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In recent years, public health events have significantly impacted various

aspects of human production and daily life, particularly in the domains of

disease transmission and economic stability. While many scholars have primarily

focused on the influence of public health events from the perspective of

disease prevention and control, research examining their economic implications,

especially regarding public health indices in the securities market, remains

relatively scarce. Such studies are crucial for ensuring public health safety and

stability. This paper employs the Bayesian Convolutional Neural Network (Bayes-

CNN) model to predict financial market volatility influenced by public health

events and conducts a comparative analysis. To validate the feasibility of this

method, the model is used to analyze the impact of the COVID-19 pandemic

on the CSI (China Securities Index) Medical Service Index. The results indicate

significant di�erences in the volatility of the CSI Medical Service Index before

and after the outbreak, particularly during the pandemic period. This study also

enhances the validity and reliability of its conclusions by incorporating European

data and employing the GARCH model. Relevant institutions and individual

investors should adopt di�erent regulatory and investment strategies based on

the specifics of various public health events to prevent the outbreak of systemic

financial risks that could a�ect social stability. This paper o�ers a new perspective

and methodology for predicting financial market volatility under the influence

of public health events, providing valuable insights for investors and decision-

makers to better understand and respond to the potential impacts of such events

on financial markets.

KEYWORDS

public health crises, healthcare stock indices, volatility forecasting, Bayes-CNN model,

comparative analysis

1 Introduction

Public health events, particularly large-scale infectious disease outbreaks, have

increasingly drawn attention to their impacts on the global economy and financial markets.

The COVID-19 pandemic, which erupted in 2020, stands as a significant recent public

health event that not only caused widespread infections and fatalities in a short period

but also triggered a global economic recession and turmoil in financial markets (1). The

pandemic has had far-reaching effects on various aspects of the global socio-economic
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landscape, exposing the vulnerabilities of the global economic

system. Market volatility significantly increased during the

pandemic, reflecting not only investor uncertainty about future

economic prospects but also revealing the market’s heightened

sensitivity to risk (2). Against this backdrop, the healthcare sector,

due to its crucial role in combating the pandemic, became a focal

point for market attention. During the stock market crash in the

United States triggered by the pandemic, stocks related to the

healthcare industry performed exceptionally well (3), indicating

that the volatility of healthcare stock indices reflects not only

changes in industry supply and demand but also serves as a

significant indicator of market sentiment and risk appetite. As the

frontline in responding to the pandemic, the volatility of healthcare

stock indices was particularly pronounced during this period.

Prior to the pandemic, the operation of public health systems

was relatively stable, with healthcare resource allocation and

utilization rates being consistent; the healthcare sector was viewed

as a relatively stable and defensive investment area. However,

the outbreak and spread of the virus disrupted this balance and

stability, placing immense pressure on public health systems,

straining healthcare resources, and impeding socio-economic

activities. During the pandemic, healthcare stock indices exhibited

significant volatility, influenced by the dynamic developments

of the pandemic, policy measures, and public sentiment (4). As

the pandemic gradually came under control, healthcare stock

indices displayed different patterns of recovery and adjustment in

the later stages (5). Post-pandemic, with the gradual relaxation

of control measures and the promotion of vaccination, public

health systems began to recover, although long-term impacts

remain. In such a complex and fluctuating market environment,

accurately predicting the trends of healthcare stock indices is

of great importance for investors and policymakers. Traditional

forecasting methods often struggle to handle the complexity and

non-linearity of market data (6). In recent years, advancements in

machine learning and deep learning technologies, particularly the

application of Bayesian Convolutional Neural Networks (Bayes-

CNN), have provided new perspectives and methodologies for

research in this field.

Bayesian Convolutional Neural Networks (Bayes-CNN), which

combine Bayesian statistics with convolutional neural network

technology, have emerged as a promising method in this context

(7). Compared to traditional GARCH models and other machine

learning models, deep learning models such as CNNs demonstrate

higher predictive accuracy and stability when handling financial

time series data (8, 9). By incorporating Bayesian methods, Bayes-

CNN effectively addresses uncertainty, non-linear relationships,

and noise during the modeling process (10). Specifically, Bayes-

CNN can adaptively adjust based on historical data and prior

knowledge when processing different datasets, thereby enhancing

the model’s predictive accuracy (11). In contrast to traditional

neural networks, Bayes-CNN exhibits greater robustness and

generalization capabilities when facing complex and variable

uncertainty environments (12). This makes Bayes-CNN a powerful

tool for predicting the trends of healthcare stock indices before,

during, and after the pandemic. The aim of this study is to

conduct a systematic prediction of healthcare stock indices across

the pre-pandemic, pandemic, and post-pandemic periods using

the Bayes-CNN model. First, this paper will explore the specific

impacts of the pandemic on healthcare stock indices and analyze

the patterns of their volatility. Next, we will construct the Bayes-

CNN model and train it using historical data, evaluating its

predictive performance across different time periods. Additionally,

to validate the effectiveness and reliability of our conclusions, we

will incorporate European data and the GARCH model into the

empirical analysis. Finally, this study will discuss the impact of

the pandemic on healthcare stock indices based on the predictive

results, providing valuable insights for related investment planning

and policy formulation.

This study aims to investigate the impact of public health events

on the volatility of the CSI Medical Service Index and to conduct a

comparative analysis of volatility predictions across three periods:

before the pandemic, during the pandemic, and after the pandemic.

The research seeks to reveal the specific effects of the pandemic

on the volatility of healthcare stock indices. This study holds

significant theoretical and practical implications. Theoretically, by

comparing the volatility of healthcare stock indices across different

time periods, this research enriches the theoretical understanding

of the relationship between public health events and financial

market volatility. In particular, the application of the deep learning

Bayes-CNN model for volatility prediction offers a new method

and perspective for predicting financial market volatility (13).

Practically, the findings of this study provide valuable insights for

investors regarding risk management during public health events,

assisting them in making more informed decisions in uncertain

market environments. Additionally, policymakers can leverage

the findings to better understand the impact of the pandemic

on the healthcare industry and financial markets, allowing them

to develop more effective market regulation and intervention

measures to maintain financial market stability.

The structure of this paper is as follows: the second section

is a literature review that examines relevant research on public

health events and financial market volatility, volatility forecasting

models, and the Bayes-CNN model. The third section introduces

the data and methodology of the study, including data sources,

model construction, research design, and evaluation metrics. The

fourth section presents the empirical analysis, showcasing the

optimization results of the models and the predicted volatility

across different periods, along with comparative and validity

analyses. The fifth section concludes the paper by summarizing

the main findings, discussing the limitations of the research, and

suggesting directions for future studies.

2 Literature review

The impact of public health events on financial markets has

gradually become a focal point of research in recent years. Baker

et al. (2) demonstrated that the COVID-19 pandemic led to a sharp

increase in global economic uncertainty and a significant rise in

financial market volatility. Their study quantified the pandemic’s

impact on financial markets through the analysis of an economic

uncertainty index, finding that stock market volatility increased

markedly during the pandemic. In the early stages of the outbreak,

investors, facing heightened uncertainty, generally shifted toward

safe-haven assets, resulting in capital outflows from the stock

market and declining prices. Al-Awadhi et al. (14) further analyzed
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the short-term effects of the pandemic on the Chinese stockmarket,

revealing that the rapid spread and worsening situation of the

pandemic led to a significant decline in stock prices across China.

In this context, investor sentiment became more cautious, leading

to decreased market liquidity and increased market volatility.

Wagner and Ramelli (4) studied the pandemic’s effects on corporate

stock prices, finding that the pandemic increased systemic market

risk. Due to supply chain disruptions, reduced demand, and

production halts, many companies experienced substantial declines

in stock prices in the early stages of the pandemic, resulting

in severe market adjustments. However, certain sectors, such

as technology and healthcare, performed relatively well due to

increased demand and adaptability of their business models. Zhang

et al. (1) provided a comprehensive analysis of financial markets,

pointing out significant differences in the pandemic’s impact

across various financial markets. Notably, developed and emerging

markets exhibited different responses to the pandemic’s shocks.

Developed countries, with relatively stable economic foundations,

experienced faster recovery in financial markets, while emerging

markets faced greater pressure and a slower recovery (15). Goodell

(16) emphasized the long-term impacts of public health events

on financial markets, noting that pandemics not only have short-

term market shocks but may also lead to long-term structural

economic changes. Financial markets must adapt to these changes

and reassess risks and returns. Additionally, research indicates

that public health events can also affect governments and the

public. For example, public sector provision of insurance may

crowd out private sector initiatives, the public’s attitudes toward

government may change due to the pandemic, and social trust

can influence the financial system. Barro et al. (17) validated this

viewpoint through historical data analysis of past public health

events, indicating that pandemics similar to COVID-19 typically

impact overall economic activity, leading to declines in stock prices

and increases in volatility.

Under the influence of public health events, the performance of

healthcare stock indices exhibits unique characteristics and patterns

of variation. During the COVID-19 pandemic, healthcare stock

indices demonstrated significant volatility; however, compared to

other sectors, the healthcare industry overall displayed greater

stability and growth potential. Due to its crucial role in public

health events, the healthcare sector exhibited heightened volatility

and trading activity during the pandemic. Mazur et al. (3)

indicated that during the COVID-19 pandemic, the performance

of the healthcare and technology sectors surpassed that of other

industries, with a notable increase in investor demand for these

sectors, highlighting the importance of studying the volatility of

healthcare stock indices. In the early stages of the pandemic,

healthcare stock indices may have experienced short-term declines

influenced by market panic. However, as the pandemic spread and

demand for healthcare surged, these indices quickly rebounded,

displaying a strong upward trend. Al-Awadhi et al. (14) found that

during the pandemic, stocks in the information technology and

pharmaceutical manufacturing sectors significantly outperformed

the market. Expectations for the healthcare sector likely shifted

dramatically during the pandemic, and these changes were directly

reflected in the performance of healthcare stock indices. As the

pandemic progressed, the investment returns in the healthcare

sector notably exceeded those of other industries, particularly for

companies with core competencies in pandemic prevention and

treatment. Pagano et al. (18), using the COVID-19 pandemic as

an experiment, concluded that asset markets allocated time-varying

prices for companies’ disaster risk exposures, revealing how the

market prices the resilience of different companies to disaster

risks and how this pricing reflects shifts in investor perceptions

of risk as disasters unfold. This research can provide insights

into the price volatility of companies in the healthcare sector.

Given its pivotal role in pandemic control, the healthcare sector

attracted substantial capital inflows, becoming a significant choice

for investors seeking safe havens and stable returns. Furthermore,

Hunjra et al. (19) examined the impact of government health

measures during COVID-19 on the volatility of capital markets in

East Asian economies, finding that different health policy measures

influenced investor behavior and resulted in stock market volatility.

Gheorghe et al. (20) studied the relationship between national

healthcare system performance and stock volatility during the

COVID-19 pandemic, noting that the connection between these

two variables was significantly stronger during the pandemic. Su

et al. (21) explored the relationship between healthcare financial

expenditures (FE) and the pharmaceutical sector stock index (SP),

indicating that there exists both positive and negative correlations

between FE and SP, which should be examined in conjunction

with other events and market conditions. The healthcare stock

indices studied in this paper are closely related to government

health measures.

Traditional financial market forecasting methods often struggle

with complex and nonlinear data. The GARCH model proposed

by Bollerslev (22) effectively captures volatility clustering effects in

financial time series by considering conditional heteroscedasticity.

However, the GARCH model may have limitations when faced

with complex nonlinear data. Gunnarsson et al. (23) highlighted

that AI and machine learning (ML) methods show promising

effectiveness in volatility forecasting, often providing results

comparable to or better than those of econometric methods. Lu

et al. (24) found that machine learning models outperformed

traditional forecasting models in predicting oil futures volatility,

indicating that machine learning can effectively handle non-

linearities in data sequences and capture important information

related to oil futures market volatility. Deep learning models,

such as Convolutional Neural Networks (CNN), Recurrent Neural

Networks (RNN), and Long Short-Term Memory networks

(LSTM), may exhibit superior performance in processing high-

dimensional, and non-linear data. Fischer and Krauss (25)

investigated the predictive power of LSTM in financial markets,

discovering that LSTM networks outperformed memoryless

classification methods, such as Random Forest (RF), Deep

Neural Networks (DNN), and Logistic Regression (LOG),

demonstrating significant advantages in capturing complex

patterns in time series data. Bayesian Convolutional Neural

Networks (Bayes-CNN) offer a new approach to effectively handle

uncertainty and non-linear relationships in volatility forecasting

by combining Bayesian statistics with convolutional neural

networks. This method captures complex data patterns while

quantifying prediction uncertainty. Hernández-Lobato and Adams

(26) utilized probabilistic backpropagation in Bayesian neural
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networks and found it to have higher robustness and predictive

accuracy when handling high-dimensional data, along with faster

computational speed. Gal and Ghahramani (11) proposed that

using dropout as a Bayesian approximation can effectively quantify

uncertainty in neural networks without sacrificing computational

complexity or testing accuracy. Wei and Chen (27) employed

Bayesian Convolutional Neural Networks to quantify uncertainty

in solving the inverse scattering problem (ISP), demonstrating the

excellent performance of deep learning schemes (DLS). Feng et al.

(28) applied Bayes-CNN to predict seismic phase classification,

noting that the model can assess uncertainty in predictions and

outperforms standard neural networks. These methods can be

transferred to financial market predictions to showcase their

potential, particularly in addressing high volatility and uncertainty

in the market.

Despite the extensive research on the impact of public health

events on financial markets and the application of various volatility

prediction models, the use of the Bayes-CNN model in economic

analysis remains limited, particularly in the context of predicting

the volatility of the China CSI Medical Service Index. Specifically,

studies employing the Bayes-CNN model to conduct comparative

analyses of healthcare stock index volatility across the pre-

pandemic, during-pandemic, and post-pandemic phases are still

underdeveloped. This paper enriches the literature in this field

by systematically analyzing the impact of the pandemic on the

volatility of the China CSI Medical Service Index using the

advanced Bayes-CNN model, and it provides a comprehensive

understanding of the changes in volatility across different phases.

3 Data and methodology

3.1 Data

This study focuses on the perspective of public health events

and selects the CSI (China Securities Index) Medical Service Index

as the core indicator of the research, referred to as “CSI Medical

Service” with index code 399989. The index is based on a reference

date of December 31, 2004, with a base value of 1,000 points.

The CSI Medical Service Index includes securities from listed

companies in the medical and healthcare industry, encompassing

sectors such as medical devices, medical services, and healthcare

information technology, thereby comprehensively reflecting the

overall performance of healthcare-related companies in China.

The CSI Medical Service Index aims to provide investors with an

effective market benchmark by integrating the market performance

of various sub-sectors within the healthcare industry. The sample

stocks of the index covermultiple sub-industries, includingmedical

devices, pharmaceuticals, biotechnology, medical services, and

healthcare information technology, effectively showcasing the

diversity and overall development trends of the healthcare sector.

Specifically, the selection criteria for the CSI Medical Service Index

include that companies must be listed on either the main board

or the ChiNext board of the Chinese securities market, with their

primary business related to the aforementioned healthcare fields.

The sample stocks are adjusted annually to ensure the index’s

representativeness and forward-looking nature. This index not

only aids investors in understanding market dynamics within the

healthcare sector but also serves as a reference for policymakers

regarding industry development. The data involved in this study

spans from December 31, 2004, to July 9, 2024, with a daily

frequency. Volatility is calculated following the methodology of

Zhou and Zhou (29). The specific calculation formula is as follows:

volt = (Hight − Lowt)/Avgt (1)

In Equation (1), volt represents the intraday volatility of the

CSI Medical Service Index on day t. Hight denotes the highest

price of the CSI Medical Service Index on day t, Lowt denotes

the lowest price of the CSI Medical Service Index on day t, Avgt
denotes the average price of the CSI Medical Service Index on

day t. The calculation reflects the maximum volatility of the CSI

Medical Service Index on day t. Higher volatility indicates more

severe fluctuations in financial asset prices, leading to greater

uncertainty in asset returns. Conversely, lower volatility signifies

more moderate price changes. In this study, volatility is primarily

used as a measure of risk. By examining the volatility of the CSI

Medical Service Index, we aim to gain a deeper understanding of

the impact of public health events on the healthcare industry and

to provide valuable insights for investors and policymakers.

3.2 Research methodology

3.2.1 Convolutional neural networks
Convolutional Neural Networks (CNNs) are commonly used

deep learning architectures for processing image and time series

data. The main components of a CNN include convolutional

layers, pooling layers, and fully connected layers. The convolutional

layer is the core component of a CNN, responsible for extracting

local features from the input data through convolution operations.

Convolutional layers utilize multiple convolutional kernels (filters)

that slide over the input data to generate a set of feature maps. Each

convolutional kernel is capable of detecting different features, such

as edges, textures, or other patterns. The equation is as follows:

(f ∗g)(i, j) =
∑

m

∑

n

f (m, n) · g(i−m, j− n) (2)

In this equation, f represents the input image, g denotes the

convolutional kernel, and i and j are the coordinates of the output

feature map. Convolutional layers typically employ non-linear

activation functions to introduce non-linearity, further enhancing

the model’s expressive power (30).

Pooling layers are used to down sample feature maps, reducing

computational complexity and the number of parameters while

preserving important features. Common pooling methods include

max pooling and average pooling. The formula for max pooling is

as follow:

y(i, j) = max
(m,n)∈poolingregion

x(i+m, j+ n) (3)

In this context, x represents the input feature map, y denotes

the pooled feature map, and m and n are indices representing local

regions (the convolutional kernel or pooling area) used to traverse

the pixels or feature values within the input image. The pooling
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layer compresses the feature map by selecting the maximum or

average value from the local region, which helps to retain features

to some extent while reducing the dimensionality of the data (31).

The fully connected layer integrates features from the convolutional

and pooling layers andmaps them to the output layer. Each node in

the fully connected layer is connected to all nodes in the previous

layer, similar to traditional artificial neural networks (ANNs). The

formula for the fully connected layer is as follows:

y = f (Wx+ b) (4)

In this formula, W represents the weight matrix, x is the input

vector, b is the bias vector, f is the activation function, and y denotes

the output of the fully connected layer. The fully connected layer

is typically located at the end of the network, mapping high-level

abstract features to the final classification or regression results (32).

3.2.2 Bayesian inference
Bayesian Inference introduces Bayesian statistical methods to

probabilistically handle the parameters of CNN models, thereby

capturing uncertainties in the data. This process mainly involves

Variational Inference and Markov Chain Monte Carlo (MCMC)

methods. The goal of Bayesian inference is to update the posterior

distribution of model parameters by combining prior distributions

with observed data (33). Bayes’ theorem provides the mathematical

foundation for this process, as expressed in the following formula:

P(θ |X) =
P(X|θ)P(θ)

P(X)
(5)

In this context, θ represents the model parameters, X denotes

the observed data, P(θ |X) is the posterior distribution, P(X|θ)

is the likelihood function, P(θ) is the prior distribution, and

P(X) is the marginal likelihood. Bayesian inference reflects the

uncertainty in the data through the posterior distribution and

provides probabilistic estimates of the model parameters.

Bayesian inference involves Variational Inference, which is

a deterministic inference method that approximates complex

posterior distributions with a parameterized simpler distribution.

This is achieved by optimizing the Variational Lower Bound

(ELBO) to approximate the true posterior distribution. The goal

is to minimize the Kullback-Leibler (KL) divergence between the

true posterior distribution and the approximate distribution. The

formula is as follows:

KL(q(θ) || p(θ | X)) =

∫

q(θ) log
q(θ)

p(θ | X)
dθ (6)

Here, q(θ) represents the approximate distribution, and p(θ |

X) denotes the posterior distribution. By optimizing the Variational

Lower Bound, Variational Inference can effectively approximate

the posterior distribution while maintaining high computational

efficiency in high-dimensional spaces.

Markov Chain Monte Carlo (MCMC) methods are a

class of stochastic sampling techniques used to sample from

posterior distributions by constructing a Markov chain. Common

MCMC methods include the Metropolis-Hastings algorithm and

Hamiltonian Monte Carlo (HMC) algorithm. The principle of the

MCMCmethod is as follows:

π(θ) =

N
∑

i=1

δ(θ − θi)/N (7)

In this context, π(θ) represents the sample set from the

posterior distribution, while θi denotes the samples drawn from

the posterior distribution. MCMC methods can generate samples

that approximate the posterior distribution, making them suitable

for inference in high-dimensional complex distributions. The

application of Bayesian inference in predicting volatility in financial

markets involves quantifying the uncertainty of model parameters,

thereby enhancing the reliability and robustness of predictions.

This is particularly important for risk management and investment

decision-making, as it helps investors better understand market

risks and make more informed decisions.

3.2.3 Bayesian Convolutional Neural Networks
Bayesian Convolutional Neural Networks (Bayes-CNN

or BCNN) enhance the ability of traditional Convolutional

Neural Networks (CNN) to handle uncertainty and improve

predictive performance by integrating Bayesian inference methods.

Traditional CNNs often overlook the uncertainties present in

financial time series data, such as volatility predictions, resulting in

insufficient robustness and generalization capabilities. In contrast,

Bayes-CNN effectively captures the uncertainty in the data by

treating model parameters probabilistically, thereby enhancing

both the accuracy and stability of predictions.

The structure of the Bayes-CNN model is similar to that of

traditional CNNs, but there are significant differences in parameter

handling and inference methods. The model structure of Bayes-

CNN includes the following key components: Convolutional

Layers: These layers are used to extract local features from the input

data. In volatility prediction, convolutional layers can effectively

capture local patterns and trends in time series data. Pooling

Layers: These layers are utilized to reduce the dimensionality

of feature maps, thereby decreasing computational complexity

while preserving important features. Fully Connected Layers: These

layers combine and map the extracted features to generate the

final prediction results (34). In Bayes-CNN, the weight parameters

of the fully connected layers are treated as random variables

that follow a specific probability distribution. Bayesian Inference

Module: This module is the key differentiator between Bayes-CNN

and traditional CNNs. The Bayesian inference module estimates

the posterior distribution of the model parameters using methods

such as Variational Inference (VI) or Markov Chain Monte

Carlo (MCMC).

In volatility prediction, the Bayes-CNN model can be applied

through the following steps: Data Preprocessing: Financial time

series data are standardized and normalized, and necessary

data augmentation is performed. These steps help to reduce

data noise and improve the effectiveness of model training.

Model Training: Historical volatility data are used to train the

Bayes-CNN model. During the training process, it is essential

to optimize the Bayesian inference module to estimate the

posterior distribution of the model parameters. Variational
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inference methods typically approximate the posterior distribution

by optimizing the Variational Lower Bound, while MCMC

methods sample from the posterior distribution by constructing a

Markov chain. Continuous adjustments are made to the model’s

hyperparameters. Model Prediction: After obtaining the optimal

combination of hyperparameters, the trained Bayes-CNN model is

utilized to predict future volatility. Through these steps, the Bayes-

CNN model effectively leverages the characteristics of financial

time series data, enhancing the accuracy and reliability of volatility

predictions, and providing robust support for investors and

risk managers.

3.3 Evaluation metrics

This study divides the volatility of the China CSI Medical

Service Index into three time periods for prediction analysis and

comparison. The first period is pre-pandemic, spanning from

December 31, 2004, to December 31, 2019. The second period

covers the pandemic, from January 1, 2020, to December 31, 2022.

The third period is post-pandemic, extending from January 1, 2023,

to July 9, 2024. In the Bayesian Convolutional Neural Network

(Bayes-CNN)model, key evaluationmetrics such asMean Absolute

Error (MAE), Mean Squared Error (MSE), and Mean Absolute

Percentage Error (MAPE) are employed to assess the model’s

predictive performance.

Mean Absolute Error (MAE) is the average of the absolute

errors between the predicted values and the actual values. The

formula is as follows:

MAE =
1

n

n
∑

i=1

|yi − ŷi| (8)

where: n is the number of samples, yi is the actual value of

the i-th sample, ŷi is the predicted value of the i-th sample. MAE

measures the average deviation of predicted values from the actual

values. Its unit is consistent with that of the original data, making

it easy to interpret. MAE is robust to outliers as it considers the

absolute value of errors rather than their squares, which means it is

less sensitive to extreme values.

The Mean Squared Error (MSE) is the average of the squared

differences between predicted values and actual values. The formula

is given by:

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2 (9)

where: n is the number of samples, yi is the actual value of

the i-th sample, ŷi is the predicted value of the i-th sample. Due

to the squaring of the differences, MSE is more sensitive to large

errors. This makes MSE useful for penalizing significant deviations

more heavily, thus enforcing a stricter reduction of large errors

during model training. MSE is often used as an optimization

objective function in many machine learning models, especially in

regression problems.

The Mean Absolute Percentage Error (MAPE) is the average of

the absolute percentage errors between predicted values and actual

values. The formula is given by:

MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

yi − ŷi

yi

∣

∣

∣

∣

× 100% (10)

In the formula, n represents the number of samples, yi denotes

the actual value of the i-th sample, and ŷi represents the predicted

value of the i-th sample. MAPE is a percentage metric, which is

applicable to data with different scales, making it convenient for

comparing the performance of different datasets or models. MAPE

provides a ratio of prediction error relative to the actual values,

making it easy to understand and interpret, and thus offering

intuitive insights.

In the Bayes-CNN model, these metrics are used to evaluate

the model’s predictive performance, ensuring its accuracy and

stability. MAE: Measures the average prediction error of the model,

helping to understand the overall performance of the model on

the data. MSE: Penalizes large errors, aiding in the optimization

of the model to reduce the occurrence of significant deviations.

MAPE: Provides the average level of relative error, making it

suitable for scenarios where comparisons between different datasets

are necessary. By employing these evaluation metrics, one can

comprehensively assess the performance of the Bayes-CNN model

in prediction tasks, and make adjustments and optimizations to

enhance its predictive accuracy and reliability.

4 Experiments and results

4.1 Data preprocessing

In the volatility prediction of financial time series data,

the Bayes-CNN model combines the efficient feature extraction

capabilities of CNNs with the robust uncertainty handling of

Bayesian inference, enabling it to provide precise predictions and

uncertainty assessments. In this study, we first preprocess the data.

Financial time series data are standardized and normalized to

ensure the stability and consistency of the input data. We employ

min-max normalization to scale the original time series data to the

range [0, 1], as shown in the following equation:

x,i =
xi − xmin

xmax − xmin
(11)

The normalized data point, denoted as x,i, is obtained from

the original data point xi, with xmin and xmax representing the

minimum and maximum values in the dataset, respectively. This

normalization process mitigates the effects of differing scales,

allowing for comparisons and processing of features on a uniform

scale. During the model training process, historical volatility data

are used to train the Bayes-CNN model. The parameters of

the CNN component are optimized, and the Bayesian inference

module is refined to estimate the posterior distribution of the

model parameters. The trained Bayes-CNN model is then utilized

to predict future volatility.
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4.2 Optimization results at di�erent periods

In the Bayes-CNNmodel, the Bayesian optimization method is

a technique used for hyperparameter tuning that leverages Bayesian

inference to predict the optimal values of model parameters. The

selection of hyperparameters has a significant impact on model

performance in deep learning, and Bayesian optimization provides

an efficient approach to search for the best combination of these

hyperparameters. The specific steps are as follows: (1) Define the

Objective Function: First, define an objective function, typically

the validation error or loss function of the model, that you

aim to minimize in order to find the optimal hyperparameters.

(2) Select Prior Distributions: Choose prior distributions for

the hyperparameters. These distributions express initial beliefs

about the hyperparameters; for example, they may be uniformly

distributed over a specific range. (3) Initial Sampling: Perform

initial sampling in the hyperparameter space, evaluate the objective

function, and use these points as training data to construct a

probabilistic model. (4) Construct the Probabilistic Model: Use the

data from the initial sampling to build a probabilistic model of

the hyperparameters. This is typically a Gaussian Process, which

captures the relationship between the hyperparameters and the

objective function. (5) Obtain the Posterior Distribution: Update

the prior distribution using Bayes’ theorem to obtain the posterior

distribution. The posterior distribution reflects beliefs about the

hyperparameters based on the observed data. (6) Determine the

Optimization Point: Use the probabilistic model to identify the next

sampling point that provides the most information. This is often

achieved by calculating the acquisition function of the probabilistic

model, such as Expected Improvement (EI) or Gaussian Process

Upper Confidence Bound (GP-UCB). (7) Iterative Optimization:

Evaluate the objective function at the selected optimization point

and update the probabilistic model with the new data point. Repeat

steps 5 and 6 until a stopping condition is met, such as reaching a

predetermined number of iterations or no significant improvement

in the objective function. (8) Select the Best Hyperparameters:

After all iterations are complete, choose the combination of

hyperparameters that minimizes the objective function.

Bayesian optimization is a highly effective method for

hyperparameter tuning, particularly for expensive evaluation

functions, as it can intelligently select sampling points, thereby

reducing the number of required evaluations. Additionally, since

the Bayes-CNN model itself possesses the capability of uncertainty

estimation, the combination of Bayesian optimization can further

enhance the model’s generalization ability and robustness.

Overall, the optimization process consists of two main

components. The first component involves optimizing the

parameters of the CNN: local features of time series data are

extracted through convolutional layers, and the dimensionality

of the feature maps is reduced using pooling layers. The

Backpropagation algorithm and Gradient Descent optimization

are used to adjust the model parameters, minimizing the error

on the training data. The second component focuses on the

optimization of the Bayesian inference module: this study employs

the Markov Chain Monte Carlo (MCMC) method to estimate

the posterior distribution of the model parameters. The MCMC

method involves constructing a Markov chain to sample from the

posterior distribution. The goal of this optimization process is to

find the optimal parameter distribution that enhances the model’s

predictive accuracy and stability when faced with new data. The

optimization results before the COVID-19 pandemic are illustrated

in Figure 1, those during the pandemic in Figure 2, and post-

pandemic optimization in Figure 3. The vertical axis represents the

value of the objective function, which is typically minimized in

optimization problems. The horizontal axis indicates the number

of function evaluations, reflecting the number of iterations or

evaluations conducted during the optimization process.

If two curves are close to each other or coincide with each

other with a relatively small number of function evaluations,

this indicates that the optimization algorithm is efficient and can

quickly find solutions near the optimal one. Conversely, if the

curves only begin to approach each other after a higher number of

function evaluations, it may suggest that the optimization process

requires more iterations to converge. During the initial phase

(with a smaller number of function evaluations), a rapid decrease

in the objective value indicates that the optimization process

is quickly approaching the optimal solution. As the number of

function evaluations increases, the rate of decrease in the objective

value gradually slows down. This may be due to diminishing

returns in improvement as the solution approaches the optimal

point. The gap between the estimated minimum objective value

and the observed minimum objective value decreases over time,

reflecting an improvement in the accuracy of the estimated model.

From the figures, it can be observed that as the number of

function evaluations increases, the observed minimum objective

value stabilizes, which may indicate that the optimal solution or

convergence point has been approached. The estimated minimum

objective value curve closely aligns with the observed minimum

objective value curve, suggesting that the estimated model is

consistent with the actual observed values.

The optimization results prior to the pandemic, as shown in

Figure 1, indicate that the optimization process was continually

advancing, with the objective value progressively decreasing.

This suggests that the optimization algorithm performed well

in searching for the optimal solution. In the initial phase

(approximately the first 2–3 training epochs), both training and

validation losses were relatively high. This is because the model

was just beginning to learn the data features and had not yet been

optimized to its best state. Between the 3rd and 4th training epochs,

there was a significant decrease in both training and validation

losses, indicating that the model rapidly learned the important

features of the data during this period, and the optimization

process was highly effective at this stage. From the 4th training

epoch onward, the training and validation losses stabilized at a

low level, suggesting that the model parameters had essentially

converged and reached a relatively stable state. Throughout the

training process, the training and validation losses were very

close and almost coincided, indicating that the model performed

consistently across the training and validation sets, with no

significant overfitting or under fitting observed. The optimization

graph demonstrates that the model converged quickly in the early

training stages andmaintained stability in the later stages, reflecting

good optimization performance on the pre-pandemic data. The

significant decrease in the objective value likely indicates that the
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FIGURE 1

Optimization chart before the pandemic.

FIGURE 2

Optimization chart during the pandemic.

optimization problem was approaching or had reached a relatively

ideal solution.

The optimization results during the pandemic, as depicted in

Figure 2, reveal that in the initial phase (approximately the first

3 training epochs), both training and validation losses were high.

This is because the model had not yet effectively learned the data

features at this early stage. Between the 3rd and 5th training epochs,

there was a rapid decrease in both training and validation losses,

indicating that the model learned a substantial amount of data

features during this period, with significant optimization results.

From the 6th training epoch onward, both training and validation

losses stabilized at a low level, suggesting that the model parameters

had largely converged and reached a stable state. The optimization

results post-pandemic, shown in Figure 3, demonstrate that in

the initial phase (approximately the first 3 training epochs), both

training and validation losses were high, reflecting the model’s

incomplete learning of data features at this stage. Between the

3rd and 4th training epochs, there was a notable decrease in

both training and validation losses, indicating that the model

quickly learned the main features of the data, with significant

optimization performance. From the 4th training epoch onward,

training and validation losses stabilized and remained at a low level,

suggesting that the model had largely converged and reached a

relatively stable state. After the 4th training epoch, although the

training and validation losses remained generally stable, there were

minor fluctuations in individual epochs. These fluctuations could

be due to some noise or outliers in the data but had minimal

overall impact.
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FIGURE 3

Optimization chart after the pandemic.

By analyzing these optimization plots, we can evaluate the

performance of the optimization algorithms across different

periods, assess their convergence speed and stability, and

gauge the accuracy of the predictive models. Overall, in the

training processes across the three periods, the training loss and

validation loss are very close and almost overlap. This indicates

that the model performs consistently across the training and

validation sets, demonstrating good generalization capability with

no significant overfitting or underfitting. The model converges

quickly in the early training stages and maintains stability in the

later stages, reflecting effective optimization performance across

different periods. This suggests that the Bayes-CNN model can

effectively capture the features of financial time series data from

various periods and provide accurate volatility predictions. The

model exhibits excellent training and validation performance,

with rapid convergence and stability. The introduction of the

Bayesian inference module enhances the model’s ability to handle

uncertainty in the data, providing more reliable predictions.

After incorporating Bayesian optimization, the model achieved

good optimization with fewer function evaluations. Prior to the

pandemic, the optimization process showed rapid improvement

and a significant decrease in the objective value. During the

pandemic, the optimization process became more stable with

smaller fluctuations in the objective value. Post-pandemic, the

optimization process demonstrated stability and convergence in the

objective value, potentially approaching the optimal solution.

4.3 Prediction results across di�erent
periods

First, we conducted a predictive analysis of the volatility

of the CSI Medical Service Index for the period prior to the

pandemic, from December 31, 2004, to December 31, 2019.

As shown in Figure 4, the vertical axis represents the predicted

volatility, while the horizontal axis denotes the time index of the

predicted samples. The blue curve reflects the actual volatility,

and the red curve illustrates the predicted volatility by the Bayes-

CNN model. The overall trend of the predicted values (red)

is consistent with that of the actual values (blue), indicating

that the model performs well in capturing the overall trend.

In areas with significant local fluctuations, the predicted values

closely align with the actual values, suggesting that the model

also demonstrates good performance in capturing data details. In

terms of the various metrics for the first time interval, the Mean

Absolute Error (MAE) is 0.006682, which measures the difference

between predicted and actual values; a smaller value indicates

better predictive performance. The Mean Squared Error (MSE) is

7.6191E-05, another metric for assessing the difference between

predicted and actual values, with smaller values reflecting better

model performance. The Mean Absolute Percentage Error (MAPE)

is 0.4478457, with lower values indicating improved predictive

capability. The model effectively fits the overall trend and local

details of the data, demonstrating exceptional performance in

capturing data features. The Bayesian inference module enables the

model to handle uncertainties in the data, further enhancing the

reliability of the predictions. Overall, the Bayes-CNN model shows

strong predictive effectiveness when processing pre-pandemic data,

accurately capturing both the overall trend and local details. The

small errors and high prediction accuracy indicate its robustness

and reliability. The introduction of the Bayesian inference module

allows the model to provide more stable and reliable predictions in

the face of data uncertainties.

Next, we conducted a predictive analysis of the volatility of the

CSI Medical Service Index during the pandemic, from January 1,

2020, to December 31, 2022. As illustrated in Figure 5, the overall

trend of the predicted values (red) is consistent with that of the

actual values (blue), particularly in relatively stable regions, where

the model can closely follow the changes in the actual values.
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FIGURE 4

Prediction chart before the pandemic.

FIGURE 5

Prediction chart during the pandemic.

However, in areas with significant local fluctuations, there are some

discrepancies between the predicted and actual values. This may

be attributed to the heightened volatility in the market during

the pandemic, which introduced more noise and outliers into the

data, complicating the predictions. For the various metrics in this

second time interval, the Mean Absolute Error (MAE) is 0.008051,

indicating the difference between the predicted and actual values;

a smaller value reflects better model performance. The Mean

Squared Error (MSE) is 1.1147E-04, another metric for measuring

the difference between predicted and actual values, with smaller

values indicating superior predictive capability. TheMean Absolute

Percentage Error (MAPE) is 0.3726628, where lower values also

suggest improved model performance. While the model effectively

captures the overall trend of the data, certain discrepancies arise

in regions of higher volatility. The MAE and MSE indicate that

the prediction errors are within an acceptable range, although

they are slightly higher than those observed in pre-pandemic

predictions, suggesting that the increased market volatility during

the pandemic posed greater challenges to forecasting. The Bayesian

inference module enables the model to handle uncertainties in the

data, further enhancing the reliability of the predictions. Overall,

the Bayes-CNN model demonstrates a good ability to capture

the overall trend in the data during the pandemic; however,

discrepancies exist between the predicted and actual values in

more volatile regions. The slightly higher errors compared to pre-

pandemic predictions indicate that the increased market volatility

during the pandemic presented additional challenges for the

model’s forecasts.

Finally, we conducted a predictive analysis of the volatility of

the CSI Medical Service Index after the pandemic, from January 1,

2023, to July 9, 2024. As shown in Figure 6, the overall trend of the

predicted values (red) is consistent with that of the actual values

(blue), particularly in relatively stable regions, where the model

effectively follows the changes in the actual values. In areas with

significant local fluctuations, the predicted values still maintain a

high level of consistency with the actual values, although there
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FIGURE 6

Prediction chart after the pandemic.

TABLE 1 CSI Medical Service Index Evaluation Metrics Comparison.

Period MAE MSE MAPE

Pre-pandemic 0.006682 7.6191E-05 0.4478457

Pandemic 0.008051 1.1147E-04 0.3726628

Post-pandemic 0.004671 4.2973E-05 0.2691805

are some discrepancies at individual peak points. For the various

metrics in this third time interval, the Mean Absolute Error (MAE)

is 0.004671, which measures the difference between predicted and

actual values; a smaller value indicates better model performance.

The Mean Squared Error (MSE) is 4.2973E-05, another metric

that assesses the difference between predicted and actual values,

with smaller values reflecting superior predictive capability. The

Mean Absolute Percentage Error (MAPE) is 0.2691805, where

lower values also suggest improved model performance. The model

effectively captures both the overall trend and local details of the

data, demonstrating outstanding performance in identifying data

features. The Bayesian inference module enables the model to

handle uncertainties in the data, further enhancing the reliability

of the predictions. Overall, the Bayes-CNNmodel exhibits a strong

ability to capture both the overall trend and local details in

the post-pandemic data, indicating high predictive accuracy. The

small errors and high prediction accuracy suggest that the model

possesses strong robustness and reliability.

4.4 Comparison summary

A comparison of the primary evaluation metrics for the Bayes-

CNN model across the periods before, during, and after the

pandemic is presented in Table 1. The metrics include Mean

Absolute Error (MAE), Mean Squared Error (MSE), and Mean

Absolute Percentage Error (MAPE). These metrics provide insights

into the model’s predictive accuracy and robustness across different

market conditions.

Pre-Pandemic: The MAE value is 0.006682, indicating that

the model’s average absolute error was relatively small before

the pandemic, reflecting good predictive performance. During

the Pandemic: The MAE increased to 0.008051, suggesting that

the model’s prediction errors grew during the pandemic. This

may be attributed to heightened market volatility and increased

data complexity during this period. Post-Pandemic: The MAE

decreased to 0.004671, indicating a reduction in prediction errors

after the pandemic. This suggests that the market may have

stabilized, thereby enhancing the model’s predictive performance.

Pre-Pandemic: The MSE value was 7.6191E-05, signifying that

the model had a low mean squared error prior to the pandemic,

reflecting high predictive accuracy. During the Pandemic: TheMSE

rose to 1.1147E-04, indicating a significant increase in prediction

errors during the pandemic. This could be due to the intense

market fluctuations, which made it challenging for the model to

accurately capture rapidly changing trends. Post-Pandemic: The

MSE decreased to 4.2973E-05, demonstrating a notable reduction

in prediction errors following the pandemic, as themarket returned

to stability and the model’s predictive performance improved

significantly. Pre-Pandemic: The MAPE value was 0.4478457,

indicating that the model’s average relative error was relatively large

but still within an acceptable range. During the Pandemic: The

MAPE decreased to 0.3726628, reflecting a reduction in the model’s

relative error during the pandemic. This may be due to changes in

the measurement standards for relative error in a highly volatile

market. Post-Pandemic: The MAPE further declined to 0.2691805,

indicating a significant reduction in the model’s relative prediction

error under stable market conditions after the pandemic, resulting

in notable improvements in predictive performance.

Pre-Pandemic: Before the outbreak of the pandemic, the

healthcare industry experienced relative market stability. During

this period, the market was primarily influenced by routine

healthcare demand, policy changes, and the financial performance

of companies. The MAE and MSE of the Bayesian Convolutional

Neural Network (Bayes-CNN) were relatively low, indicating

good predictive performance of the model in a stable market.

However, the higher MAPE suggests that the model had some
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shortcomings in handling relative errors. During the Pandemic:

The outbreak of COVID-19 led to a dramatic increase in

demand within the healthcare sector, particularly for medical

supplies, vaccines, and testing equipment. The market experienced

heightened volatility during this time, and the MAE and MSE

of the Bayes-CNN significantly increased, reflecting a rise in

prediction errors within a high-volatility market. However, the

MAPE showed a slight decrease, possibly due to the adaptability

of relative error measurements in a rapidly fluctuating market.

As the pandemic was brought under control, the market

gradually returned to normal, with the healthcare industry

stabilizing. Widespread vaccination and effective control measures

contributed to a more stable market sentiment. Post-pandemic,

the model’s MAE, MSE, and MAPE all showed significant

reductions, indicating improved predictive performance in a stable

market environment.

In summary, the analysis of the Bayesian Convolutional

Neural Network’s (Bayes-CNN) predictive performance under

different market conditions reveals significant variations in model

efficacy. Prior to the pandemic, the market was relatively stable,

with moderate error metrics; however, the relatively high MAPE

indicated some predictions had substantial percentage deviations.

During the pandemic, the market experienced extreme instability,

with all error metrics increasing, reflecting the increased difficulty

of predictions under such volatile conditions. Post-pandemic, as

the market gradually stabilized, the error metrics significantly

improved, showcasing the model’s best performance with the

smallest prediction errors and highest accuracy. This suggests that

while the model still requires improvements for handling highly

volatile data, it exhibits robust predictive capabilities under stable

market conditions.

4.5 Validity analysis

To comprehensively assess and validate the reliability,

effectiveness, and broad applicability of the conclusions drawn

from this study, we implemented two rigorous validation strategies.

First, we conducted an extensibility analysis by incorporating a

dataset from Europe. This initiative aims to examine the

generalizability of our findings across different regional contexts,

particularly given that Europe was the second-largest area affected

by the outbreak and spread of COVID-19. For this purpose,

we selected the STOXX Europe 600 Health Care Index as our

European dataset. Second, we introduced the Generalized Auto

Regressive Conditional Heteroskedasticity (GARCH) model for

predictive analysis. The GARCH model is widely used in the

analysis of financial time series data and is effective in capturing

the dynamic changes in volatility within financial markets. This

helps us more accurately evaluate the potential interference of

market fluctuations on our research outcomes. By incorporating

this model, we not only validate the stability of our original

conclusions in a complex volatility environment but also further

elucidate the potential relationships between market volatility and

the study subject. This ultimately enhances the persuasiveness and

practicality of our research findings.

TABLE 2 Europe data evaluation metrics comparison.

Period MAE MSE MAPE

Pre-pandemic 0.003219 1.8407E-05 0.3709517

Pandemic 0.004169 2.6429E-05 0.3473597

Post-pandemic 0.002887 1.1348E-05 0.4007299

Wedivided the volatility of the STOXXEurope 600Health Care

Index into three time periods: before, during, and after the COVID-

19 pandemic. Subsequently, we employed the Bayes-CNN model

to predict the volatility of the STOXX Europe 600 Health Care

Index for each of these three periods. The performance evaluation

metrics for the Bayes-CNN model’s predictions of the volatility of

the STOXX Europe 600 Health Care Index in Europe are presented

in Table 2.

From Table 2, it is evident that in the comparison of MAE

and MSE values, the volatility during the pandemic is the

highest, followed by the pre-pandemic volatility, while the post-

pandemic volatility is the lowest. This indicates that when

using the Bayes-CNN model to predict the volatility of the

STOXX Europe 600 Health Care Index, the predictions are most

accurate post-pandemic, moderately accurate pre-pandemic, and

least accurate during the pandemic. This finding is consistent

with our predictions for the volatility of the CSI Medical

Service Index. However, the results differ when assessed from

the perspective of MAPE. This discrepancy may arise from the

following four reasons: (1) Differences in Market Environment

and Policy Responses: The Chinese government implemented

swift and robust control measures during the pandemic, leading

to a relatively rapid economic recovery. This may have resulted

in reduced market volatility post-pandemic, thus enhancing the

model’s predictive performance. In contrast, the STOXX Europe

600 Health Care Index was influenced by a combination of

policies, economic environments, healthcare resources, and global

dynamics in the healthcare industry across multiple European

countries. The significant variations in pandemic control measures

and economic stimulus policies among European nations led to

differing performances in market volatility at various stages. (2)

Impact of Economic and Industry Factors: The economic structures

and industry characteristics of China and Europe differ, which may

affect the performance of the healthcare sector in each region.

During the pandemic, the Chinese healthcare industry received

more investment and support, whereas the European healthcare

sector faced greater challenges, such as unequal distribution of

healthcare resources and varying rates of vaccination. (3) Market

Sentiment and Investor Behavior: Market sentiment reactions may

differ across regions. In China, post-pandemic market sentiment

may be more optimistic, with increased investor confidence

leading to reduced volatility. Conversely, market sentiment in

Europe may exhibit varying characteristics at different stages,

particularly during the mid and post-pandemic periods, where

it may have been more unstable. Additionally, investor behavior

and expectations could also influence market volatility. In China,

heightened confidence in economic recovery may have contributed

to decreasedmarket volatility, whereas in Europe, investor behavior
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TABLE 3 GARCH evaluation metrics comparison.

Period MAE MSE MAPE

Pre-pandemic 0.006941 7.9477E-05 0.4892502

Pandemic 0.008069 1.0712E-04 0.3752078

Post-pandemic 0.004267 3.2104E-05 0.2656612

during various stages of the pandemic could reflect more complex

volatility changes. (4) Sensitivity of Evaluation Metrics: The

sensitivity and measurement methods of MAE, MSE, and MAPE

vary. For the STOXX Europe 600 Health Care Index, the lower

MAPE during the pandemic may result from the inherently low

volatility during that period. Although predictions exhibit bias, the

relative error is not significant. Conversely, as volatility increased

post-pandemic, the relative errors also magnified.

In summary, despite some subtle differences, the results

obtained from using the Bayes-CNNmodel to predict the volatility

of the CSI Medical Service Index and the STOXX Europe 600

Health Care Index across the pre-pandemic, during-pandemic, and

post-pandemic periods are generally consistent. Next, we employed

the classic GARCH (1,1) model (35, 36) to conduct predictive

analysis on the same dataset and time divisions for the China

region. The performance evaluation metrics for these predictions

are presented in Table 3.

It can be observed that the three performance evaluation

metrics of the GARCH model are consistent with the results of

the Bayes-CNN model: the predictions post-pandemic are the

best, followed by those pre-pandemic, while predictions during

the pandemic are the least effective. Furthermore, the predictive

performance of the Bayes-CNN model is slightly superior to

that of the GARCH model both pre-pandemic and during the

pandemic. This further validates the conclusions drawn in this

study regarding the analysis of markets related to the healthcare

sector. The findings obtained through these two thorough

and systematic analytical approaches provide strong evidence

supporting the reliability, effectiveness, and broad applicability of

this research.

5 Conclusion

This study aims to investigate the impact of public health

events on the volatility of the CSI Medical Service Index

and to conduct a comparative analysis of volatility predictions

across three distinct periods: before the pandemic, during the

pandemic, and after the pandemic. We employed the Bayes-CNN

model, a novel predictive model that integrates Bayesian methods

with Convolutional Neural Networks to enhance the accuracy

and stability of volatility predictions. Initially, we performed

detailed data preprocessing on the CSI Medical Service Index,

utilizing standardization techniques to ensure the stability and

consistency of the data inputs. During the model training process,

we trained the Bayes-CNN model using historical volatility

data and employed the Markov Chain Monte Carlo (MCMC)

method to determine the optimal combination of hyperparameters.

Finally, we utilized the trained Bayes-CNN model to predict

future volatility and conducted a validity analysis. By comparing

the prediction results from the Bayes-CNN model with those

from the European dataset and the GARCH model, we further

corroborated the findings of this study. Overall, the Bayes-CNN

model demonstrated strong predictive capabilities and robustness

when handling data across different market conditions. Notably,

post-pandemic, as the market began to recover and stabilize,

the model’s predictive performance improved significantly. This

indicates that the Bayes-CNN model possesses high predictive

accuracy and reliability under stable market conditions. During

the pandemic, despite the increased market volatility, the model

was still able to capture the overall trends in the data, although

discrepancies were observed in regions with significant local

fluctuations.

This study enriches the theoretical research on the relationship

between public health events and financial market volatility

by conducting a comparative analysis of the volatility of the

CSI Medical Service Index across different time periods. It

reflects the dynamic changes in markets related to the Chinese

healthcare industry. The use of the Bayes-CNNmodel for volatility

prediction introduces a newmethod and perspective for forecasting

financial market volatility. The results offer valuable insights

for investors regarding risk management during public health

events, aiding them in making more informed decisions in

uncertain market environments. Additionally, policymakers can

leverage the findings of this study to formulate more effective

market regulation and intervention measures to maintain financial

market stability.

Future research could focus on further optimizing the Bayes-

CNN model, particularly its performance in high-volatility and

extreme market conditions. Moreover, integrating other deep

learning and machine learning methods into the model could

enhance prediction accuracy and stability. Expanding the research

to other industries and markets would help validate the model’s

broad applicability and robustness. These efforts will improve our

understanding and response to the impact of public health events

on financial markets, providing more reliable and effective support

for investors and policymakers.
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