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Introduction: An increasing prevalence of psychological stress and emotional 
issues among higher education teachers necessitates innovative approaches 
to promote their wellbeing. Emotion recognition technology, integrated into 
educational human–computer interaction (HCI) systems, offers a promising 
solution. This study aimed to develop a robust emotion recognition system to 
enhance teacher–student interactions within educational HCI settings.

Methods: A multi-physiological signal-based emotion recognition system 
was developed using wearable devices to capture electrocardiography (ECG), 
electromyography (EMG), electrodermal activity, and respiratory signals. 
Feature extraction was performed using time-domain and time-frequency 
domain analysis methods, followed by feature selection to eliminate redundant 
features. A convolutional neural network (CNN) with attention mechanisms was 
employed as the decision-making model.

Results: The proposed system demonstrated superior accuracy in recognizing 
emotional states than existing methods. The attention mechanisms provided 
interpretability by highlighting the most informative physiological features for 
emotion classification.

Discussion: The developed system offers significant advancements in emotion 
recognition for educational HCI, enabling more accurate and standardized 
assessments of teacher emotional states. Real-time integration of this technology 
into educational environments can enhance teacher–student interactions and 
contribute to improved learning outcomes. Future research can explore the 
generalizability of this system to diverse populations and educational settings.
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1 Introduction

In the current epoch, our nation is experiencing a period of substantial societal 
metamorphosis, defined by sweeping transformations in the realms of economy and society. 
This period is distinguished by swift changes in social frameworks, ways of living, behavioral 
norms, and the cultural fabric of our nation, alongside a continuous evolution of societal 
values (1). The quickening tempo of modern life has resulted in more intricate interpersonal 
dynamics and heightened social rivalry (2). Such shifts have discreetly amplified the 
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psychological strain on individuals, fostering a widespread sentiment 
of insecurity and fostering conditions conducive to anxiety, 
depression, and an array of other mental health concerns. As a result, 
mental health has become an increasingly pressing concern within 
society (3).

Institutions of higher learning are instrumental in cultivating 
future leaders, propelling scientific and technological 
advancements, and catalyzing societal progress (4). University 
educators, as indispensable assets, hold a distinct position in 
society, shaped by their roles and duties (5). They are the 
cornerstone of fulfilling the missions and obligations of these 
institutions (6). However, within the wider social context, university 
educators are confronted with a new array of challenges and 
pressures, which have triggered a spectrum of psychological issues 
and incidents (7). This has ignited significant societal concern for 
the mental wellbeing of those in the teaching profession (8). 
Inadequate resolution of the psychological distress among faculty 
could potentially derail the progress and reform of higher 
education (9).

In the field of education, the application of emotion recognition 
technology is not only a technological innovation but also a reflection 
of educational philosophy. It emphasizes the attention to students’ 
emotional needs during the educational process and promotes 
emotional communication between teachers and students. By 
monitoring students’ emotional changes in real time, teachers can 
more flexibly adjust teaching strategies to create a more supportive 
and responsive learning environment. Teachers’ occupational stress 
arises from both external objective factors and internal subjective 
perceptions (10). While greater external stimuli generally lead to 
higher stress levels, individuals with different personalities experience 
stress differently under similar conditions (11). External stimuli 
influence internal mechanisms, and individual differences in stress 
perception are significant (12). Understanding which personality traits 
affect the internal processing of occupational stress is crucial (13). Key 
psychological factors involved include needs and motivations, 
cognitive styles, personality traits, abilities, self-expectations, 
experiences, and psychological readiness (14).

Teachers, like all individuals, have various needs, including 
physiological and social needs (15). According to Maslow’s hierarchy 
of needs (16, 17), these needs are integral to motivation. In the context 
of their professional roles, teachers’ needs also involve specific aspects 
of material, developmental, self-esteem, and achievement needs (18–
20). The process of needs and motivations is cyclical: unmet needs can 
lead to negative emotions such as depression and anxiety, contributing 
to occupational stress (21).

Emotion recognition is a significant area of research within the 
broader field of study (22). Despite advancements in artificial 
intelligence, which excel in logical reasoning, memory, and 
computational power (23), AI systems lack the emotional recognition 
capabilities inherent to human decision-making (24). Effective 
human–computer interaction currently demands that computers not 
only perform tasks but also understand and respond to users’ 
emotions. Innovations such as wearable devices and miniature body 
monitoring systems have facilitated the collection and analysis of 
physiological signals to gauge emotional states. These technologies are 
increasingly applied in various fields, including monitoring the 
emotional states of drivers, pilots, and medical professionals, to 
enhance safety and performance (25).

In the field of educational human–computer interaction, the 
development of emotion recognition technology is crucial for 
improving the quality of interaction between teachers and students. 
Although previous studies have made certain progress in emotion 
recognition, existing systems often rely on a single physiological 
signal, such as electrocardiography (ECG) or electromyography 
(EMG), which limits the accuracy and comprehensiveness of 
emotional state assessment. Furthermore, most existing research 
focuses on applications in non-educational settings, and there is still 
a lack of understanding of emotional dynamics in 
educational environments.

This study aimed to develop an objective emotion recognition 
system that integrates multiple physiological signals. We use wearable 
devices to capture electrocardiography (ECG), electromyography 
(EMG), electrodermal activity, and respiratory signals and assess 
emotional states through feature extraction, selection, and fusion 
techniques. The novelty of our research lies in (1) Employing a multi-
physiological signal fusion method to enhance the accuracy and 
standardization of emotional state assessment. (2) Applying deep 
learning models, particularly convolutional neural networks (CNN) 
combined with attention mechanisms, to improve the predictive 
power and interpretability of the model. (3) Applying the model to 
real-time interactions in educational environments provides a new 
perspective on the application of emotion recognition technology in 
the field of education.

The structure of this paper is as follows: Section 1 introduces the 
background and significance of emotional recognition in educational 
human–computer interaction, highlighting the challenges faced by 
university teachers and the importance of addressing their mental 
health. Section 2 provides a theoretical basis and related concepts, 
including the determination of psychological crisis and the main 
manifestations of college teachers’ psychological states. Section 3 
discusses the related technologies used in the study, focusing on 
feature extraction methods and the empirical mode decomposition 
(EMD). Section 4 presents the experimental results and analysis, 
including the simulation experiments and comparative analysis of 
different classification models. Finally, Section 5 concludes the paper 
by summarizing the findings and discussing their implications for the 
evaluation of mental health among educators and students.

2 Related concepts and theoretical 
basis

2.1 Related theoretical analysis

2.1.1 The theory of causes of psychological crisis
The genesis of a psychological crisis is rooted in the theory that 

human behavior is propelled by unmet needs, which are stratified into 
a hierarchy. This hierarchy, as proposed by Abraham Maslow, suggests 
that individuals are motivated to fulfill their basic physiological needs 
before aspiring to higher levels of satisfaction, such as safety, love, 
esteem, and self-actualization. When an individual encounters 
barriers or setbacks in fulfilling these needs, it can lead to a range of 
emotional responses, including discomfort, isolation, melancholy, and 
a sense of hopelessness.

Human beings are also constrained by a multitude of factors, 
including their moral character, the socio-political landscape, the 
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historical epoch, and the temporal conditions. In the present social 
context, the ongoing development of socialist values represents an 
incremental and perpetual historical journey. Cognitive dissonance 
theory, a cornerstone of sociological psychology, posits that 
inconsistencies between an individual’s beliefs, values, and actions can 
lead to psychological discomfort. If these dissonances are not 
addressed promptly and effectively, they can escalate into a full-blown 
psychological crisis.

Attribution theory, on the other hand, aids in the exploration 
of the reasons behind an individual’s actions and outcomes, 
whether they be  internal factors such as personal abilities or 
external pressures such as environmental conditions. According to 
Bernard Weiner, the attributions individuals make regarding their 
successes and failures are influenced by their personality traits and 
past experiences. This theory provides a framework for 
understanding the causal factors that may precipitate a 
psychological crisis, thereby offering a starting point for 
intervention and resolution.

2.1.2 Psychological crisis intervention theory
Psychological crisis intervention theory refers to techniques 

aimed at providing immediate support to individuals experiencing a 
crisis. The primary goal is to help individuals regain their psychological 
balance by mobilizing their own resources. Key components of this 
theory include the following: (1) Immediate support: The theory 
emphasizes the importance of timely assistance during a crisis, which 
can prevent the escalation of psychological distress. (2) Active 
involvement: It encourages the active involvement of individuals in 
their recovery process, fostering a sense of control and empowerment. 
(3) Structured approach: Crisis intervention typically follows a 
structured process that involves assessing the individual’s needs, 
developing coping strategies, and providing emotional support.

There are many definitions of crisis intervention. Crisis 
intervention is a technique to provide effective help and support to 
individuals or groups in crisis and to mobilize their own potential 
through this help and support to restore and re-establish their 
pre-crisis psychological balance. Zhai Shutao believes that crisis 
intervention is a short-term help process of caring for and supporting 
people who are in distress or suffering setbacks and restores their 
psychological balance through this process. Crisis intervention is a 
process in which members of society take effective measures to help 
individuals, families, and groups in distress so that they can survive 
the crisis and restore their psychological balance. Crisis intervention 
is to take effective measures for individuals in a state of psychological 
crisis to overcome the crisis and re-adapt to life. Crisis intervention is 
a short-term treatment that provides support and assistance to people 
who are experiencing a personal crisis, are in distress or are suffering 
setbacks, and are about to be  in danger (suicide) so that they can 
restore psychological balance and achieve pre-crisis behavioral levels.

In the context of this study, psychological crisis intervention 
theory is applied to guide the development of our emotion recognition 
system. The theory informs our approach to identifying and 
responding to emotional distress in educational human–computer 
interactions. By integrating psychological crisis intervention 
principles, we  aim to equip our system with the sensitivity and 
responsiveness necessary for immediate emotional states, thereby 
enhancing the effectiveness of emotional recognition in real-time 
educational settings.

2.2 Main manifestations of the 
psychological state of college teachers

A psychological crisis manifests across various dimensions, 
including cognitive, physical, emotional, behavioral, and interpersonal 
realms. Cognitively, an individual in the throes of such a crisis may 
be  enveloped by sorrow, leading to alterations in memory and 
perception. This can result in challenges distinguishing between the 
nuances of experiences and a blurring of the lines between similar and 
dissimilar events. Decision-making and problem-solving skills are 
compromised, although clarity often returns swiftly once the crisis 
subsides. Physically, a crisis can trigger symptoms such as insomnia, 
headaches, exhaustion, heart palpitations, chest constriction, overall 
malaise, loss of appetite, and indigestion, thereby temporarily 
impairing bodily functions.

Emotionally, a psychological crisis can dramatically alter one’s 
affective state, marked by intense feelings of tension, anxiety, 
emptiness, and a sense of loss, often accompanied by secondary 
emotions such as fear, anger, guilt, distress, and shame. Anxiety is the 
most prevalent response, with depression being a graver outcome, and 
anger potentially escalating to aggressive actions. Behaviorally, the 
external conduct of body may shift as part of its stress response, 
serving as a coping mechanism to the crisis at hand. Interpersonally, 
during a psychological crisis, individuals may become increasingly 
withdrawn into themselves, becoming averse to communication, 
resistant to assistance or advice, unable to form trusting relationships, 
and consequently, experiencing isolation.

For university educators specifically, the manifestations of a 
psychological crisis are particularly pronounced. The emotional 
fluctuations experienced by teachers under stress are intricately tied 
to their anticipation and appraisal of stress outcomes. Successfully 
managing stress can lead to positive emotional experiences; however, 
the spectrum of emotional responses can range from anxiety and fear 
to depression and anger. Anxiety is the most typical reaction, with its 
impact on an individual’s varying environmental coping behaviors. 
Low levels of anxiety can slow response times and diminish 
productivity, while moderate levels can heighten alertness and 
enhance a teacher’s adaptability and stress management. In contrast, 
excessive or misplaced anxiety can diminish one’s capacity to adapt to 
environmental shifts, potentially leading to generalized anxiety that 
hinders effective coping mechanisms in response to 
environmental changes.

3 Related technologies

3.1 Feature extraction method

In emotion recognition research, which features of physiological 
signals are extracted has a significant impact on the classification 
effect. Different features will contain different information about the 
corresponding physiological signals.

In this study, we  have established criteria for classifying 
emotional states based on extensive research in psychology and 
behavioral science as well as previous studies in the field of human–
computer interaction. Specifically, our classification of emotional 
states is based on the following core dimensions: physiological 
activation level, electrodermal activity, and changes in respiratory 
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patterns. For example, states of stress or anxiety are often 
accompanied by increased respiratory rate and changes in depth. 
Based on the characteristics of these physiological signals, 
we categorize emotional states into the following four categories: (1) 
Baseline State: In this state, individuals are relaxed and not 
experiencing significant emotional changes due to external stimuli. 
(2) Stress State: Individuals experience stress or anxiety, with 
physiological signals showing a higher level of activation. (3) 
Amusement State: Individuals exhibit higher positive emotions and 
physiological activation when engaged in enjoyable or pleasant 
activities. (4) Meditation State: During meditation or deep relaxation, 
physiological signals show lower activation levels and regular 
respiratory patterns.

In order to comprehensively study which features can contain 
more physiological signal features in different emotional states, as 
shown in Figure 1, this study uses four methods for physiological 
signals. Feature extraction includes time and Hilbert-Huang 
transform (HHT)-based features. Although different types of features 
can more comprehensively reflect the physiological signal changes in 
different emotional states, too many features are prone to feature 
redundancy, optimal feature set before emotion classification 
and recognition.

3.1.1 Time-domain feature extraction
In time-domain feature extraction, the influence of emotional 

states on physiological signals is reflected through changes in the 
signal waveform. We mainly extract statistical features such as mean, 
mean square, first-order difference, and second-order difference, with 
the corresponding Equations as follows:

Mean (Equation 1):
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First-order difference (Equation 3):

 

1
1

1

1
1

N
x n n

n
X X

N
δ

−

+
=

= −
− ∑

 
(3)

Second-order difference (Equation 4):
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Where,
N: Total number of sample points. nX : Value of the n-th sample 

point. 1nX + : Value of the (n + 1)-th sample point. 2nX + : Value of the 
(n + 2)-th sample point.

3.1.2 Time-frequency domain feature extraction
The wavelet transform is based on the short-time Fourier 

transform. In addition to the idea of localization, the size of the 
window corresponding to the window function is fixed but the shape 
of the window is variable. Different frequencies have 
different resolutions.

Discrete wavelet transform is a kind of wavelet transform that 
discretizes continuous wavelet transform and discretizes scale variable 
a and translation variable b. The Equation 5 is as follows:

 00 , ,jb ka b j k Z= ∈  (5)

Where 0a  is the scaling factor, 0b  is the translation factor, j and 
k are integers representing the scale and translation levels, 
respectively.

The discrete wavelet function is as follows (as shown in Equation 6):
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Where ψ is the mother wavelet, and b represents scaling 
and translation.

The discrete wavelet transform of a function f (t) can be expressed 
(as shown in Equation 7):
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This equation transforms the signal into wavelet coefficients, 
which can then be  divided into approximate and 
detailed coefficients.

The choice of basis functions (mother wavelets) significantly 
influences the decomposition results. Based on the characteristics of 
physiological signals, the Daubechies wavelet basis dbN is selected for 
decomposition in this study, with the following properties:

 (1) Asymmetry: most of the dbN wavelet bases are asymmetric.
 (2) Regularity: the regularity of the wavelet increases as N increases.
 (3) Orthogonality: the wavelet functions are orthogonal, making 

them ideal for signal decomposition.

Following feature extraction, our model subjects the features to a 
rigorous selection process to ensure optimal model performance. 
We  employed a combination of filter, wrapper, and embedded 
methods to select the most informative features. Filter methods 
initially reduced the feature space by eliminating features with no 
significant statistical relationship to the emotional states. Wrapper 
methods, specifically a genetic algorithm, further refined the feature 
set by searching for the optimal combination of features that 
maximized predictive accuracy. Finally, embedded methods through 
regularized regression intrinsically performed feature selection by 
penalizing less important features. The criteria for feature selection 
included statistical relevance, redundancy elimination, and the 
improvement of model performance metrics such as accuracy and 
F1 score.
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3.2 The theoretical basis of EMD

Such an algorithm is to decompose the components of different 
frequencies in the signal, and the separated frequency components are 
different. These components are called features:

 (1) The number of zeros and poles in the IMF are equal or differ 
by at most 1;

 (2) The decomposition signal is shown in Figure 2.

Step 1: Let u1(t) be the signal composed of the maximum points 
and u2(t) be the signal composed of the minimum values. The mean 
( )m t  of these two signals is given by (as shown in Equation 8):

 
( ) ( ) ( )( )1 2

1
2

m t u t u t= +
 

(8)

Where ( )1u t  and ( )2u t  represent the signals composed of the 
maximum and minimum values of the original signal, respectively.

Step 2: Subtract the original signal sequence from Equation 9 to 
obtain a new sequence ( )h t :

 ( ) ( ) ( )h t x t m t= −  (9)

Where ( )x t  is the original signal sequence.
Step 3: Judge whether conditions of the IMF. If does not satisfy the 

conditions of IMF, it is regarded as a new ( )x t , and it satisfies the 
conditions of the IMF. In the actual calculation, too much repetition 
of the above process will lose the practical significance of the signal to 
a certain extent, so it is necessary to formulate a stopping criterion. 

The emotional changes of individual teachers under stress are also 
closely related to their prediction and evaluation of stress outcomes. 
Successfully coping with stressors often brings pleasant and happy 
emotional experiences to teachers. According to the severity of 
emotional changes, it can be expressed as anxiety, fear, depression, 
anger, and so on. Anxiety is the most common emotional response in 
the stress response. When the anxiety level is low, it affects the 
individual’s behavior in coping with the environment. The response is 
often slow and the efficiency of homework is not high. Moderate levels 
of anxiety can enhance an individual’s alertness and bolster teachers’ 
capacity to adapt to their environment and manage stressors 
effectively. Conversely, excessive or misplaced anxiety can diminish 
the ability to address environmental changes. Moreover, there is a risk 
of anxiety becoming generalized, potentially impairing teachers’ 
efficacy in responding to environmental shifts.

The commonly used stopping criterion is as follows (as shown in 
Equation 10):
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In the equation, DS  represents the stopping criterion, with a 
threshold value typically ranging from 0.2 to 0.3. When it is less than 
this threshold, the iteration process will be stopped.

Step 4: The IMF component is obtained as ( )1 1kC h t= , and the 
remainder after separation is as follows (as shown in Equation 11):

 ( ) ( )1 1r t x t C= −  (11)

FIGURE 1

CNN-based human mental state recognition model.
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Where ( )1r t  is the residuals after the separation of the first IMF 
components from the original signal.

Step  5: Repeat the above steps to obtain subsequent IMF 
components 2C , 3C , … nC .

Through the above steps, the original signal composed of multiple 
original signals can be reconstructed by adding each IMF component 
and the residual. The equation is (as follows as shown in Equation 12):

 
( ) ( ) ( )

1

n
i n

i
x t C t r t

=
= +∑

 
(12)

After the above decomposition process, we can see that the well 
so that we can extract the internal features of the signal, but the EMD 
algorithm has a problem that cannot be ignored; that is, it has modal 
aliasing, which will lead to the IMF obtained after decomposition loses 
its physical meaning. A new decomposition method for the aliasing 
problem is the overall empirical mode decomposition algorithm.

However, the instantaneous frequency of any time series is not 
always meaningful, it must meet certain conditions, which is why the 
signal should be EMD decomposed to obtain IMF before HHT is 
performed on the signal. After the signal decomposition process, the 
equation to reconstruct the original signal is as follows:
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Where ( )s t  is the reconstructed signal after the Hilbert–Huang 
transform (HHT), which is the sum of the real parts of the complex 
exponentials representing each IMF component. ( )ia t  represents the 

amplitude of the ith IMF component. ( )i tφ  represents the phase of the 
ith IMF component. iω  represents the instantaneous frequency of the 
ith IMF component.

In Equation 13, Re means taking the real part. The Hilbert time 
spectrum ( ),H tω  is as follows:
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Following Equation 14 and the process described above, we find 
that the Hilbert-Huang Transform (HHT) is more adaptable to the 
instantaneous frequency of the signal and can represent varying 
frequencies. This makes the HHT a more suitable tool for analyzing 
non-stationary signals. As shown in Equation 15:

 ( ) ( ) ( ) ( ) ( )i tZ t X t iY t a t e θ= + =  (15)

Where ( )Z t  is the complex form of the signal after applying the 
Hilbert transform, where ( )X t  is the original signal and ( )Y t  is the 
Hilbert transform of the original signal. ( )a t  represents the amplitude 
of the signal ( )Z t . ( )tθ  represents the phase of the signal ( )Z t .

3.3 Analysis of model decision process

The emotion recognition model described in the study employs a 
multitude of physiological signals, including ECG, EMG, 
electrodermal activity, and respiratory signals, to create a 
comprehensive representation of emotional states. By fusing these 

FIGURE 2

Structure diagram of SE-CNN human mental state recognition model.
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diverse biological indicators, the model provides a more detailed and 
accurate depiction of the emotional landscape than analyses based on 
a single signal type.

In the feature extraction phase, the model utilizes both time-
domain and time-frequency domain techniques to capture the 
intricacies within each physiological signal. The time-domain analysis 
focuses on statistical properties such as the mean heart rate and 
respiratory rate, while the time-frequency domain analysis uses 
wavelet transforms to reveal the spectral content of the signals. This 
dual approach offers insights into the dynamic changes associated 
with varying emotional states.

Following feature extraction, the model subjects the features to a 
feature selection process, where redundant or less informative features 
are eliminated. This step is essential for preventing overfitting, 
ensuring that the model maintains high predictive accuracy and the 
ability to generalize across different datasets.

The decision-making process of the model is primarily driven by 
a neural network structure, specifically a convolutional neural network 
(CNN). This structure is adept at capturing non-linear relationships 
between physiological features and emotional states. The layered 
architecture of CNN enables it to automatically learn hierarchical 
feature representations, where complex features are constructed from 
simpler ones, leading to a sophisticated understanding of the data.

To enhance the interpretability of model, attention mechanisms 
are integrated into the neural network. These mechanisms allow the 
model to focus on the most informative features during the 
classification process. By highlighting the most relevant aspects of the 
input signals, such as significant ECG peaks or variations in 
respiratory rates, the model not only improves its predictive 
capabilities but also gains the ability to explain its predictions.

This level of transparency in the decision-making process is 
crucial, as it allows for a deeper understanding of the predictions of 
the model and the physiological indicators that underpin them. It 
clarifies which specific changes in physiological signals are most 
indicative of certain emotional states, effectively demystifying the 
often opaque nature of neural networks.

The emotion recognition model is distinguished by its integration 
of multiple physiological signals, sophisticated feature extraction and 
selection processes, and a neural network-driven decision-making 
process enhanced by attention mechanisms. These elements 
collectively strengthen the predictive accuracy of the model and 
provide a level of interpretability that is vital for its practical 
application in real-world scenarios.

4 Experimental results and analysis

4.1 Experimental simulation

In the experiment of this paper, the public data set WESAD and 
the electrocardiographic signal ECG of the self-collected data set are 
used to build a model for the four-category recognition of the human 
mental state. The following is an introduction to the two data sets.

This study is based on the disclosed data set, Wearable Stress and 
Affect Detection Dataset (WESAD), which uses the ECG signal to 
identify the psychological state of the human body. The WESAD 
dataset is a publicly available dataset specifically designed for research 
on the application of wearable devices in stress and emotion detection. 

We chose this dataset because it provides a wealth of physiological 
signal data (such as electrocardiography ECG) along with 
corresponding psychological state labels, providing an ideal data 
foundation for our study on emotion recognition systems. 
Furthermore, the WESAD dataset includes physiological signals 
under various psychological states, which aids in training and 
validating our emotion recognition model across different emotional 
states. The following is an introduction to the acquisition signals and 
experimental procedures of the WESAD dataset. The public data set 
contains the physiological signal data and mental state labels of 15 
subjects, 12 men and 3 women. The average age of the subjects is 
27.5 years old, and their personalized physiological characteristics 
such as height, age, gender, and weight record it. Psychological crisis 
can be  manifested in cognitive, physical, emotional, behavioral, 
interpersonal, and other aspects. In terms of cognition, when an 
individual is in a psychological crisis, his body and mind are immersed 
in grief, which will lead to changes in his memory and perception, 
manifested as difficulty in distinguishing the similarities and 
differences between things, and ambiguous relationships between 
things experienced.

Initially, we performed denoising on the raw physiological signal 
data to eliminate outliers caused by sensor malfunctions or improper 
user operation. Subsequently, we applied band-pass filtering to the 
signals to remove high-frequency noise and low-frequency drift, 
ensuring the quality of the signals. To facilitate analysis, we segmented 
the continuous physiological signal data into fixed-length time 
windows. For the WESAD dataset, we  chose a 10-s time window, 
allowing us to capture short-term changes in emotional states. Some 
signals underwent baseline correction to eliminate long-term trends 
and baseline drift in the physiological signals. During the preprocessing, 
we removed data with poor signal quality or unclear labels. We believe 
that such data could affect the training effectiveness of the model and 
the accuracy of classification. Additionally, we excluded cases with too 
few samples in specific psychological states to ensure that each category 
has sufficient data to support model learning.

Figure 3 shows the ECG signal data waveform of an experimental 
subject in WESAD under different experimental conditions. It can 
be seen intuitively that the ECG signal waveform characteristics of the 
four different psychological states of baseline, amusement, stress, and 
meditation are quite different. Among which is the waveform of the 
ECG meditation state. Compared with the baseline, the ECG signal in 
the entertainment state has a steeper slope. This also proves the 
rationality of human mental state recognition through ECG signals to 
a certain extent.

The readme.txt of the WESAD data set records the age, gender, 
height, weight, and other personal information of the subjects; the 
quest questionnaire file provides the subjects’ subjective scores on 
their psychological state under the experimental process at each stage 
at that time, using PANAS, SSSQ and other personal assessment 
questionnaires; the pkl file provides all physiological signal data and 
corresponding labels of the two devices of the experimental subjects. 
This paper chooses to collect and preprocess ECG signal data based 
on the pkl file corresponding to each experimental object because the 
tags and data in the pkl file are stored in an array, which is convenient 
to establish one-to-one corresponding data and tag pairs.

Through the settings of the above different experimental 
procedures and conditions, four different psychological states of the 
experimental subjects were stimulated, which provided the data basis 
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for the construction of the human psychological state recognition 
model in this paper. The corresponding psychological state labels are 
1, 2, 3, and 4, respectively. The data volume and data distribution are 
shown in Figure 4.

Many previous experiments utilizing the WESAD dataset have 
focused on recognizing two-category (baseline and nervous) or three-
category (baseline, nervous, and entertainment) mental states, often 
omitting the meditation state. This oversight is primarily due to the 
similarities in ECG signal waveforms between the meditation, 
entertainment, and baseline states, which can lead to significant 
confusion during identification. Consequently, expanding the 
classification to include four categories, based on the original three, is 
likely to result in some decrease in accuracy due to the inherent 
similarities in signal characteristics. It is important to note that signals 
carry distinct meanings. While the academic community has not yet 
reached a consensus on the definition of a psychological crisis, the 
perspectives mentioned above convey essentially the same concept. 
We  interpret a psychological crisis as a state of psychological 
disequilibrium that arises in response to crisis events.

Beyond merely denoising the data, physiological signals from 
the experimental subjects must be segmented into time windows 
before mental state feature extraction can occur. The chest device 
ECG signals of WESAD dataset, used in this paper, have a 
sampling frequency of 700 Hz. For ease of processing, these signals 
are divided into fixed-size time windows, with this study 
considering 10-s intervals of continuous data as a single sample, 
equating to 7,000 data points. The self-collected dataset, MSSFT, 
has a sampling frequency of 125 Hz and is processed using the 
same time window approach, yielding 1,250 data points 
per sample.

In addition to the WESAD dataset, our model was also tested 
on the self-collected MSSFT dataset. The MSSFT dataset contains 
ECG signals from participants with diverse backgrounds, providing 
us with an opportunity to assess the model’s generalization 
capabilities. Similar to the WESAD dataset, we applied the same 
preprocessing steps to the ECG signals in the MSSFT dataset, 

including denoising, band-pass filtering, and segmentation into 
fixed-length time windows. The MSSFT dataset has a sampling 
frequency of 125 Hz, and we also used a 10-s time window, with 
each sample containing 1,250 data points. The experimental results, 
as shown in Table 1, indicate that our model also demonstrated the 
ability to recognize different psychological states on the MSSFT 
dataset, although the accuracy was slightly lower than on the 
WESAD dataset. This may be  attributed to differences in data 
distribution and noise levels between the two datasets. These results 
not only suggest that our model has some applicability on new 
datasets but also highlight the need to further improve the 
generalization capabilities of model.

4.2 Comparative analysis of three-category 
human mental state models

To comprehensively evaluate the performance of our model, 
we employed a variety of evaluation metrics, including accuracy, 
precision, recall, and F1 score. These metrics are calculated by 
comparing the predicted outcomes of the model with the actual 
labels. Accuracy represents the proportion of samples that the 
model predicted correctly out of the total samples; precision 
represents the proportion of samples predicted as positive that are 
actually positive; recall represents the proportion of actual 
positive samples that are correctly predicted as positive by the 
model; the F1 score is the harmonic mean of precision and recall, 
used to measure the overall performance of the model. 
Furthermore, to assess the stability and generalizability of our 
model, we  used 5-fold cross-validation. This method involves 
dividing the dataset into five equal parts, using four parts for 
training and the remaining part for testing in each iteration, 
repeating this process five times, and calculating the average 
performance metrics.

Four classifications (baseline, nervousness, entertainment, and 
meditation) are implemented on the WESAD public data set, and the 

FIGURE 3

Data waveform of ECG signal in WESAD.
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epoch is set to 60. The loss line graph and the accuracy, precision, 
recall, and F1 score line graph are shown in Figure 5. The accuracy is 
87.90%, with an F1 score of 87.71%.

Given that the source publication of WESAD dataset already 
presents a three-category mental state recognition model—
differentiating among baseline, entertainment, and nervous states 
using ECG signals—this paper refrains from replicating that 
experiment. Instead, we  directly reference the outcomes of the 
aforementioned model to benchmark against the novel methods 
introduced in this study. The methodologies outlined in the original 
text encompass a multi-level dual-channel fusion human mental state 
recognition model (parallel) and a multi-level dual-channel fusion 
model (composite), both of which are developed in this chapter. A 
comparative analysis of results of these methods is depicted in 
Figure 6, showcasing the initial five model outcomes constructed in 
this chapter.

According to the above figure, it can be concluded that compared 
with the original results, the multi-level dual-channel fusion human 
mental state recognition model proposed in this chapter can better 
identify the three mental states of baseline, entertainment, and 
nervousness on the WESAD data set. The effectiveness of the method 

can be used to further refine the classification of mental states. The 
following experiments will pay more attention to the study of the 
four classifications.

4.3 Comparison and analysis of 
experimental model results

To compare the performance differences between different 
model configurations, we conducted a statistical significance analysis 
using paired t-tests. The significance level was set at 0.05. By 
calculating the correlation coefficients between features and 
performing t-tests, we assessed the changes in physiological signal 
features across different emotional states. These analyses indicate that 
the differences in emotional states identified by our model are 
statistically significant, further validating the effectiveness and 
reliability of our model.

In the 1,303 samples, the results of the internal and external 
propensity classification model in the GA-RF are shown in Figure 7.

Figure 8 illustrates the comparative analysis between the original 
model group, which includes Decision-Tree, SVM, and RF, and the 
control group that incorporates the genetic algorithm for feature 
extraction, including GA-Decision-Tree, GA-SVM, and GA-RF. It is 
observed that the models augmented with the genetic algorithm 
demonstrate improved performance, suggesting that the feature 
extraction process of genetic algorithm enhances the 
representativeness of the data across each feature dimension. 
Specifically, the ability of genetic algorithm to refine the internal and 
external tendency labels results in eight parameters that are more 
indicative of the depressive psychological state. This enhancement is 
particularly evident when examining the outcomes from the 1,433 

FIGURE 4

The amount of data for each mental state of ECG signals in WESAD.

TABLE 1 Performance comparison of the model on WESAD and MSSFT 
datasets.

Metric WESAD dataset MSSFT dataset

Accuracy 87.90% 85.50%

Precision 88.30% 86.20%

Recall 87.71% 85.80%

F1 Score 87.71% 85.65%
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FIGURE 6

Comparison of the results of three-category recognition of mental states based on WESAD.

samples, where the accuracy of the two-class depression model is 
significantly elevated in the control group models that leverage the 
genetic algorithm.

Figure 8 presents the results, demonstrating that the F1 scores of 
the various model algorithms exceed 0.6, with the optimal GA-RF 
model achieving an F1 score of 0.81. This indicates that it is indeed 
possible to predict students’ depressive psychological states with a 
significant correlation to their online behavioral characteristics. By 

leveraging these characteristics, we can achieve real-time monitoring 
of depressive psychological states of students. Furthermore, when 
comparing the performance of models trained with features extracted 
by a genetic algorithm versus those trained solely on original data 
features, it becomes evident that the genetic algorithm-enhanced 
models exhibit a higher degree of reliance on specific online behaviors, 
such as WeChat dependency, the regularity of map website usage, and 
the degree of game dependence.

FIGURE 5

Four classification results of the multi-level two-channel fusion model (parallel) in the WESAD dataset.
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5 Conclusion

This study developed an emotion recognition system that 
integrates multiple physiological signals—ECG, EMG, 
electrodermal activity, and respiratory signals—to enhance 
emotional state assessment in educational human–computer 
interaction. The proposed model achieved an accuracy of 87.90% 
and an F1 score of 87.71% in classifying four emotional states: 
baseline, nervousness, entertainment, and meditation. These results 
indicate a significant improvement over existing models, 
particularly in handling the complexities of emotional state 
recognition. The combination of feature extraction and selection 
with a convolutional neural network architecture enabled the model 

to effectively capture the non-linear relationships between 
physiological signals and emotional states. Moreover, the integration 
of attention mechanisms significantly improved the interpretability 
of model, highlighting which features—such as ECG peaks and 
variations in respiratory rate—played the most crucial role in 
emotion prediction.

This study provides educators and educational technologists 
with a powerful tool for understanding and responding to the 
emotional states of students and teachers in real time. By 
providing a more accurate and objective assessment of emotions, 
the system can transform the educational experience, making it 
more personal and supportive of individual emotional needs. 
However, the study has limitations, including a relatively small 

FIGURE 7

Evaluation of different classification models for internal and external tendencies.

FIGURE 8

Evaluation of different models for two-category depression.
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dataset, which may restrict the model’s generalizability. Future 
research should focus on expanding the dataset to include a more 
diverse population and exploring additional physiological signals 
to improve accuracy. Implementing the model in real-time 
educational settings will also be crucial for assessing its practical 
effectiveness. In addition, we will employ more advanced data 
visualization techniques in future studies to enhance the 
interpretability of our findings.

The development of emotion recognition technology may 
have profound implications for educational policies and practices. 
Policymakers need to consider how to integrate this technology 
into the education system while ensuring that it does not 
exacerbate educational inequality. In practice, teachers can use 
emotion recognition technology to assess students’ learning 
motivation and engagement, thereby designing more effective 
teaching activities.
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