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Background: Sepsis is a leading cause of mortality in critically ill patients, and 
the liver is a key organ affected by sepsis. Sepsis-related liver injury (SRLI) is an 
independent risk factor for multiple organ dysfunction syndrome (MODS) and 
mortality. However, there is no clear diagnostic standard for SRLI, making early 
detection and intervention challenging.

Objective: This study aimed to investigate the predictive value of serum indices 
for the occurrence of SRLI in adults to guide clinical practice.

Methods: In this study, we  investigated the predictive value of serum indices 
for SRLI in adults. We retrospectively analyzed data from 1,573 sepsis patients 
admitted to West China Hospital, Sichuan University, from January 2015 to 
December 2019. Patients were divided into those with and without liver injury. 
Stepwise logistic regression identified independent risk factors for SRLI, and a 
predictive model was constructed. The model’s diagnostic efficacy was assessed 
using receiver operating characteristic (ROC) curve analysis.

Results: Our results showed that alanine aminotransferase (ALT), gamma-
glutamyl transpeptidase (GGT), carbon dioxide combining power (CO2-CP), 
antithrombin III (AT III), fibrin/fibrinogen degradation products (FDP), and red 
blood cell distribution width (RDW-CV) were independent predictors of SRLI. 
The area under the curve (AUC) of the predictive model was 0.890, with a 
sensitivity of 80.0% and a specificity of 82.91%, indicating excellent diagnostic 
value.

Conclusion: In conclusion, this study developed a highly accurate predictive 
model for SRLI using clinically accessible serum indicators, which could aid in 
early detection and intervention, potentially reducing mortality rates.
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1 Introduction

Sepsis is a severe, fatal organic dysfunction caused by a disordered 
body response to infection (1). Notwithstanding the current 
advancements in therapeutic interventions, sepsis continues to exert 
a substantial influence on the mortality rates of critically ill individuals 
(2). The liver is the largest detoxifying organ in the human body; this 
organ participates in the clearance of inflammatory factors or 
inflammatory products and plays an important role in regulating 
metabolic disorders and maintaining the internal environment of the 
body (3). Moreover, its prognostic value for patient mortality surpasses 
that of conventional indicators such as circulatory, renal, and central 
nervous system dysfunction (4). Sepsis-related liver injury (SRLI) is 
considered to be  an independent risk factor for multiple organ 
dysfunction syndrome (MODS) and mortality (5). However, there is 
no guideline or consensus on the diagnosis of SRLI, and liver 
insufficiency is closely related to the mortality of septic patients; 
therefore, early identification and treatment of liver insufficiency 
are crucial.

The pathogenesis of liver dysfunction in sepsis is complex. These 
studies have focused mainly on the exaggerated inflammatory 
response, aberrant metabolism of liver microcirculation, compromised 
mitochondrial function of hepatic cells, dysbiosis of intestinal 
microbiota/endotoxins, oxidative stress and lipid peroxidation, the 
involvement of polymorphonuclear neutrophils (PMNs), and the 
activation of platelet activation factor (PAF) (6–9). The main clinical 
manifestations of SRLI have three aspects: cholestasis, hypoxic 
hepatitis, blood coagulation dysfunction, and abnormal liver function 
have a great, which strongly impact the prognosis of septic patients 
(10). Early detection and implementation of interventions are of great 
help to the prognosis of septic patients, and further understanding of 
the pathogenic mechanism of liver injury in septic patients is of great 
help to the treatment of patients and can effectively reduce the 
mortality rate of septic patients. Because the pathophysiology of SRLI 
has not been fully elucidated, the conventional diagnostic criteria for 
SRLI continue to rely on total bilirubin (TBIL) and international 
normalized ratio (INR) levels (11). Nevertheless, it is important to 
note that elevated serum TBIL and INR levels, while capable of 
diagnosing SRLI, are not sufficiently sensitive indicators of liver injury 
and fail to promptly and accurately reflect the presence of sepsis. 
Other laboratory indicators, such as alkaline phosphatase (ALP), 
C-reactive protein (CRP), albumin (ALB) and lactate (LAC), are risk 
factors for SRLI in patients with sepsis (12, 13). However, as a result 
of the presence of numerous confounding variables, laboratory 
indicators fail to provide an accurate prediction of the incidence of 
SRLI. Hence, it is imperative to screen out clinical or laboratory 
indicators to establish sensitive, precise, and convenient predictive 
indicators for timely detection of SRLI, thereby playing a crucial role 
in mitigating mortality rates among patients with SRLI.

2 Methods

2.1 Source of data and study population

We conducted a retrospective single-center study using data 
from the West China Hospital of Sichuan University. The study 
included all patients diagnosed with sepsis and septic shock 

between January 2015 and December 2019. The inclusion criteria 
were as follows: (1) met the Sepsis-3.0 diagnostic criteria and had 
a sequential organ failure assessment (SOFA) score ≥ 2 (14); (2) 
were aged 18 years; (3) had a stay in the hospital ≥7 days; and (4) 
Approval from the hospital’s ethical committee; (5) complete 
clinical data. The exclusion criteria for patients were as follows: (1) 
had a previous history of chronic liver function impairment, such 
as chronic hepatitis, cirrhosis, liver cancer, or fatty liver; (2) 
incomplete or missing clinical medical records; (3) incomplete 
clinical data; (4) were <18 years of age; and (5) had liver injury 
from non-septic causes (such as drugs, poisons or trauma). A total 
of 1,573 septic patients were included in this study and were 
classified into the SRLI group or sepsis non-liver injury group 
according to whether liver injury occurred within 28 days after 
admission. The diagnostic criterion for SRLI was a bilirubin 
level ≥ 34.2 μmol/L (2 mg/dL) coupled with coagulation 
abnormalities characterized by an international normalized ratio 
(INR) > 1.5 (4, 15).

2.2 Data collection

Basic data, including age and sex, were collected from eligible 
patients. Clinical data and results were obtained from Hospital 
Information System (HIS) and Laboratory Information Management 
System (LIS). The first clinical serum test results after hospitalization 
were collected, encompassing 58 indicators related to biochemical, 
inflammatory, immune, blood cell, and coagulation functions. These 
included: white blood cell (WBC) count, absolute lymphocyte 
(LYMPH) count, absolute neutrophil (NEUT) count, C-reactive 
protein (CRP) level, procalcitonin (PCT) level, alanine 
aminotransferase (ALT) level etc.

2.3 Statistical analysis

Statistical analysis was performed using SPSS 26.0 software. The 
mean ± SD is used to present measurement data of continuous 
variables, while frequencies with percentages are employed for 
categorical variables. Normally distributed continuous variables data 
are compared by t-test and comparisons between categorical variables 
were made using the chi-square test. Non-normally distributed 
continuous variables data are expressed as median and interquartile 
range (IQR) and compared using the Mann–Whitney U test.

2.3.1 Univariate analysis
Univariate logistic regression analysis was conducted to identify 

potential risk factors for SRLI. Variables with a p-value <0.05 in the 
univariate analysis were selected for further multivariate analysis.

2.3.2 Multivariate analysis
Stepwise logistic regression analysis was performed to identify 

independent risk factors for SRLI. The backward elimination method 
was used, where variables with a p-value >0.05 were removed from the 
model in a stepwise manner. The final model included only variables 
that were statistically significant (p < 0.05). The odds ratios (ORs) and 
95% confidence intervals (CIs) for each variable were calculated to 
quantify the strength of association.
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2.3.3 Construction of the prediction model
The significant variables identified in the multivariate analysis 

were used to construct a predictive model for SRLI. The model was 
evaluated using ROC curve analysis. The AUC was calculated to assess 
the model’s discriminatory power. Sensitivity, specificity, and the 
optimal cutoff value were determined to maximize the model’s 
predictive accuracy.

2.3.4 Additional predictive indices
To further validate the model, we also evaluated the predictive 

value of the ratio of ALT to CO2-CP and the APRI. The AUC, 
sensitivity, and specificity for these indices were calculated using ROC 
curve analysis.

3 Results

3.1 Characteristics of the study cohorts

This cross-sectional study included a total of 1,573 patients 
who were diagnosed with sepsis between January 2015 and 
December 2019 at West China Hospital. The baseline 
characteristics of the septic patients, classified according to the 
presence or absence of liver injury, are presented in Table  1. 
Among 1,573 septic patients, 113 (7.18%) had SRLI, the median 
age was 53 years [interquartile range (IQR) = 42–66 years], and 
approximately 65.4% were male.

We used the variance inflation factor (VIF) to rule out 
multicollinearity between models. Variables with a VIF > 10 were 
excluded, leaving 58 serum indices for univariate analysis. The results 
showed significant differences in 46 indicators, including interleukin 
6 (IL-6), myoglobin (MYO), and procalcitonin (PCT). Detailed results 
are provided in Supplementary Tables S1, S2. For example, IL-6 levels 
were significantly higher in the SRLI group (162.6 pg./mL, 
IQR = 69.51–1,079) compared to the non-SRLI group (62.7 pg./mL, 
IQR = 22.35–207.73; p < 0.01). Similarly, MYO and PCT levels were 
also significantly higher in the SRLI group (MYO: 323 ng/mL, 
IQR = 83.09–1136.47 vs. 98.46 ng/mL, IQR = 35.82–351.23; p < 0.01; 
PCT: 14.46 ng/mL, IQR = 3.46–47.3 vs. 2.89 ng/mL, IQR = 0.57–
20.89; p  < 0.01). These findings suggest that higher levels of 
inflammatory markers are associated with a higher risk of SRLI 
(Table 1).

3.2 Multivariate analysis revealed the 
independent predictive factors of the SRLI 
in septic patients

Multivariate analysis was performed according to age and sex, and 
significant variables in the univariate analysis were included in the 
stepwise method. The results, shown in Table  2, identified the 
following independent predictors of SRLI: ALT (adjusted OR = 1.001; 
95% CI: 1.001–1.002; p < 0.001), GGT (adjusted OR = 1.000; 95% CI: 
1.001–1.002; p < 0.001), CO2-CP (adjusted OR = 0.855; 95% CI: 0.81–
0.902; p < 0.001), RDW-CV (adjusted OR = 1.264; 95% CI: 1.143–
1.396; p < 0.001), AT III (adjusted OR = 0.937; 95% CI: 0.92–0.954; 
p < 0.001), and FDP (adjusted OR = 1.021; 95% CI: 1.01–1.033; 
p < 0.001) levels. These findings indicate that higher levels of ALT, 

GGT, RDW-CV, and FDP, and lower levels of CO2-CP and AT III, are 
significant risk factors for SRLI.

3.3 ROC analysis for variables as 
biomarkers for SALI

Based on the multivariate analysis, we constructed a predictive 
model using the following serum indices: ALT, GGT, CO2-CP, 
RDW-CV, AT III, and FDP (Table 3). The area under the ROC curve 
of the model was 0.890, with a sensitivity of 80.0%, specificity of 
82.91%, and a cutoff value of 0.62 (Figure 1). This indicates that the 
model had the best diagnostic performance.

Additionally, the ratio of ALT to CO2-CP in the model also had 
good predictive value, with an AUC of 0.791, a sensitivity of 76.99%, 
a specificity of 69.17%, and a cutoff value of 0.46 (Table  3). The 
AST-to-platelet ratio index (APRI) was also calculated and showed 
strong diagnostic efficacy for SRLI, with an AUC of 0.797, a 
sensitivity of 83.19%, a specificity of 65.27%, and a cutoff value of 0.48 
(Figure 1).

These results suggest that the predictive model and the ALT/
CO2-CP ratio, as well as the APRI, are valuable tools for early detection 
of SRLI, potentially improving patient outcomes by facilitating 
timely intervention.

4 Discussion

Sepsis remains a leading cause of mortality among critically ill 
patients, imposing a significant burden on global healthcare 
systems (16). The liver, a critical organ for detoxification and 
regulation of inflammatory responses, is highly susceptible to 
damage during the early stages of sepsis (17). This vulnerability 
makes the liver a prominent target organ in SRLI. Currently, there 
is no clear definition or uniform diagnostic standard for SRLI, 
underscoring the need for improved early detection methods to 
enhance patient survival rates. This study aimed to identify and 
evaluate potential risk factors for SRLI to facilitate early detection 
and improve patient outcomes.

Our retrospective analysis of 1,573 sepsis patients revealed an 
SRLI incidence of 7.18%. Previous studies have reported varying 
incidences of sepsis-related liver injury, ranging from 1.3 to 46.0% 
(18). For example, a study by Woźnica et  al. (4) reported an 
incidence of 5.4% in a cohort of septic patients, while another 
study by Liang et  al. (5) found an incidence of 12.5%. The 
discrepancies in reported incidences can be attributed to the lack 
of standardized diagnostic criteria and variations in patient 
populations. Our results (7.18%) are consistent with these studies, 
suggesting that the incidence of SRLI is a significant concern in 
sepsis management. Notably, a higher prevalence of SRLI was 
observed in male patients (65.4%), which aligns with prior reports 
(19). This gender disparity may be attributed to the protective 
effects of estrogen on liver function and its ability to mitigate the 
liver’s response to endotoxins.

In this study, our results showed that ALT, GGT, CO2-CP, 
RDW, AT III, and FDP are independent predictors of the SRLI, and 
a stepwise prediction model was established. We found that the 
AUC of the model reached 0.890, which indicates good diagnostic 
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TABLE 1 Characteristics of the study cohorts.

Total
n = 1,573

Sepsis
n = 1,460

SRLI
n = 113

P

Age (years) 55(44–68) 55(44–68) 53(42–66) 0.227

Male, n (%) 907(57.7) 832(52.9) 75(65.4) 0.06

IL-6 (pg/mL) 67.57(23.81–228.43) 62.7(22.35–207.73) 162.6(69.51–1,079) <0.01

MYO (ng/mL) 105.95(38.99–391.38) 98.46(35.82–351.23) 323(83.09–1136.47) <0.01

PCT (ng/mL) 3.41(0.63–22.5) 2.89(0.57–20.89) 14.46(3.46–47.3) <0.01

ALT (U/L) 31(17–69) 29(16–61) 88(36.5–285) <0.01

AST (U/L) 41(23–87) 38(22–77) 161(51–500) <0.01

PO4 (mmol/L) 0.92(0.67–1.22) 0.91(0.67–1.2) 1.02(0.65–1.61) <0.01

CHOL (mmol/L) 2.83(2.08–3.71) 2.88(2.13–3.78) 2.06(1.55–2.97) <0.01

LAC (mmol/L) 1.8(1.3–2.8) 1.8(1.3–2.7) 2.8(1.8–5.05) <0.01

CK (U/L) 74(34–261) 71(33–227.75) 265(75–701.5) <0.01

TNT (ng/L) 31.7(13.7–76.3) 31.1(13.45–74.05) 44.8(19.13–95.07) 0.007

LDH (U/L) 271(195–433) 263.5(192–413) 433(252.5–849) <0.01

DBIL (μmol/L) 7.7(4.1–16.8) 7.1(3.9–13.6) 58.4(39.35–91.2) <0.01

HDL (mmol/L) 0.61(0.3–1.01) 0.62(0.32–1.03) 0.38(0.16–0.74) <0.01

CK-MB (ng/mL) 2.01(0.96–4.77) 1.92(0.93–4.27) 4.34(2–10.17) <0.01

TP (g/L) 61.4(54.6–69.3) 62(55.23–69.8) 55.5(50.8–60.55) <0.01

IBIL (μmol/L) 41(23–87) 5.2(3.2–8.1) 9.8(5.15–21.4) <0.01

ALP (U/L) 97(69–158) 95(69–154) 133(80–238.5) <0.01

LDL (mmol/L) 1.21(0.59–1.96) 1.27(0.63–2) 0.69(0.2–1.17) <0.01

β-HBA (mmol/L) 0.19(0.09–0.49) 0.19(0.08–0.47) 0.34(0.14–0.63) <0.01

GGT (U/L) 55(26–137) 53(25.25–129) 116(48–304.5) <0.01

PH 7.44(7.39–7.48) 7.44(7.39–7.48) 7.42(7.36–7.48) 0.013

GLB (g/L) 29.4(25.1–34.35) 29.55(25.3–34.7) 26.3(22.25–31.7) <0.01

CA (mmol/L) 2.04(1.91–2.18) 2.05(1.92–2.18) 1.93(1.81–2.12) <0.01

ALB (g/L) 31.2(27.2–36.2) 31.4(27.42–36.5) 28.7(24.4–32.9) <0.01

K (mmol/L) 3.85(3.45–4.3) 3.84(3.44–4.27) 3.99(3.64–4.56) 0.01

CO2−CP (mmol/L) 19.8(15.9–23.43) 20.2(16.5–23.7) 15.5(10.4–18.35) <0.01

TBIL (μmol/L) 14.4(8.8–26.35) 13.5(8.5–22.1) 71.5(48.45–112.2) <0.01

HBDH (U/L) 208(152–332) 203.5(150–324.75) 309(188.5–536) <0.01

TG (mmol/L) 1.39(0.95–2.11) 1.4(0.97–2.14) 1.12(0.78–1.91) 0.006

MCH (pg) 29.9(28.5–31.4) 29.9(28.5–31.3) 30.9(28.7–33) <0.01

MCHC (g/L) 331(320–341) 331(320–341) 337(326.5–346) <0.01

RDW-CV (%) 14.5(13.5–16) 14.5(13.5–15.9) 15.3(14.4–17.5) <0.01

RDW-SD (fL) 46.5(42.8–51.4) 46.3(42.8–51.1) 48.6(44–56.95) <0.01

PLT (109/L) 136(73–212) 144(81–216) 60(38–112) <0.01

WBC (109/L) 10.46(6.63–16.83) 10.4(6.58–16.49) 12.89(7.63–22.05) 0.004

NEUT (109/L) 8.69(4.89–14.7) 8.51(4.84–14.3) 11.13(6.31–19.35) 0.006

FIB (g/L) 4.07(2.82–5.53) 4.17(2.93–5.62) 2.74(1.52–4.31) <0.01

ATIII (%) 64.4(50.7–79.3) 66.05(52.7–80.6) 42.6(33.8–55.75) <0.01

DFIB (g/L) 5.52(3.54–7.7) 5.62(3.66–7.78) 4.04(2.24–6.25) <0.01

APTT (s) 33.6(29.1–41.43) 33.1(28.9–39.5) 52.4(39.15–66.8) <0.01

FDP (mg/L) 13.8(6.83–27.58) 13(6.57–24.85) 33.35(17–69.05) <0.01

INR 1.21(1.08–1.4) 1.19(1.07–1.34) 1.76(1.62–2.2) <0.01

(Continued)
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performance for SALI. In view of the simplicity and practicality of 
clinical detection, we  opted to exclusively incorporate two 
independent indicators, ALT and CO2-CP, into the model. Receiver 
operating characteristic (ROC) analysis revealed that the area 
under the curve (AUC) was 0.791. This approach offers the 
advantage of requiring patients solely to undergo biochemical 
serum indicator testing.

Sepsis combined with liver dysfunction is mainly characterized 
by hepatocellular damage, cholestasis, and regenerative dysfunction 
(4). ALT and GGT are well-established biomarkers of liver injury. 
For instance, a study by Xie et al. (13) found that elevated ALT and 
GGT levels were associated with a higher risk of SRLI, aligning with 
our results. Our study showed that ALT (corrected OR = 1.001 95% 
confidence interval: 1.001–1.002; p < 0.001) and ALT and GGT 
levels in septic patients with liver damage were significantly greater 
than those in septic patients without liver damage. GGT is a 
recognized biomarker of hepatobiliary disease, and logistic 
regression revealed that GGT (corrected OR = 1.001, 95% 
confidence interval: 1.000–1.002; p < 0.001) was a biomarker of 

hepatobiliary disease. ALT and GGT are primarily found in 
hepatocytes, and their release into the bloodstream occurs upon 
cellular damage (20). In sepsis, inflammatory factors such as TNF-α 
and IL-1β stimulate hepatocytes, leading to oxidative stress and 
microcirculatory disorders, which promote the release of ALT and 
GGT (21). Concurrent elevation of both enzymes signifies 
simultaneous damage to hepatocytes and the biliary system (22).

The coagulation dysfunction caused by sepsis can exacerbate 
liver damage (23). Coagulation dysfunction, characterized by 
reduced AT III and increased FDP, plays a significant role in 
exacerbating liver damage (24). The liver synthesizes most clotting 
factors, and abnormalities can lead to microthrombosis and further 
hepatocyte injury (25). Our study found that lower levels of AT III 
and higher levels of FDP were significant predictors of SRLI. This is 
consistent with the findings of Iba et al. (23), who reported that 
coagulation abnormalities, particularly reduced AT III levels and 
increased FDP levels, were associated with a higher risk of sepsis-
induced acute liver injury. AT III, a crucial natural anticoagulant 
protein, plays a significant role in sepsis-related liver injury through 

TABLE 2 Multivariate analyses of clinical parameters in septic patients within the first test after hospitalization.

Variables β S.E. Wald P OR 95% CI

Lower Upper

ALT 0.001 0.000 15.311 <0.01 1.001 1.001 1.002

GGT 0.001 0.000 9.689 <0.01 1.001 1.000 1.002

CO2-CP −0.127 0.027 32.805 <0.01 0.855 0.810 0.902

RDW-CV 0.234 0.051 21.072 <0.01 1.264 1.143 1.396

ATIII −0.065 0.009 48.890 <0.01 0.937 0.920 0.954

FDP 0.021 0.006 13.586 <0.01 1.021 1.010 1.033

ALT, alanine aminotransferase; GGT, gamma-glutamyl transpeptidase; CO2-CP, carbon dioxide combining power; AT III, antithrombin III; FDP, fibrin/fibrinogen degradation products; 
RDW-CV, red blood cell distribution width (RDW)-coefficient of variation.

TABLE 3 The construction of prediction model for SRLI.

Variables AUC
(95% CI)

Cutoff Sensitivity
(%)

Specificity
(%)

P

Model 0.890 0.62 80.00 82.91 <0.001

ALT/CO2-CP 0.791 0.46 76.99 69.17 <0.001

APRI 0.797 0.48 83.19 65.27 <0.001

APRI, AST-to-platelet ratio index; ALT, alanine aminotransferase; CO2-CP, carbon dioxide combining power.

Total
n = 1,573

Sepsis
n = 1,460

SRLI
n = 113

P

DD (mg/L) 5.57(2.29–10.94) 4.95(2.23–9.97) 13.42(7.02–22.03) <0.01

TT (s) 17.7(16.6–19.4) 17.0.6(16.5–19.2) 19.45(17.42–23.53) <0.01

PT (s) 13.9(12.4–19.4) 13.7(12.3–15.4) 18.5(20.8–25) <0.01

APRI 0.33(0.14–1.03) 0.29(0.13–0.87) 2.29(0.76–11.08) <0.01

IL-6, Interleukin-6; MYO, myoglobin; PCT, procalcitonin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CHOL, cholesterol; LAC, lactate; CK, creatine kinase; TNT, 
troponin T; LDH, lactate dehydrogenase; DBIL, direct bilirubin; HDL, high-density lipoprotein cholesterol; CK-MB, creatine Kinase-MB; TP, total protein; IBIL, indirect bilirubin; ALP, 
alkaline phosphatase; LDL, low-density lipoprotein cholesterol; β-HBA, beta-hydroxybutyrate; GGT, gamma-glutamyl transpeptidase; PH, pondus hydrogenii; GLB, globulin; CA, calcium; 
ALB, albumin; K, kalium; CO2-CP, carbon dioxide combining power; TBIL, total bilirubin; HBDH, hydroxybutyrate dehydrogenase; TG, triglyceride; MCH, mean cell hemoglobin; MCHC, 
mean cell hemoglobin concentration; RDW, red cell distribution width; PLT, platelet; WBC; white blood cell; NEUT, neutrophil; FIB, Fibrinogen; AT III, antithrombin III; DFIB, derived 
fibrinogen; APTT, activated partial thromboplastin time; FDP, fibrinogen degradation; INR, international normalized ratio; D-D, D-dimer; TT, thrombin time; PT, prothrombin time; APRI, 
AST-to-platelet ratio index.

TABLE 1 (Continued)

https://doi.org/10.3389/fpubh.2024.1475292
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


He et al. 10.3389/fpubh.2024.1475292

Frontiers in Public Health 06 frontiersin.org

several mechanisms: (1) inhibition of coagulation factors 
(thrombin, factor Xa), thereby preventing microthrombosis 
formation; (2) suppression of inflammatory factor production 
(IL-6, TNF-α); (3) maintenance of vascular endothelial cell 
integrity; (4) promotion of hepatocyte regeneration (26–29). FDP 
also exert complex effects in sepsis-related liver injury, primarily 
through: (1) elevated levels indicating activation of the coagulation-
fibrinolysis system; (2) activation of monocytes and neutrophils, 
leading to increased release of inflammatory factors; (3) direct 
damage to vascular endothelial cells; (4) induction of oxidative 
stress, exacerbating hepatocyte injury (30–32). In conclusion, AT 
III and FDP influence sepsis-related liver injury through multiple 
pathways, including modulation of coagulation function, 
inflammatory responses, and endothelial function.

Interestingly, CO2-CP and RDW-CV emerged as independent 
risk factors for SRLI. CO2-CP, an indicator of the function of the 
kidneys in regulating acid–base balance, has not been extensively 
studied in the context of liver function damage. However, a study by 
Wang et  al. (33) suggested that reduced CO2-CP levels were 
associated with liver function damage in patients with moderate 
COVID-19. This finding is consistent with our results, indicating that 
CO2-CP may reflect impaired liver function and metabolic 
dysfunction in sepsis. RDW-CV measures the variability in red blood 
cell volume, with higher values indicating an uneven distribution, 
compromised erythropoiesis, and an unstable intraerythrocytic 
environment (34). Elevated RDW-CV levels are positively associated 
with inflammatory cytokines, which are often elevated in sepsis, 
reflecting systemic inflammation and microcirculatory 
dysfunction (35).

The AST-to-platelet ratio index (APRI), a marker commonly 
used in chronic liver diseases, also demonstrated strong diagnostic 

efficacy for SRLI, with an AUC of 0.797 (36). This suggests that 
APRI could be  a valuable tool for early detection of SRLI in 
clinical settings, particularly due to its simplicity and 
cost-effectiveness.

The predictive model we developed, based on ALT, GGT, CO2-CP, 
RDW-CV, AT III, and FDP, demonstrated excellent diagnostic 
performance with an AUC of 0.890. This model can be  readily 
implemented in clinical practice to aid in the early detection and 
management of SRLI. Early identification of patients at high risk for 
SRLI allows for timely intervention, which can include targeted 
therapies to mitigate liver damage and improve overall patient 
outcomes. For example, the use of anticoagulants to manage 
coagulation abnormalities and antioxidants to reduce oxidative stress 
may be beneficial in these patients.

Moreover, the long-term implications of our findings are 
significant. Early detection and intervention can lead to reduced 
morbidity and mortality associated with SRLI. This is particularly 
important given that sepsis-related liver injury is an independent 
risk factor for MODS and mortality (37). By improving the early 
diagnosis and management of SRLI, healthcare providers can 
potentially reduce the burden of sepsis on healthcare systems and 
improve patient survival rates. Future studies should focus on 
validating the predictive model in larger and more diverse patient 
populations and exploring the effectiveness of targeted interventions 
based on the identified risk factors. There are several limitations to 
this study. (1) This is a retrospective study, which may cause 
selection bias for patients as well as treatment and has a relatively 
small sample size. (2) The lack of dynamic monitoring of meaningful 
clinical parameters and dynamic assessment may improve the 
ability to judge the predictive value of relevant clinical parameters. 
(3) Other unknown confounding variables still need to be adjusted. 
Furthermore, it is important to note that this research was 
conducted in a retrospective manner, with data collection spanning 
a considerable duration. Consequently, the inclusion of certain 
patients with incomplete clinical data poses a limitation to the 
study, ultimately impacting the reliability and validity of the 
experimental findings.

5 Conclusion

Our study combined the indicators suggested to be independent 
risk factors for SRLI (ALT, GGT, CO2-CP, RDW, AT III, and 
FDP) in a binary logistic regression analysis to predict the occurrence 
of SRLI.
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