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Background: Aflatoxin B1 (AFB1), a potent carcinogen produced by Aspergillus

species, is a prevalent contaminant in oil crops, with prolonged exposure

associated with liver damage. Home-made peanut oil (HMPO) produced by

small workshops in Guangzhou is heavily contaminated with AFB1. Despite the

enactment of the Small Food Workshops Management Regulations (SFWMR),

no quantitative assessment has been conducted regarding its impact on food

contamination and public health. The study aims to assess the impact of SFWMR

on AFB1 contamination in HMPO and liver function in the population.

Method: AFB1 contamination in HMPOwere quantified using high-performance

liquid chromatography and liver function data were obtained from the health

center located in a high-HMPO-consumption area in Guangzhou. Interrupted

time series and mediation analyses were employed to assess the relationship

between the implementation of SFWMR, AFB1 concentrations in HMPO, and liver

function among residents.

Result: The AFB1 concentrations in HMPO were 1.29 (0.12, 6.58) µg/kg. The

average daily intake of AFB1 through HMPO for Guangzhou residents from 2010

to 2022 ranged from 0.25 to 1.68 ng/kg bw/d, and the Margin of Exposure

ranged from 238 to 1,600. The implementation of SFWMR was associated with

a significant reduction in AFB1 concentrations in HMPO, showing an immediate

decrease of 2.865 µg/kg (P = 0.006) and a sustained annual reduction of 2.593

µg/kg (P = 0.034). Among residents in the high-HMPO-consumption area, the

implementation of SFWMR was significantly associated with a reduction in the

prevalence of liver function abnormality (PR = 0.650, 95% CI: 0.469–0.902).

Subgroup analysis revealed that this reduction was significantly associated with

the implementation of SFWMR in the female (PR = 0.484, 95% CI: 0.310–0.755)
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and in individuals aged ≥ 60 years (PR = 0.586, 95% CI: 0.395–0.868). Mediation

analysis demonstrated that AFB1 concentrations in HMPO fully mediated the

relationship between the implementation of SFWMR and the liver function

abnormality (PR = 0.981, 95% CI: 0.969–0.993).

Conclusion: In Guangzhou, the public health issue arising from AFB1 intake

through HMPOwarrants attention. The implementation of SFWMR had a positive

impact on the improvement of AFB1 contamination in HMPO and the liver

function. Continued e�orts are necessary to strengthen the enforcement of

the regulations. The exposure risks to AFB1 among high-HMPO-consumption

groups also demand greater focus.

KEYWORDS

small food workshop, home-made peanut oil, liver function, aflatoxin B1, interrupted

time series analysis

1 Introduction

Aflatoxins (AFs) are a group of secondary metabolites

produced by Aspergillus species (primarily Aspergillus flavus

and Aspergillus parasiticus) (1), with aflatoxin B1 (AFB1) being

particularly notable due to its widespread presence and toxicity

(2). Approximately 4.5 billion people worldwide are exposed

to aflatoxin-contaminated food, particularly in low and middle-

income countries in subtropical regions (3, 4). The 2004

outbreak of acute aflatoxicosis in Kenya was among the most

significant epidemics of human aflatoxin poisoning recorded

in mycotoxin history (5). Tanzania had experienced hundreds

of cases of aflatoxicosis in the districts of Kiteto, Chemba,

and Kondoa for the three consecutive years since 2016 (6).

AFB1 is known for its potent carcinogenic properties and is

classified as a Group I carcinogen by the International Agency

for Research on Cancer (7). The physicochemical stability of

AFB1 renders it resistant to degradation at conventional cooking

temperatures (8), making dietary intake the primary route of

human exposure (9). Furthermore, due to its lipophilic nature,

foods rich in fat content, such as peanuts and corn, are

more susceptible to fungal contamination and subsequent AFB1
production (10).

In China, peanuts are the primary oil crop, with ∼52% of the

total yield allocated for oil extraction, and peanut oil accounts

for over 25% of the annual vegetable oil production (11). The

consumption of peanut oil in China exhibits distinct regional

preferences, primarily in the East China and South China (12).

Guangdong Province leads South China with a per capita daily

peanut oil consumption of 19.43 grams (13). Local customs and

dietary habits have contributed to the widespread presence of

small food workshops producing and selling peanut oil across

various regions of Guangdong Province (14, 15). Home-made

peanut oil (HMPO) is an edible vegetable oil produced operating

in rudimentary facilities by private workshops. Unlike industrially

processed peanut oil, HMPO retains more of the natural flavor

of peanuts and is therefore a preferred choice among consumers.

However, the absence of refining, detoxification processes, and

product inspection increases the risk of AFB1 contamination in

HMPO (16).

The effects of AFB1 on liver function are primarily

characterized by direct hepatocyte damage and impaired energy

metabolism (17). AFB1 impacts liver function through multiple

mechanisms. First, it disrupts mitochondrial bioenergetics and

membrane potential (18), promotes mitochondrial cholesterol

transport (19, 20), and induces mitochondrial autophagy (21),

cumulatively leading to mitochondrial dysfunction. Mitochondrial

dysfunction subsequently triggers excessive reactive oxygen

species production and compromises antioxidant defenses,

intensifying oxidative stress in hepatocytes (22). Additionally,

experimental evidence suggests that AFB1 contributes to hepatic

inflammation via dysregulated intestinal flora (23), release of

damage-associated molecular patterns and cytokines, and immune

cell activation (24). These mechanisms directly damage hepatocytes

and indirectly impair liver function by disrupting overall hepatic

metabolic processes.

Long-term consumption of AFB1 contaminated HMPO

is associated with liver damage (25). In regions with high

HMPO consumption, such as Guangzhou, routine liver function

monitoring is essential. Guangzhou, situated in the south-central

part of Guangdong Province, experiences a subtropical monsoon

climate, with an average summer temperature of 28◦C and an

annual precipitation of 64 inches (26). Such warm and humid

conditions favor the growth and toxin production of Aspergillus

flavus in peanut raw materials. A previous study indicated severe

AFB1 contamination in HMPO in Guangzhou (27). A subsequent

food safety risk assessment identified HMPO as the primary dietary

source of AFB1 exposure for residents in peripheral areas (14).

Small food workshops face challenges, including inadequate

management and production inconsistencies, largely due to

their limited scale, inconspicuous locations, and rudimentary

production process. To enhance food safety management and

protect public health, the Guangdong Provincial Government

introduced the Small Food Workshops Management Regulations

(SFWMR) (28). The regulations build on the Food Safety Law by

providing clear guidelines for registering and supervising small

food workshops. While existing study has primarily focused on

the qualitative interpretation of the regulations (29–31), there

has been no quantitative analyses of their implementation effects,

particularly with respect to food contamination and consumer
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health. Our study addresses this gap by offering scientific evidence

to evaluate the effectiveness of SFWMR in enhancing food safety

and safeguarding public health.

In these contexts, our study aims to evaluate the impact of

SFWMR implementation on AFB1 concentrations in HMPO and

liver function among residents of the high-consumption area, and

to explore themediation effect of AFB1 concentrations in HMPO in

the relation between SFWMR implementation and liver function.

2 Materials and methods

2.1 Sampling of home-made peanut oil

Information on HMPO samples for this study was obtained

from the Food Safety Risk Monitoring System of the Guangzhou

Center for Disease Control and Prevention. HMPO consumption

in Guangzhou is concentrated in peripheral districts. Sampling

focused on the months of June to August, a period characterized

by high temperatures and humidity. From 2010 to 2022, streets

in peripheral districts were designated as sampling units, and

street types were stratified based on their distance from the

center of each district. Two central streets and one remote street

were randomly selected as sampling sites in each peripheral area,

resulting in 15 streets selected as sampling sites for HMPO. The

distribution of sampling sites during the study period is presented

in Figure 1. The sampling process involved two individuals, acting

as consumers, procuring HMPO from small workshops to ensure

the representativeness of the samples. A total of 590 HMPO

samples were included in this study. After collection, the samples

were sealed, refrigerated at 4◦C, and analyzed within 48 h.

2.2 Detection of AFB1 in HMPO

The detection of AFB1 was conducted using high-performance

liquid chromatography (HPLC) in accordance with the

methodologies specified in Determination of Aflatoxins B1, B2, G1,

and G2 in Foods (GB/T 5009.23-2006) (32) and Determination of

Aflatoxins B and G Groups in Foods (GB 5009.22-2016) (33). The

methodology outlined in GB 5009.22-2016 has been described in

our previous study (14). The experimental procedures following

GB/T 5009.23-2006 are as follows.

2.2.1 Chemicals and instruments
Aflatoxin B1 standard (Purity > 98.0%, HPLC grade) was

purchased from Sigma-Aldrich, USA; Acetonitrile, trifluoroacetic

acid and hexane, all HPLC grade, were purchased from Merck,

Germany; Ultrapure water; C18 reversed-phase column (Jiangsu

Hming Technology Co., Ltd., China); A liquid chromatography

system (SHIMADZU, Japan) equipped with RF-20A fluorescence

detector; Milli-Q ultrapure water machine (Millipore, USA);

Vortex mixer (IKA, Germany); Centrifuge (SIGMA, Germany);

Nitrogen blower (Beijing Tongtailian Technology Development

Co., Ltd., China); Electronic balance (METTLER-TOLEDO, USA).

2.2.2 Sample extraction and purification
A 20.0 g aliquot of the HMPO sample was mixed with 80.0mL

of an acetonitrile-water (84:16) solution for 30min, and then

filtered through qualitative filter paper. An 8.0mL portion of the

filtrate was transferred to a multifunctional purification column for

further processing. Subsequently, 2.0mL of the purified solution

was evaporated to dryness under nitrogen in a 60◦C water bath. To

the residue, 200.0 µL of hexane and 100.0 µL of trifluoroacetic acid

were added, vortexed for 30 s, and derivatized at 40◦C for 15min.

After derivatization, the sample was dried at room temperature,

dissolved in 200.0 µL of a water-acetonitrile (85:15) solution,

mixed and centrifuged. The supernatant was then collected for

further analysis.

2.2.3 Liquid chromatography condition
The mobile phase consisted of water and acetonitrile. Gradient

elution was programmed as follows: starting with 15% acetonitrile

at 0min, increasing to 17% at 6min, further increasing to 25%

at 8min, and returning to 15% at 14min. A C18 reversed-phase

column (125mm × 2.1mm, 5.0µm particle size) was employed,

with a flow rate of 0.5 mL/min and a column temperature of 30◦C.

The injection volume was 25.0 µL. Detection was performed at an

excitation wavelength of 360 nm and an emission wavelength of

440 nm.

2.2.4 Method validation
Weighed AFB1 standard and diluted with acetonitrile in a

10mL volumetric flask to prepare a series of AFB1 standard

working solutions at concentrations of 0.50, 2.50, 5.00, 25.00,

50.00, and 100.00 µg/L. The standard curve was expressed

as y = 0.213x + 0.085, with an R-squared value of 0.9992

(Supplementary Figure S1).

The sensitivity of the method was assessed by determining the

limit of detection (LOD) and limit of quantification (LOQ). The

LOD and LOQ were 0.10 µg/kg and 0.30 µg/kg, determined at 3

times and 10 times the signal-to-noise ratio (S/N), respectively.

The spiked recovery experiment was conducted using blank

samples. Six portions of each blank sample were spiked with

low (5.00 µg/kg), intermediate (25.00 µg/kg) and high (50.00

µg/kg) levels of the AFB1 standard. The average spiked recovery

percentages ranged from 90.48 to 97.27%, with relative standard

deviations (RSDs) of 1.92–3.24%, meeting the requirements for

trace analysis (Supplementary Table S1).

2.2.5 Data processing
AFB1 detection values exceeding the acceptable limit of 20.0

µg/kg were regarded as exceeding the standard (34), and values

below LOD were categorized as non-detect (ND). If the proportion

of ND values was <60%, these values were replaced with half of the

LOD. Conversely, if the proportion of ND values was ≥60%, the

values were substituted with the LOD (35).
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2.3 Dietary exposure analysis

The deterministic exposure assessment model was employed

to calculate the estimated dietary intake (EDI) of AFB1 through

HMPO. C represents the AFB1 concentrations detected in

HMPO samples; IR represents the daily intake of edible oil in

the population, estimated from the consumption data in the

Guangzhou Statistical Yearbook (36); BW represents the average

body weight. According to the Report on Nutrition and Chronic

Diseases of the Chinese Population, the average body weight was

66.2 kg formales and 57.3 kg for females (37). After applying the sex

ratio of the Guangzhou population (38), the average body weight

was determined to be 62.0 kg. The equation is as follows:

EDI(ng/kg bw/d) =
IR (g/d)×C (µg/kg)

BW(kg)
(1)

2.4 Margin of exposure

Risk characterization for genotoxic and carcinogenic

compounds, such as AFB1, is based on the margin of exposure

(MOE), calculated by dividing 10% of the lower confidence limit

of the benchmark dose (BMDL10) of AFB1 by the estimated

dietary intake, as shown in Equation 2. The BMDL10 for AFB1
is 400 ng/kg bw/d (39). A smaller MOE indicates a greater risk

of exposure to genotoxic and carcinogenic compounds. The

European Food Safety Authority considers BMDL10 to be derived

from animal studies. Due to inherent uncertainties, the MOE ≥

10,000 indicates a low public health concern and a low priority for

risk management (40).

MOE = BMDL10
EDI

(2)

2.5 Setting and collection of population
data

The study setting was Xiaolou Town, Zengcheng District,

Guangzhou. Xiaolou is a traditional agricultural town

with a population of ∼30,000 residents (41). Figure 1 and

Supplementary Table S2 demonstrate the presence of numerous

HMPO workshops in the area, establishing it as a representative

high-HMPO-consumption region in Guangzhou. The Xiaolou

Town Health Center is the sole health institution designated to

provide the National Basic Public Health Service Program in the

town (42) and offers annual health check-ups to residents. The

study included participants from 20 local administrative villages,

ensuring broad representativeness. Health data for residents from

2010 to 2022 were retrieved from the medical examination system

of Xiaolou Town Health Center, and study variables included

gender, age and liver enzyme levels. Individuals with a history of

hepatitis B were excluded from the study.

AFB1 exposure is strongly associated with abnormal liver

function, as indicated by elevated blood levels of liver enzymes,

particularly aspartate aminotransferase (AST) and alanine

aminotransferase (ALT) (43–45). These enzymes are abundant

in liver cells and are released into the bloodstream upon liver

cell damage, serving as bioindicators of abnormal liver function

(46, 47). Liver function abnormality was defined according to

the Reference Intervals for Common Clinical Biochemistry Tests

(WS/T 404) as elevated AST or ALT levels, with AST > 40 U/L or

ALT > 50 U/L for males and AST > 35 U/L or ALT > 40 U/L for

females (48).

2.6 Statistical analysis

Interrupted Time Series Analysis (ITSA) is a statistical

method used to evaluate the effectiveness of interventions

through segmented regression models. Small Food Workshops

Management Regulations have been in effect since October 1, 2015

(28). Considering the lag in the implementation effects and the

annual nature of the data analyzed, the year 2016 was designated

as the intervention breakpoint.

The continuous outcome variable was analyzed using a

segmented linear regression model. The regression equation is

as follows:

Yt = β0+β1Tt+β2Xt+β3 (Tt−T)Xt+εt (3)

In Equation 3, Yt represents the outcome variable, which in

this study denotes the AFB1 contamination in HMPO. Tt is a

count variable for the year. Xt is an indicator variable for the

intervention, with a value of 0 before the implementation of

SFWMR and 1 after. (Tt − T) represents the difference between

the year count variable and the intervention breakpoint. εt is the

random error term. The values assigned to these variables are

detailed in Supplementary Table S3. β0 is the intercept. β1 indicates

the trend before the intervention. β2 represents the level change

after the intervention. β3 represents the difference in the slope

between pre- and post-intervention periods. (β1 + β3) reflects the

trend after the intervention. We fitted both an unadjusted model

and a model adjusted for potential confounders, including average

annual temperature, rainfall, sunlight, and peanut yield.

Considering that the prevalence of liver function abnormality

in this study was >10%, the binary outcome variable was analyzed

using the log-binomial regression model (49). The regression

equation is as follows:

l n [P (Yt = 1)] = β0+β1Tt+β2Xt+β3 (Tt−T)Xt+εt (4)

PRt =
exp

(

β̂0+β̂1Tt+β̂2+β̂3(Tt−T)

)

exp
(

β̂0+β̂1Tt

) = exp
(

β̂2+β̂3 (Tt−T)

)

(5)

PR =
(

∏T+n
T PRt

)
1

n+1
= exp

(

β̂2+
n
2 β̂3

)

(6)

In Equation 4, Yt represents whether the resident has liver

function abnormality. The prevalence ratio (PR) was employed

to quantify the intervention effect in the segmented log-binomial

regression model. The PR was calculated by comparing the

post-intervention fitted values with the counterfactual outcomes.

Specifically, the prevalence ratio PRt , at each time point during

the intervention period was calculated, and the geometric mean

of PRt was used to obtain the overall PR for the intervention
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FIGURE 1

Distribution of sampling sites for home-made peanut oil from 2010 to 2022 and study setting.

period (50). Furthermore, stratified analyses were conducted by

gender and age ≥ 60 years, with age stratification following

the definition of older adults as stated by the World Health

Organization (51). The Durbin-Watson method was used to detect

first-order autocorrelation in the ITSA model. In the presence of

autocorrelation, the Newey-West method was applied to adjust the

standard errors of the parameter estimates.

Mediation analysis was conducted to investigate the role of

AFB1 contamination in HMPO as a mediator of the relationship

between the implementation of SFWMR and liver function

abnormality in residents. The formula is as follows:

ln [P (Y = 1|X,M,C)] = θ0+θ1X+θ2M+θ3C (7)

E [M|X,C] = β0+β1X+β2C (8)

PRDE = eθ1 PRIE = e(β1θ2) (9)

Where Y represents whether the resident has liver function

abnormality. X indicates whether the resident was exposed to

the implementation of SFWMR. M represents the annual AFB1

contamination inHMPO.C refers to potential confounding factors,

including gender and age. The direct effect (DE) and indirect effect

(IE) were described using the prevalence ratio, with the calculation

of PR detailed in Equation 9.Mediation effects were evaluated using

1,000 bootstrap samples.

Microsoft Excel 2021 was employed for data organization and

cleaning. Categorical variables were summarized as frequency and

percentage. Continuous variables with a normal distribution were

summarized using mean and standard deviation, while those with

a skewed distribution were reported as median and interquartile

range. All statistical analyses were conducted in R (version 4.1.3). P

< 0.05 (two-tailed) was considered statistically significant.

3 Results

3.1 Contamination of AFB1 in HMPO

The AFB1 contamination in HMPO were 1.29 (0.12, 6.58)

µg/kg. Additionally, 67 samples exceeded the AFB1 standard,

resulting in an exceedance rate of 11.36%. The variation in AFB1
contamination in HMPO between years was statistically significant
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FIGURE 2

AFB1 contamination in home-made peanut oil in Guangzhou from

2010 to 2022.

(P = 0.019). After 2016, the AFB1 contamination in HMPO

decreased from 2.72 (0.49, 7.47) µg/kg to 0.98 (0.12, 6.30) µg/kg

(P = 0.011) (Figure 2; Supplementary Table S4).

3.2 EDI and MOE

As shown in Figure 3, the average daily intake of AFB1 through

HMPO among Guangzhou residents from 2010 to 2022 ranged

from 0.25 to 1.68 ng/kg bw/d. The MOE ranged from 238 to 1,600,

which was lower than 10,000.

3.3 Liver function information of population

The study included 21,828 residents, comprising 11,558 females

(52.95%) and 10,270 males (47.05%). A total of 15,501 (71.01%)

participants were aged ≥ 60 years and 6,327 (28.99%) were aged

<60 years. The mean age of the population was 64.34 ± 13.43

years. Of these residents, 2,289 (10.49%) were identified with liver

function abnormality (Supplementary Table S5). Prior to 2016,

both females, and individuals aged ≥ 60 years exhibited a higher

prevalence of liver function abnormality, with an increasing trend.

After 2016, the prevalence of liver function abnormality decreased

and stabilized across all groups (Figure 4).

3.4 ITSA of AFB1 Levels in HMPO

According to the adjusted model, prior to the implementation

of SFWMR, AFB1 contamination inHMPO exhibited an increasing

annual trend of 0.634 µg/kg (P = 0.013). In the first year following

the implementation of SFWMR, AFB1 levels in HMPO decreased

by 2.865 µg/kg (P = 0.006). After the implementation, there was

a continued annual decrease in the AFB1 levels of 2.593 µg/kg

(P = 0.034). Compared to the counterfactual scenario, the trend

decreased by 3.227 µg/kg per year (P = 0.024) (Table 1; Figure 5).

3.5 ITSA of liver function in population

In the entire population, the implementation of SFWMR was

associated with a reduction in the prevalence of liver function

abnormality compared to the counterfactual outcome (PR =

0.650, 95% CI: 0.469–0.902). When stratified by gender and age,

significant associations were observed in both the female group (PR

= 0.484, 95% CI: 0.310–0.755) and the age≥ 60 years group (PR=

0.586, 95% CI: 0.395–0.868). However, no significant associations

were found in the male group or among participants aged < 60

years (Figures 6, 7).

3.6 Mediation analysis

As shown in Table 2, the implementation of SFWMR had

a total effect on liver function abnormality (PR = 0.970, 95%

CI: 0.959–0.981). The analysis revealed an indirect effect of

AFB1 contamination in HMPO on the relationship between the

implementation of SFWMR and the liver function abnormality (PR

= 0.981, 95% CI: 0.969–0.993). AFB1 contamination in HMPO

fully mediated the relationship between the implementation of

SFWMR and liver function abnormality.

4 Discussion

4.1 AFB1 contamination of HMPO

Aflatoxin contaminants in food are widely recognized as

a significant health concern (52). In this study, AFB1 was

detected in HMPO samples from Guangzhou from 2010 to

2022 by HPLC, with an exceedance rate of 11.36%. This rate is

comparable to the national average of 11.11% (53) and lower than

rates reported in other areas of Guangdong Province, including

Huizhou (19.72%) (54), Heyuan (11.82%) (55), and the western

region of Guangdong (18.7%) (15). This variability in regulatory

enforcement could partly explain the disparities in exceedance

rates between Guangzhou and other cities in Guangdong Province.

While the SFWMR specifies the requirements for obtaining a food

workshop registration certificate, the specific application processes,

inspection criteria, and acceptance scopes are tailored by each

prefecture-level city according to their local circumstances (56).

However, the exceedance rate in Guangzhou is higher than

the rate reported in Tianjin (6.67%) (57). This discrepancy

may be attributed to regional differences in climate and soil

characteristics. Guangzhou’s warm and humid subtropical climate

provides optimal conditions for the growth of Aspergillus molds

that produce toxins (58). Moreover, the predominantly clay-based

soil in Guangzhou contrasts with the sandy soil prevalent in Tianjin

(59). The high water retention capacity of clay facilitates the growth

of Aspergillus species (60), thereby increasing the risk of peanut

contamination before harvesting. Contaminated peanuts introduce

AFB1 into the product during the pressing process (61).
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FIGURE 3

Estimated dietary intake of AFB1 through HMPO and margin of exposure in Guangzhou from 2010 to 2022.

FIGURE 4

Temporal distribution of prevalence of liver function abnormality from 2010 to 2022.

4.2 AFB1 dietary exposure and MOE

Dietary intake is the main route of AFB1 exposure. Our study

observed that the average daily intake of AFB1 through HMPO

ranged from 0.25 to 1.68 ng/kg bw/d for Guangzhou residents.

The MOEs were all below 10,000, consistent with the findings

of HE, indicating that the health risks associated with HMPO

warrant attention (25). A deterministic exposure assessment was

performed based on the general population in our study. Notably,

age was found to be an important factor influencing the EDI of

AFB1, with children experiencing the highest exposure risk (14, 62).

Given their higher exposure levels and the potential for synergistic
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TABLE 1 Result of the ITSA for AFB1 contamination in HMPO.

Variables Model 1 Model 2

Coe�cient (95%CI) P Coe�cient (95%CI) P

Baseline trend (β1) 0.366 (0.071, 0.660) 0.020 0.634 (0.200, 1.067) 0.013

Level change (β2) −1.975 (−3.396,−0.554) 0.012 −2.865 (−4.450,−1.279) 0.006

Trend change (β3) −0.688 (−1.063,−0.313) 0.003 −3.227 (−5.820,−0.634) 0.024

Trend after intervention

(β1+β3)

−0.322 (−0.555,−0.089) 0.012 −2.593 (−4.893,−0.294) 0.034

Temperature – – −0.551 (−1.824, 0.722) 0.316

Precipitation – – 4.240× 10−4 (−1.218× 10−3 ,

2.065× 10−3)

0.536

Sunshine – – −3.780× 10−4 (−3.884× 10−3 ,

3.128× 10−3)

0.793

Peanut yield – – −1.579× 10−3 (−3.114× 10−3 ,

−4.286× 10−5)

0.046

Model 2 adjusted the annual average temperature, precipitation, sunshine, and peanut yield based on Model 1. Model 1 (DW= 2.140, P = 0.216; R2 = 0.8415, Adjusted R2 = 0.7887); Model 2

(DW= 2.617, P = 0.509; R2 = 0.9384, Adjusted R2 = 0.8522). Bold values mean p-value < 0.05.

FIGURE 5

Trend of changes in AFB1 concentration in HMPO before and after the implementation of SFWMR. (A) is Model 1 and (B) is Model 2.

hepatotoxic effects from chronic AFB1 intake, coupled with their

relatively immature immune systems, children are particularly

vulnerable (63).

4.3 Impact of SFWMR on AFB1

contamination in HMPO

Based on the ITSA, we evaluated the time-variant impact of

SFWMR on AFB1 contamination in HMPO. In the counterfactual

scenario, AFB1 contamination in HMPO would have increased

yearly. Aflatoxin contamination in food is predominantly due to

improper handling of raw materials (64). A study in Kenya showed

that the source of peanuts and the presence of defective nuts were

the primary contributors to increased aflatoxin contamination in

the cottage industry (65). Small workshops often purchase large

quantities of peanut raw materials at one time. Their storage

facilities lack temperature control and dehumidification systems,

rendering peanuts highly susceptible to mold contamination.

Additionally, these workshops often fail to effectively remove

moldy peanuts and do not perform oil refining treatments (55). A

research demonstrated that the refining process can significantly

reduce AFB1 content in peanut oil (66). Thus, incorporating

the refining process into the standard production of HMPO

is recommended.

After the implementation of SFWMR, there was a significant

reduction in AFB1 contamination in HMPO, and this downward

trend persisted in subsequent years. This decrease can be attributed

to the impact of SFWMR. For instance, article 14 of the regulations

explicitly prohibits small food workshops from producing edible

oils that do not meet food safety standards and defines penalties

for non-compliance. Secondly, the regulations standardize the

registration process of small food workshops by requiring on-

site inspection of storage facilities, production environments,

layout of functional areas, refining equipment, and product labels.

Workshops must also provide qualified AFB1 inspection reports

for HMPO issued by the third-party testing institution during the
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FIGURE 6

Trend of changes in prevalence of liver function abnormality among population before and after the implementation of SFWMR.

FIGURE 7

The prevalence ratio (PR) of prevalence of liver function abnormality in di�erent subgroups before and after the implementation of SFWMR

compared to the counterfactual outcome.

inspection. Furthermore, the regulations establish the production

license publicity system, which promotes the healthy development

of small food workshops by leveraging market forces through

consumer choice (28). Our study emphasized the positive impact

of these comprehensive intervention measures in standardizing

HMPO production in small food workshops. In Africa, small-

scale operators and unorganized markets present key challenges to

effective mycotoxin regulation (67). The practices implemented in

Guangzhou may serve as a reference for these regions.

4.4 Impact of SFWMR on liver function in
the population

Aflatoxin contamination in HMPO in Guangdong urgently

requires urgent attention, highlighting the need for enhanced

public health management of consumers (25). The study evaluated

the potential health impact of SFWMR in a region characterized by

high HMPO consumption, focusing on liver function. Our findings

indicated that the implementation of SFWMR was associated
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TABLE 2 Result of mediation analysis.

PR 95% CI P

Indirect effect 0.981 (0.969, 0.993) 0.004

Direct effect 0.989 (0.972, 1.005) 0.214

Total effect 0.970 (0.959, 0.981) <0.001

with a decrease in the prevalence of liver function abnormality.

Moreover, mediation analysis revealed that the protective effect

of SFWMR implementation on liver function operates through

the reduction of AFB1 contamination in HMPO. From the

disease prevention perspective, the implementation of SFWMR

reduced AFB1 exposure and played the primary preventive role

in improving liver function in the population. Evidence from

animal experiments and epidemiologic studies demonstrates an

association between exposure to AFB1 and abnormal liver function.

In rats, chronic exposure to AFB1 resulted in hepatocellular

damage and significantly elevated serum levels of liver enzymes

and oxidative stress markers (46). Population-based studies in

Saudi Arabia and Ghana similarly reported a significant association

between AFB1 exposure and liver function enzyme levels (45, 68).

In addition, AFB1 exposure acts synergistically with hepatitis B

virus infection to cause liver dysfunction (25). Mechanistically, the

hepatotoxicity of AFB1 arises from its active metabolite, AFB1-

8,9-epoxide, which induces mitochondrial dysfunction, oxidative

stress, and inflammatory responses, ultimately leading to apoptosis

and necrosis of hepatocytes (17).

Additionally, subgroup analysis revealed that the

implementation of SFWMR resulted in significant improvements

in liver function for females and individuals aged ≥ 60 years. This

improvement may be attributed to consumer habits. HMPO, which

has a lower oil yield, is infrequently used by commercial food

service establishments, but is preferred by females and older adults

for home cooking. Males and younger individuals, particularly

those working outdoors, tend to consume less HMPO. This

preference aligns with Mills’ findings, which indicate that females

and older individuals are more likely to consume homemade meals

(69). Consequently, after the implementation of SFWMR, AFB1
intake among females and older adults significantly decreased,

resulting in a more pronounced protective effect on liver function.

AFB1 exposure is not only related to food contamination but also

to consumption. This highlights the need for greater attention to

high-HMPO-consumption groups.

4.5 Significance of SFWMR

Small food workshops face supervision challenges due to

their low entry thresholds, broad distribution, and mobility.

Despite the enactment of the National Food Safety Standard

for Maximum Levels of Mycotoxins in Food in China,

supervising small food workshops remains problematic

(15). These small workshops are crucial for supporting local

agriculture and sideline products, addressing employment

issues, and increasing residents’ incomes. They also contribute

significantly to preserving regional characteristics and dietary

culture. The implementation of SFWMR is not a restriction

on entrepreneurial freedom. On the contrary, it provides a

framework for standardizing productions and encourages

small food workshops to upgrade and renovate their facilities

to obtain food production licenses. The implementation of

SFWMR address legislative and regulatory gaps for small food

workshops, enhancing food safety through legal thinking and

methods (70).

4.6 Limitation

The study analyzed the implementation effects of SFWMR

from the perspective of food contamination and the health impacts

on consumers. However, our study had several limitations. Firstly,

although ALT and AST are crucial for liver function assessment

and hepatocellular damage monitoring, their elevation may

also indicate non-hepatic tissue damage, potentially leading to

false positives (71). To enhance the specificity of liver disease

diagnosis, other biomarkers and imaging tests can be used

in tandem. Gamma-glutamyltransferase (GGT) and Alkaline

phosphatase (ALP) exhibit distinct expression patterns compared

to ALT and AST in liver disease (44). GGT, concentrated in

the liver and biliary system, often rises in cholestatic diseases

and liver injury. ALP, present in the hepatobiliary system,

bones, placenta, and intestines, may indicate bone or liver

disease (47). Additionally, imaging tests such as ultrasound,

Computed Tomography scans, and Magnetic Resonance Imaging

are important tools for assessing liver function. They provide

visual information about the structure and morphology of

the liver and help identify the presence and progression of

liver diseases. The combined use of these biomarkers and

imaging tests can help differentiate liver from non-liver diseases

and improve diagnostic accuracy (72). Secondly, the liver

function data were obtained from the health examination

system, which may introduce selection bias. Finally, although

the single-group ITSA method used in this study provides

reliable inferences, the ecological study design limits the

determination of causality. Future follow-up studies will address

these limitations by incorporating additional biochemical and

imaging tests, increasing the sample size and establishing a control

group to more comprehensively evaluate the effectiveness of

SFWMR implementation.

5 Conclusion

In Guangzhou, the public health concern arising from

AFB1 intake through HMPO requires considerable attention.

The enactment of SFWMR significantly contributed to

reducing AFB1 contamination in HMPO and improving liver

function. These outcomes highlight the efficacy of regulatory

interventions in addressing food safety hazards and promoting

public health. Continued efforts are necessary to strengthen

the enforcement of the regulations. The exposure risks to

AFB1 among high-HMPO-consumption groups also demand

greater focus.
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