fuel user households received iron supplementation, respectively 
(Table 3).

Association of household air pollution with 
childhood multimorbidity

The overall prevalence of childhood multimorbidity was 
34.3% [95% CI: 0.29–0.40]. Of them, 23.9% were among children 
from solid fuel user households, whereas about 10.4% were from 
clean fuel user households, and the difference was statistically 
significant (p < 0.001). The most frequent causes of childhood 
morbidities in both groups were fever (59.3%), cough (57.1%), and 
diarrhea (34.3%). The proportion of acute respiratory infections 
(ARI) was higher among children from solid fuel user households 
(40%) compared with those from clean fuel user households 
(17.1%), and the difference was statistically significant (p < 0.001) 
(Table 4).

In bivariate analysis, the use of solid fuel in households (χ2 = 23.43; 
p < 0.001), low education (χ2 = 28.32; p < 0.001), unemployment of 

TABLE 2 Household fuel sources and pollutant concentrations, Jimma, Ethiopia, 2023.

Variables Clean fuel Solid fuel p value

Indoor air pollutants

PM2.5 μg/m3 Median (IQR) 99.00 (75.80) 905.10 (336.50) < 0.001*

Mean rank 70.88 210.12

PM10 μg/m3 Median (IQR) 119.70 (73.10) 1999 (1827.30) < 0.001*

Mean rank 70.95 210.50

CO2 mg/m3 Median (IQR) 507.00 (123) 893.00 (1186) < 0.001*

Mean rank 95.64 185.36

CO mg/m3 Median (IQR) 7.00 (4.60) 11.25 (20.75) < 0.001*

Mean rank 81.67 118.52

VOC mg/m3 Median (IQR) 817 (347) 1550.50 (583) <0.001*

Mean rank 85.33 195.67

T0c
Median (IQR) 30.0 (3.0) 29.14 (4.08) 0.029*

Mean rank 151.01 129.99

RH
Median (IQR) 0.43 (0.07) 0.44 (0.09) 0.495

Mean rank 137.20 143.80

PM2.5, Particulate matter < 2.5 μm in diameter; PM10, Particulate matter < 10 μm in diameter; CO2, carbon dioxide CO, carbon monoxide; VOC, Volatile Organic Compound; T0c, 
Temperature in degree centigrade; RH, Relative Humidity; IQR, Interquartile Range.
*p values refer to the difference between the two fuel type compared, tested with the Mann–Whitney U test for medians.
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FIGURE 2

Immunization status of study participants in Jimma town, Ethiopia, 2023.

TABLE 3 Minimum dietary diversity score and immunization status of children in Jimma, Ethiopia, 2023.

Solid Fuel (n  =  140) clean fuel (n  =  140)

n (%) n (%) p

Food group consumed

Starchy and staple foods 78 (55.71) 58 (41.42) 0.023*

legumes, nuts, and seeds 127 (90.71) 66 (47.14) < 0.001*

Dairy 43 (30.71) 103 (73.57) < 0.001*

Flesh foods 45 (32.14) 133 (95) < 0.001*

Eggs 125 (89.28) 140 (100) < 0.001*

Vitamin A-rich fruit vegetables 133 (95) 138 (98.57) 0.173

Other fruits and vegetables 61 (45.57) 69 (49.28) < 0.001*

MDD status

Good 51 (36.4) 113 (80.7) < 0.001*

Poor 89 (63.6) 27 (19.3)

MDDS

Mean (SD) 3.10 ± 1.28 4.56 ± 1.30 < 0.001**

Vitamin A supplementation

Yes 93 (66.4) 68 (48.6) 0.004*

No 47 (33.6) 72 (51.4)

Iron supplementation (%)

Yes 22 (15.7) 19 (13.6) 0.735

No 118 (84.3) 121 (86.4)

Deworming (%)

Yes 42 (30.0) 30 (21.4) 0.132

No 98 (70.0) 110 (78.6)

Immunization status (%)

Fully immunized 101 (72.1) 85 (60.7) 0.101

Partially immunized 34 (24.3) 45 (32.1)

Not immunized 5 (3.6) 10 (7.1)

*p values denotes as p < 0.05* (χ2 test), ** t-test. MDDS, minimum dietary diversity score.
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mothers (χ2 = 8.53; p = 0.014), lack of vaccination (χ2 = 26.82; 
p = 0.001), iron (χ2 = 6.39; p = 0.041), and deworming (χ2 = 13.62; 
p = 0.00) for children were factors related to multimorbidity in 
children (Table 5).

Multivariable logistic regression analyses were carried out to 
analyze the independent effects of household fuel use for cooking and 
the different covariates on childhood multimorbidity status. It was 
found that holding all other predictor variables constant, solid fuel use 
was positively associated with having higher odds of childhood 
multimorbidity as compared to children living in clean fuel user 
households for cooking energy (AOR = 3.14, 95% CI [1.42–6.95], 
p < 0.001, Model IV) (Table 6). Furthermore, solid fuel use significantly 
increased the odds of children experiencing cough (AOR = 3.22, 95% 

CI [1.179, 5.610], p < 0.001), fever (AOR = 3.0, 95% CI [1.749, 5.184], 
p < 0.001), ARI (AOR = 3.22, 95% CI [1.851, 5.610], p < 0.001), SOB 
(AOR = 2.58, 95% CI [1.354, 4.928], p = 0.004), and skin rash 
(AOR = 3.10, 95% CI [1.179, 8.081], p = 0.022).

A Poisson regression was run to predict the number of morbidities 
based on household fuel types used for cooking, and the results 
showed that household solid fuels were positively related to children’s 
experiences of an increased number of morbidity conditions. 
Accordingly, children in households with solid fuel users have a higher 
risk of developing multiple morbidity conditions than children in 
households with clean fuel users. This is indicated by the adjusted β 
coefficient of 0.46 (IRR = 1.58, 95% CI [1.174–2.134]), which is 
statistically significant at p = 0.003 (Table 7).

TABLE 4 Frequency of childhood morbidities across household fuel use, Jimma, Ethiopia, 2023.

Variables Clean fuel Solid fuel p-value

Diarrhea (%)

No 122 (87.1) 110 (78.6) 0.081

Yes 18 (12.9) 30 (21.4)

Cough (%)

No 116 (82.9) 84 (60.0) < 0.001*

Yes 24 (17.1) 56 (40.0)

Wheezing (%)

No 130 (92.9) 120 (85.7) 0.082

Yes 10 (7.1) 20 (14.3)

Shortness of breath (%)

No 124 (88.6) 105 (75.0) 0.003*

Yes 16 (11.4) 35 (25.0)

Runny nose (%)

No 122 (87.1) 114 (81.4) 0.250

Yes 18 (12.9) 26 (18.6)

Fever (%)

No 114 (81.4) 83 (59.3) < 0.001*

Yes 26 (18.6) 57 (40.7)

Itchy skin rash (%)

No 134 (95.7) 123 (87.9) 0.029*

Yes 6 (4.3) 17 (12.1)

ARI (%)

No 116 (82.9) 84 (60.0) < 0.001*

Yes 24 (17.1) 56 (40.0)

Multimorbidity status (%)

No condition 78 (58.6) 55 (41.4) 0.001*

Single condition 18 (35.3) 33 (64.7)

Two conditions 5 (35.7) 9 (64.3)

Three conditions 9 (37.5) 15 (62.5)

Four conditions 7 (31.7) 15 (68.2)

Five and more conditions 8 (22.2) 28 (77.8)

Values are n (%) unless otherwise specified; p values denote p < 0.05* (χ2 test).
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TABLE 5 Multivariate analysis of the association between household air pollution and childhood multimorbidity risks in Jimma, Ethiopia, 2023.

Characteristics Multimorbidity status p-value

No conditions Single condition Multiple conditions

Age in years 3.2 ± 1.20 2.8 ± 1.10 2.96 ± 1.25 0.165

Sex

Male 66 (49.6) 32 (62.7) 47 (48.9) χ2 = 3.O1; p = 0.983

Female 67 (50.4) 19 (37.3) 49 (51.1)

Wealth index

Low 42 (31.6) 18 (35.3) 32 (33.3) χ2 = 12.35; p = 0.979

Medium 39 (29.3) 24 (47.1) 23 (24.0)

High 52 (39.1) 9 (17.6) 41 (42.7)

Family size

<= Five 105 (78.9) 29 (56.9) 60 (62.5) 0.095

> Five 39 (21.1) 11 (43.1) 36 (37.5)

Father education

No formal education 25 (18.8) 8 (15.7) 25 (26.0) χ2 = 3.38; p = 0.092

Primary 43 (32.3) 19 (37.2) 32 (33.3)

Secondary 65 (48.9) 23 (45.1) 67 (69.7)

Mother education

No formal education 44 (33.1) 28 (54.9) 65 (67.7) χ2 = 28.32; p < 0.001*

Primary 58 (43.6) 15 (29.4) 23 (24.0)

Secondary/higher 31 (23.3) 8 (15.7) 8 (8.3)

Occupation

Unemployed 103 (77.4) 40 (78.4) 88 (91.7) χ2 = 8.53; p = 0.014*

Employed 30 (22.6) 11 (21.9) 8 (8.3)

Fuel type for cooking

Solid fuels 55 (41.4) 18 (35.3) 62 (64.6) χ2 = 23.43; p < 0.001*

Clean fuels 78 (58.6) 33 (64.7) 29 (35.4)

Water sources

Unimproved 31 (23.3) 13 (25.5) 31 (32.3) χ2 = 2.35; p = 0.309

Improved 102 (76.7) 38 (74.5) 65 (67.7)

(Continued)
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TABLE 5 (Continued)

Characteristics Multimorbidity status p-value

No conditions Single condition Multiple conditions

Sanitation status

Unimproved 64 (48.1) 23 (45.1) 57 (59.4) χ2 = 3.83; p = 0.148

Improved 69 (51.9) 28 (54.9) 39 (40.6)

Hygiene status

Poor 53 (39.9) 16 (31.4) 24 (25.0) χ2 = 5.64; p = 0.060

Good 80 (60.1) 35 (68.6) 72 (75.0)

MDD score

Poor 48 (36.1) 20 (39.2) 48 (50.0) χ2 = 5.64; p = 0.102

Good 85 (63.9) 31 (60.8) 48 (50.0)

Vaccination status

Fully vaccinated 104 (78.2) 36 (70.6) 46 (47.9) χ2 = 26.81; p < 0.001*

Partially vaccinated 26 (19.5) 14 (27.5) 39 (40.6)

Not vaccinated 3 (2.3) 1 (1.9) 11 (11.5)

Vitamin A supplementation

No 48 (36.1) 21 (41.2) 50 (52.1) χ2 = 5.88; p = 0.053

Yes 85 (63.9) 30 (58.8) 46 (47.9)

Iron supplementation

No 109 (81.9) 41 (80.4) 89 (92.7) χ2 = 6.37; p = 0.041*

Yes 24 (18.1) 10 (19.6) 7 (7.3)

Deworming

No 91 (68.4) 33 (64.7) 84 (87.5) χ2 = 13.62; p = 0.001*

Yes 42 (31.6) 58 (35.3) 12 (12.5)

Values are n (%) unless otherwise specified; p values denote p < 0.05* (χ2 test).
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Discussion

The current study examined the impact of exposure to HAP on 
childhood multimorbidity risk. The overall occurrence of childhood 
multimorbidity in the studied children was 34.3%, and solid fuel use 
was found to be  an independent predictor of childhood 
multimorbidity. Holding all other predictor variables constant, 
children living in solid fuel user households had higher odds of 
childhood multimorbidity compared to children living in clean fuel 
user households for cooking. Furthermore, household air pollution 
from solid fuel use was positively associated with an increased number 
of morbidities. Fever, cough, diarrhea, and ARI were observed as the 
most frequent causes of childhood morbidities in the 
study participants.

Our study results are consistent with other studies in a similar 
context that have found an association between household air 
pollution exposure and higher morbidity risks in children (52–
55). Epidemiological research has demonstrated a link between 
exposure to household air pollution and a higher incidence of 
upper and lower respiratory symptoms in children, including 
cough, rhinorrhea, nasal obstruction, dyspnea, and wheezing (56, 
57). Likewise, a meta-analysis that included 24 studies revealed 

that children exposed to indoor biomass fuel had a higher risk of 
pneumonia (OR = 1.8; 95% CI: 1.5–2.1) (58), and another meta-
analysis of 25 studies confirmed a strong relationship between 
indoor biomass burning and acute respiratory infection in 
children (OR = 3.5; 95% CI: 1.9–6.4) (59). Moreover, biomass 
fuels were considerably associated with the development of 
respiratory tract infection in Ethiopia (OR 2.09; 95% CI 1.03–
4.22) (29), India (OR 4.73, 95% CI 1.67–13.45) (60), and Pakistan 
(RR 1.5, 95% CI 1.2–1.9) (61).

Air pollution affects human health through a number of 
biological mechanisms. The most widely accepted theory states 
that oxidants and pro-oxidants in environmental pollutants when 
inhaled through the respiratory system, form oxygen and 
nitrogen free radicals, which subsequently cause oxidative stress 
in the airways. An increase in free radicals further initiates an 
inflammatory response by releasing inflammatory cells and 
mediators such as cytokines, chemokines, and adhesion 
molecules into the systemic circulation, resulting in subclinical 
inflammation that not only harms the respiratory system but also 
has systemic consequences (62–64). The alveolar space, the 
alveolar-capillary membrane, and the small airways are all 
susceptible to the effects of fine particles (PM2.5 and PM10). 

TABLE 6 Logistic regression analysis of the association between household air pollution and childhood multimorbidity risks in Jimma, Ethiopia, 2023.

Morbidity status Fuel types

β ( )SE β OR (95% CI of OR)

Model I Clean fuel Ref. 1

Solid fuel 1.256 0.269 3.513 (2.075–5.947)***

Model II Clean fuel Ref. 1

Solid fuel 0.882 0.328 2.415 (1.269–4.596)***

Model III Clean fuel Ref. 1

Solid fuel 1.093 0.391 2.982 (1.387–6.415)***

Model IV Clean fuel Ref 1

Solid fuel 1.243 0.405 3.141 (1.419–6.952)***

***Significant at p < 0.001, all β  coefficients (95% CI) related to the solid fuel user groups = standard error. Model 1, Unadjusted; Model 2, Biological, sociodemographic factors & wealth index; 
Model 3, model II plus WASH conditions; Model 4, model III plus vaccination, Deworming, Vitamin-A, and Iron supplementations, MDDS (fully adjusted). Ref, Reference category.

TABLE 7 Poisson regression analysis of the association between household air pollution and childhood multimorbidity risks in Jimma, Ethiopia, 2023.

Models Fuel types Poisson regression

β-coefficient ( )SE β IRR (95% CI)

Model I Clean fuel Ref.

Solid fuel 0.738 0.102 2.092 (1.712–2.55)***

Model II Clean fuel Ref.

Solid fuel 0.462 0.123 1.588 (1.247–2.021)***

Model III Clean fuel Ref.

Solid fuel 0.531 0.139 1.071 (1.294–2.236)***

Model IV Clean fuel Ref.

Solid fuel 0.459 0.152 1.583 (1.174–2.134)***

***Significant at p < 0.001, all β  coefficients, IRR (95% CI) = Incidence risk rate were from Poisson regression analysis and related to the solid fuel user groups. SE = standard error. Model 1, 
Unadjusted; Model 2, Biological, sociodemographic factors & wealth index; Model 3, model II plus WASH conditions; Model 4, model III plus vaccination, Deworming, Vitamin-A, and Iron 
supplementations, MDDS (fully adjusted). Ref, Reference category.
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These particles can also undergo systemic translocation to extra-
pulmonary organs, where they can enter the circulatory system 
(65) and eventually reach every organ system, including the 
kidneys, lungs, heart, and brain (66). It has also been 
demonstrated that exposure to air pollutants alters children’s 
immune systems, which suggests that exposure may increase 
susceptibility to microbial infections (67–69). Furthermore, Fine 
particulate matter can have a significant impact on children’s 
health, causing an inflammatory response that can spread 
systemically, affecting multiple organs and leading to asthma, 
bronchitis, and COPD. Epigenetic modifications brought on by 
particulate matter exposure can also impact immunological 
response and lung development, raising the risk encountering 
multiple disease. In addition, particulate matter can alter immune 
responses, exposing children to an increased risk of infection and 
chronic inflammatory diseases, which leads to multiple health 
conditions at the same time (70–72).

Several behavioral and physiological factors exposes children 
uniquely to the harmful health effects of Household air pollutants. 
When cooking using polluting solid fuels, children frequently 
spend a significant amount of time indoors, close to their 
mothers (14, 15). Their immature and underdeveloped organs, 
combined with their proclivity to breathe, absorb, and retain 
more toxic substances from the air than adults, make them more 
susceptible to household air pollution (HAP) (16, 62). 
Furthermore, children’s immune systems are still developing, 
making them more susceptible to various infections and diseases 
(62, 64).

The foundation for health and wellbeing is laid in early 
childhood, and this effect lasts throughout life. Children are 
regarded as the population group that requires the most 
protection in programs aimed at reducing the negative impact of 
household air pollution on health. The study’s findings provide 
evidence that children living in households where solid fuels are 
used for cooking are more likely to experience childhood 
morbidity than their counterparts. This implies that policymakers 
need to consider the impact of indoor air pollution on childhood 
morbidity and develop effective intervention strategies to reduce 
exposure to health-damaging indoor air pollutants. Most 
importantly, it provides insight into a more comprehensive 
strategy that will address the root causes and viable solutions that 
significantly reduce the burden of childhood morbidity. This 
helps national efforts to meet SDG-related targets like clean air, 
energy, and health and wellbeing. Additionally, the study 
establishes the basis for future research on the relationship 
between solid fuel use and the risks of childhood morbidity.

The use of biomass fuels in developing countries is expected to 
stay stable or even rise in the near future due to a number of 
challenges in obtaining clean energy fuel, such as cost, accessibility, 
availability, supply, and demand (73). Additionally, using inefficient 
cooking appliances and having inadequate ventilation in the kitchen 
increases the likelihood of exposure to harmful air pollutants. This is 
especially true for young children, particularly for young children 
who suffer high rates of exposure when their mothers cook while 
caring for them on their backs, significantly increasing their risk of 
morbidity. Thus, it is critical to develop effective policy and 
intervention plans that reduce the harmful effects of HAP on human 

health. Different intervention approaches, including the provision of 
low-cost, improved cooking stoves, improving kitchen ventilation, 
individual behavior changes to avoid exposure through education on 
the negative impact of HAP, and the importance of keeping children 
away while cooking, can significantly reduce their exposure to 
health-damaging pollutants, thereby reducing childhood 
morbidity risk.

Strengths and limitations of the study

The study’s strength is that it attempted to measure household 
air pollution quantitatively at first. It also investigated the effects 
of HAP on multiple disease conditions, as few studies have used 
DHS data to investigate the effects of HAP on single disease 
conditions, most notably respiratory infections. The study also 
included children from households that used clean fuel as a 
comparison group. The nature of the study design, however, 
limited the study because it assessed the exposure and the 
outcome simultaneously and was limited to one study area. 
Additionally, in the chi-squared test, we combined adjacent cells 
with zero disease counts to achieve an adequate sample size 
necessary for a valid analysis. This could lead to some short 
coming such as, obscuring specific pattern of information, less 
sensitive to differences between groups, and reduces the degree 
of freedom which can affect the tests power and interpretation of 
results which is reflected as a limitation of the chi-squared test is 
that it requires large sample size.

Conclusion

Solid fuel use was an independent predictor of childhood 
morbidity risk. Children living in households that used solid fuel 
for cooking had a higher prevalence of childhood multimorbidity 
risk compared with children living in households that used clean 
fuel for cooking. Additionally, maternal education, vaccination 
status, Iron supplementations and deworming also reduce the risks 
of childhood multimorbidity. Hence, to mitigate the impact of 
HAP on children’s health, a multifaceted approach is necessary. 
This includes the promotion of clean cooking technologies, 
improved home ventilation, and the use of cleaner fuels. Public 
health interventions must also focus on educating communities 
about the risks associated with HAP and the benefits of 
transitioning to cleaner alternatives. Furthermore, policy initiatives 
aimed at reducing HAP must be integrated into broader strategies 
for sustainable development. Effective policies and strategies, such 
as integrating environmental regulation policies into the healthcare 
system aimed at reducing harmful air pollutants and their adverse 
health effects on children, need to be implemented.
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