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Research typically promotes two types of outcomes (inventions and discoveries), 
which induce a virtuous cycle: something suspected or desired (not previously 
demonstrated) may become known or feasible once a new tool or procedure is 
invented and, later, the use of this invention may discover new knowledge. Research 
also promotes the opposite sequence—from new knowledge to new inventions. 
This bidirectional process is observed in geo-referenced epidemiology—a field 
that relates to but may also differ from spatial epidemiology. Geo-epidemiology 
encompasses several theories and technologies that promote inter/transdisciplinary 
knowledge integration, education, and research in population health. Based on 
visual examples derived from geo-referenced studies on epidemics and epizootics, 
this report demonstrates that this field may extract more (geographically related) 
information than simple spatial analyses, which then supports more effective and/
or less costly interventions. Actual (not simulated) bio-geo-temporal interactions 
(never captured before the emergence of technologies that analyze geo-referenced 
data, such as geographical information systems) can now address research questions 
that relate to several fields, such as Network Theory. Thus, a new opportunity 
arises before us, which exceeds research: it also demands knowledge integration 
across disciplines as well as novel educational programs which, to be biomedically 
and socially justified, should demonstrate cost-effectiveness. Grounded on many 
bio-temporal-georeferenced examples, this report reviews the literature that 
supports this hypothesis: novel educational programs that focus on geo-referenced 
epidemic data may help generate cost-effective policies that prevent or control 
disease dissemination.
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Introduction

Geo-epidemiology may be described as an inter-disciplinary field 
that, based on geo-referenced and bio-dynamic data, attempts to 
prevent disease dissemination. Hoping to clarify the similarities and/
or differences between geo-epidemiology and other related fields (1), 
here the literature on visualizations associated with disease dispersal 
is reviewed. Such an exercise is meant to emphasize that 
geo-epidemiology may promote earlier, cost–benefit oriented, 
geography- and time-specific epidemiologic interventions.

This review also describes considerations associated with 
technological development and education—in particular, how to teach 
novel interdisciplinary and decision-making oriented programs. They 
refer to knowledge validation which, in turn, is associated with knowledge 
integration (2).

The driving motivation for this report is that disease dispersal 
affects everybody, everywhere. As illustrated by COVID-19, avian 
influenza, and cholera (among many diseases), unless prevented, 
epidemics and enzootics may seriously affect humans and 
non-humans (3–5).

From inventions to knowledge creation

While research promotes technological development, the opposite 
is also observed. For example, the emergence of geographical 
information systems (GIS) has fostered public health (6). GIS tools have 
been integral to infectious disease surveillance, vaccination campaign 
planning, and optimizing responses to public health crises such as 
COVID-19. These efforts have laid the groundwork for integrating 
spatial and temporal analyses more effectively.

Geo-epidemiology vs. spatial 
epidemiology

While closely associated, space and geography are not 
synonymous. Space seems to be the larger category while geography 
is just one sub-domain. Yet, geography tends to be the richer concept 
because its contents and contexts are not always found in 
non-geographic space.

While geography refers to the study of the Earth (an actual, not a 
hypothetical entity), space refers to the study of any (actual or hypothetical) 
surface, located anywhere. Because our planet is composed of many 
non-randomly distributed elements (e.g., rivers, mountains, cities, forests, 
farms, and roads traveled by human and non-human individuals), 
geo-epidemiology differs substantially from the study of space, which 
could be imagined as a static environment—where there are no seasons 
and is inhabited by a homogeneously distributed population (6). Hence, 
diseases may be better understood when geo-referenced and temporal data 
are analyzed.

Accordingly, geo-epidemiology informs on relationships involving 
populations, rivers, forests, lakes, mountains, roads and many other 
geo-referenced entities, which are dynamic and may exist before diseases 
occur. Because geographical variables are non-hypothetical, they can 
be measured directly and because bio-geographical relationships change 
over time, the analysis of disease dispersal requires multidimensional 
analyses (7, 8).

While any tool used in spatial analysis, in principle, can also be used 
in geo-epidemiology, the opposite is not necessarily possible: patterns 
detected when geographical data are analyzed may be  absent in (or 
missed by) spatial models. While spatial analysis is prone to 
uni-disciplinary/specialized (reductionist) approaches (8), 
geo-epidemiology is inherently inter/transdisciplinary and 
non-reductionist (9).

This report emphasizes infectious diseases that disseminate 
temporally and geographically, i.e., epidemics and epizootics. Such 
diseases usually utilize pre-existing connecting structures. To prevent 
or control them, cost/benefit-oriented analyses are necessary. Given 
the apparent lack of academic programs on geo-epidemiology, new 
educational (inter/transdisciplinary) programs seem needed.

Inter/transdisciplinary knowledge relates to but also differs from 
multidisciplinary knowledge. That is so because multi-disciplinarity 
does not necessarily integrate knowledge generated in several 
disciplines. For instance, the work conducted by electricians, plumbers, 
and carpenters in the process of rebuilding a house does not require 
previous integration of their expertise: following pre-established 
instructions, they could just apply what they previously learned. In 
contrast, interdisciplinary projects require the production of a novel 
solution that fits a specific (and usually novel) problem (9). When a 
substantial amount of new knowledge needs to be created to solve a 
specific problem, the term trans-disciplinarity tends to be used (10).

Because inter/trans-disciplinary knowledge cannot 
be communicated with a language grounded on any specialized field, 
new languages and templates may be required. A language common to 
many fields and constituencies may be facilitated when potential users 
share the same interest, context or field of application. Participatory 
approaches may promote the creation of such languages (11, 12).

Consequently, a process that identifies invalid, obsolete, and/or 
fragmented knowledge may foster problem solving (13). 
Non-reductionist, data-driven analysis of visually explicit information 
(such as geo-referenced data on disease dispersal) may promote inter/
trans-disciplinary knowledge integration and prevent invalid inferences 
(14, 15).

The design of this study

This material describes both the way diseases are investigated 
bio-geo-temporally, and how inter−/transdisciplinary educational and 
research processes can be  promoted. Three sections describe: (i) 
features and/or properties of geo-epidemiology; (ii) decision-making 
and applications (in particular, those based on cost/benefit-related 
considerations), and (iii) concepts associated with education and 
research methods—especially those grounded on visual data.

Section I. Features and properties of 
geo-epidemiology

Pre-established, geographically explicit 
connectivity may inform earlier

The ability to measure unambiguous connecting structures that 
predate disease emergence is a feature that distinguishes 
geo-epidemiology from simple spatial approaches. While connectors are 
associated with contacts, they also differ from one another (16). While 
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contacts are human or non-human individuals, connectors refer to 
physical structures individuals utilize while traveling and/or contacting 
one another, e.g., a tunnel, road, bridge, airplane, etc. Unlike approaches 
that focus on contacts, methods that describe connectivity do not need 
to identify individuals—identifying the locations of connectors (which 
precede the occurrence of infections) may suffice. While the contact-
oriented approach depends on highly variable data (which may 
be  available only after a crucial event has occurred), connectivity-
oriented approaches only need to collect data on pre-existing connectors 
and, consequently, they provide information inherently prognostic.

Because geo-epidemiology reflects how diseases disseminate, 
disease dispersal is necessarily based on pre-established connecting 
networks. Roads, rivers, railroads are examples of pre-established 
connectors. Only by using connecting structures that predate the 
emergence (or re-emergence) of a pathogen, can a disease spread out.

Therefore, some earlier concepts (such as the time and location of 
the first or ‘index’ case) are not necessarily valid because—when cases 
are reported in places where more than one connecting structures 
exist—, epidemic or enzootic processes tend to occur (16). Figure 1A 
illustrates this concept: by plotting actual data on disease dispersal in 
relation to connecting structures (e.g., the highway network), it is 
observed that the case regarded as the first (‘index’) case was not well 
connected–only one of the first 6 cases was located near to or on a 
highway intersection (a ‘node’ that facilitates two or more 
dissemination routes, Figure 1A). In contrast, the only case located on 
the connecting structure explained the subsequent disease dispersal: 
at days 4–6, the centroid of all epidemic nodes moved into a highly 
connected dissemination structure (Figure  1B). Thus, to explore 
disease dispersal not only geographical information is required (on the 
road network in this case) but also data on the estimated transmission 
cycle of the pathogen—up to 3 days, in this case.

Network theory-related properties
The distinction between pre-existing connectivity and contacts 

matters in decision-making. When interventions are designed, it may 
be difficult to identify the specific contact that could link a specific 
case with a susceptible individual. In contrast, the specific 
(geo-referenced) connecting structure (i.e., the ‘node’ that, if blocked, 
could prevent disease spread) may be easily identified. However, such 
an identification requires distinguishing ‘average’ from ‘highly 
connected’ epidemic node-related cases (16–18).

Hence, rapidly elucidating the most likely connecting link that 
promotes disease dispersal is critical for planning and delivering effective 
interventions. The underlying principle is that, when the connecting 
structure associated with a specific disease outbreak is presumptively 
identified, it is then possible to conceive targeted responses, which are 
likely to be more effective, more rapidly implemented and/or less costly 
than non-specific and/or static ones (16).

To take advantage of such a possibility, the study of Network 
Theory seems required. Applied to epidemiology, Network Theory 
can be described by several properties, including: (i) Pareto’s 20:80 
distribution, (ii) synchronicity, and (iii) directionality. These 
properties have been empirically observed in three epidemic 
processes that affected bovine, avian, and human species, 
respectively (16, 19).

Pareto’s ‘20:80’ distribution refers to the fact that not all epidemic 
nodes equally influence disease dispersal: only a minority (~20%) of 
the earlier cases generates most (~80%) of the later cases (20). 
Consequently, not all epidemic nodes are epidemiologically identical. 
Because some epidemic nodes are more influential than others, they 
should be distinguished.

Time- and geography-specific differentiation of epidemic nodes 
can be objectively determined: they are the sites that include both a 

FIGURE 1

Geo-referenced and temporal evaluation of earlier theories. The assumption that the ‘index case’ (the first reported case) originates disease 
dissemination was not supported by the evidence: only one of the six cases reported in the first transmission cycle (estimated in 3 days) was located on 
a highway node (red dot inserted within a sky-blue circle, A). The data reported in the second transmission cycle (days 4–6) support the hypothesis 
that the later disease dissemination originated in the highly connected case (B). Source: reference (16).
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connecting structure (e.g., a highway intersection) and the highest 
percentage of cases at a specific bio-temporal (disease transmission-
related) cycle. Operational definitions of what epidemic nodes are and 
how their influence can be distinguished can be made for a specific 
disease and environment (Figure 2).

For example, the analysis of geographical interactions—such as 
the relationships among road density, case density, relative length of 
roads per area unit—may identify ‘hubs’ or ‘nodes’ of relationships 

that, if identified before epidemics occur, could lead to anticipatory 
measures. Such approaches could lead to global anticipatory mapping 
of all such potential ‘facilitators’ of disease dispersal (21).

Data on geo-bio-temporal interactions may 
re-evaluate previous theories

Because geo-referenced variables interact with one another, 
they help re-evaluate earlier theories. One example is disease 

FIGURE 2

Geo-temporal detection of epidemic nodes. Avian Influenza (H5N1) epidemic nodes of the 2006 Nigerian epizootic were the smallest circles that, 
earlier and longer, contained more cases and were connected (they included a highway intersection, A). Throughout the epidemic, Avian Influenza (AI) 
epidemic nodes were 31-km radius circles centered on intersections of the national highway network (B). Such nodes included ~60% of all AI cases 
(C). Source: reference (16).

FIGURE 3

Disease dissemination is neither static nor homogeneously distributed over space. Data collected in Mexican farms where resistance to parasiticides 
used in bovines were geo-analyzed demonstrate heterogeneous geographical distribution even within the same region. Source: reference (22).
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prevalence, which is now shown to be  neither geographically 
homogeneous nor static (22). For example, expressed as the 
prevalence of resistance against parasiticides, major 
differences are observed within the same region in the number of 
units (farms) that present simple, double or triple resistance 
(Figure 3).

Similarly, the intra-farm prevalence of bovine Mycobacterium 
paratuberculosis may differ up to 80% across farms—a finding 
associated with infective (epidemic) links (23). This means that 
measuring disease prevalence may be  non-informative unless a 
specific (geo-referenced) region is identified within a 
specific timeframe.

Section II. Applications: toward informative 
and cost–benefit related decision-making

Error prevention and extraction of new 
information

Aggregate data may induce errors. Because such data do not 
convey relationships, non-aggregate, point-based, high-resolution 
data are needed to investigate epidemics (24, 25).

The anticipatory creation of geo-referenced datasets that include 
relationships can facilitate cost-effective interventions (26, 27). For 
example, such datasets may include information of farm density, 
animal density, and road networks. In epidemics, analyses of such data 
can capture a much higher number of expected cases than 
alternatives (16).

Because they can capture more dimensions than classic 
approaches, bio-geo-dynamic assessments are likely to prevent errors. 
For example, apparent gaps in the data (which suggested no new cases 
occurred several times in the first 70 epidemic days) seemed to occur 
when time was measured with chronological units (days, Figure 4A). 
Such patterns were not detected when the same data were reported as 
generation intervals (Figure 4B). When, instead of reporting hours or 
days, time was measured together with biological concepts (e.g., when 
the transmission cycle of the pathogen was considered), the previous 
gaps were no longer observed (Figure 4B). In addition, the distance 
between a specific case and the nearest connecting structure can also 
be captured (17). This geo-bio-temporal metric shows that the number 
of epidemic cases–expressed as proportion of all cases–, was inversely 
related with the distance between cases and the nearest road 
(Figure 4C).

Differentiation of infection types
Bio-geo-temporal analyses can also differentiate infections. At least 

five infecting types can be  distinguished, which may prompt 
different interventions.

For example, the detection of highly disseminating bacterial 
strains may lead to earlier, bacterial strain-specific interventions 
(Figure 5). Furthermore, two sub-varieties can be distinguished within 
the ‘local’ (no geographical spread) bacterial strain type. Based on the 
Heterogeneity Index (percent of intra-farm isolates that belong to the 
same bacterial strain), two subtypes can be differentiated: (a) ‘cow 
problem’ and (b) the ‘farm problem’ subtypes. A ‘farm problem’ is 
suspected when most bacterial strains found in a farm belong to the 
same strain but have not been found elsewhere (e.g., the percentage of 

isolates that belong to the same strain is higher than 50%, Figure 6). 
When the percentage of isolates that belong to the same strain is lower 
than 50% (when a large diversity of bacterial strains is found in the 
same farm, but they do not show spatial dispersal), a ‘cow problem’ is 
suspected (Figure 6).

If these analyses were frequently conducted, they could facilitate 
earlier (cost-effective) decisions. In one investigated case, decisions 

FIGURE 4

Error prevention and extraction of novel information. The Avian 
Influenza (H5N1) epidemic reported in Nigeria, in 2006, is shown 
with three visualizations. Plot A reports the classic approach, in 
which the number of cases is reported over time (where ‘epidemic 
day’ 1 is the first day a ‘case’ [an infected poultry far] was detected). 
Discontinuity is noticed in the first 70 epidemic days: in several days 
no new case is reported. Plot B reports the same data, now 
structured as ‘cases per transmission period’ (where each ‘generation 
interval’ is equal to 10 epidemic days). Now cases are reported, 
without interruption, in the first 13 generation intervals (130 epidemic 
days). Plot C reveals new information: it demonstrates the relevance 
of proximity to a pre-established connecting structure: cases located 
at ≤5 km from the nearest road [DNR] represented 38% of all cases. 
Source: reference (17).
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could have been made 5 years earlier, which could have prevented 
between 6 and 14 percentage points of disease occurrence (28).

More effective and/or less costly decisions: 
continuity vs. contiguity

Bio-geo-temporal inferences based on continuous relationships 
can improve the validity and benefits of decision-making (30, 31). For 
example, twice as many cases can be detected per unit of area when 
connectivity is considered (Figure  7A) than when the local 
connectivity is ignored (Figure 7B).

More effective and/or less costly decisions: the 
‘sandwich’ approach

Bio-geo-temporal analysis can detect multi-dimensional, 
complex relationships. For example, when the number of Foot-
and-Mouth Disease (FMD) cases was classified according to four 
descriptors (farm size, animal density, county-specific percentage 
of dairy farms, and county road density [length of roads/county 
area]), a higher proportion of FMD cases were reported in areas 
characterized by (i) small and medium size land parcels, (ii) 
higher animal density, (iii) >20% farms specialized in dairy 
production, and (iv) high road density (Figure 8). By intersecting 
and linking together these classes, a higher proportion of cases 

FIGURE 5

Temporal and geo-referenced data collected from farms located in North Carolina, United States support at least five classifications on infection types 
–four classified as non-spatial (strain-related), and one classified as spatial (local)–, which could facilitate geo-referenced, infection-type based 
decisions. Panels describe high (large) spatial and high (faster) temporal diffusion (A), high spatial and low (slower) temporal diffusion (B), low (small) 
spatial and low temporal diffusion (C), low spatial and low temporal diffusion (D), and local (not spatial) and frequent diffusion (E). Maps display only the 
most recent observation on a given farm (previous observations on the same location may have occurred). Source: reference (29).

FIGURE 6

Sub-classification of infections within the local variety. The use of 
additional metrics (also generated by geo-referenced data) can 
further divide infections classified within the local variety. Source: 
reference (28).
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FIGURE 7

Continuity and contiguity in decision-making –the case of the 2001 Uruguayan FMD epidemic. Panel A displays counties that share both a continuous 
highway structure and link indices greater than 1.91. Panel B identifies a contiguous area identified statistically, in which the road network is not 
considered. These approaches result in a twice higher number of cases per km2 when connectivity is considered (left panel, with 0.0955 cases/km) 
than when only contiguity is estimated (right panel, 0.0456 cases/km2). Therefore, a 209.4% more effective control policy can be developed when 
aggregate data are avoided and, instead, connectivity is measured. Source: references (30, 31).

FIGURE 8

A composite (multi-dimensional) high-risk map was created, which considered farm size classes (A), the local road density reported in the first 6 
epizootic days (B), and the local percentage of dairy farms (C). The number of cases reported at 7-60 epizootic days was then analyzed under two 
approaches that measured the same total area: (a) one that that was centered on the location of each earlier case (D) and (b) one that was based on 
the multi-dimensional approach (E). While focusing on the same total area, the multi-dimensional approach captured 1.77 times more cases than the 
non-multi-dimensional approach (198 vs. 112 cases, respectively). Source: (32).
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can be  found within a smaller proportion of the area to 
be controlled (32).

More effective and/or less costly decisions: 
enhanced detection of secondary cases

While classic approaches emphasize only one or a couple of 
disciplinary perspectives, geo-epidemiology integrates all 
disciplines relevant to the study of disease dispersal and offers a 
visually explicit validation. For example, the hypothesis that all 
cases have equal influence on disease dispersal can be tested against 
the hypothesis that highly linked epidemic nodes have more 
influence on disease dispersal than poorly linked nodes. When 
tested with two procedures that create circles of identical area (one 

grounded on Network Theory, the other based on ‘near neighbor’ 
contacts), the Network alternative captured a much longer and less 
fragmented connecting structure than the contact alternative 
(Figures 9A–D).

Least costly, more effective detection of clusters 
of any geometric shape

‘Disease clusters’ have been defined as ‘hot spots’ that escape clear 
statistical or geometric definitions (33). Assumptions associated with 
‘disease clusters’ include: (i) the view that disease dispersal is equally 
influenced by every primary case; (ii) future secondary cases 
(susceptible individuals) are always close to primary cases, so circles 
centered on the location of primary cases should capture secondary 

FIGURE 9

Differentiating connectivity from contacts –differences in the number of secondary and later cases detected and the length and fragmentation. After 
transmission cycle II, the connectivity model captured twice more cases of Avian Influence in Nigeria (62/30 or 206.6%) than the contact model (A,B). 
The length of road segments was three times longer and less fragmented in the connectivity than in the contact model (C,D). Source: reference (16).
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cases; and (iii) control circles of the same radius can apply to any 
epidemic, regardless of the infecting pathogen, affected species, 
geographical location and/or season. Following these assumptions, 
control circles of 3-km radius, centered on the location of an infected 
farm (‘primary’ case), have been imposed in European pig, poultry 
and bovine farms affected by different pathogens, at different times 
(34–36).

Yet, such policies can miss non-circular disease clusters (37). In 
contrast, Figure  10 shows that bio-geo-temporal assessments can 
estimate the benefit/cost ratio of interventions applied to geometrically 
irregular disease clusters, even in very small and non-circular infected 
areas (38).

Rapid design and implementation of emergency 
vaccinations with limited resources

Cost–benefit oriented approaches are especially required when 
resources are limited and urgencies emerge, such as unexpected 
vaccinations. One such a situation was experienced in Tanzania, in 
2018, when an outbreak of human rabies started close to a major 
urban center (38).

Then, the adopted strategy first implemented a ‘ring’ vaccination 
near to but outside a major urban center, which later expanded into the 
low-density, rural area comprised between the ‘ring’ and Mount 
Kilimanjaro (Figure 11). By containing the virus within two ‘walls’ (the 
ring vaccination on one side, the Kilimanjaro on the other), the time 
involved in implementing this strategy was negligible compared to 
standard practices. No rabies-related case was reported in the 
vaccinated area for over a year and the cost of the 2018 Tanzanian 
campaign was 3.28 times lower than anti-rabies vaccinations 
implemented in similar environments (38).

Applications in human diseases: test 
positivity-based, cost-effective interventions

Geo-epidemiology may also apply to human medicine. For 
example, Chinese geo-referenced and temporal data on COVID-19 
have revealed Network properties (19).

Geo-epidemiology may also be  instrumental in solving a major 
problem encountered in many epidemics. That is when many of the 
infected individuals are asymptomatic. As seen in COVID-19, 
asymptomatic individuals are major disease disseminators: they are not 
aware that they are infected and do not request medical assistance (39). 
Such a situation creates a deceiving consequence: diagnostic tests tend to 
be conducted among symptomatic, not among asymptomatic individuals.

This situation induces high percentages of test positivity 
(TP or percentage of tested individuals that yield ‘positive’ 
tests), even when ‘positive’ individuals are less likely to disseminate 
the disease than asymptomatic ones. Consequently, high TP 
percentages do not necessarily reflect the true status of the population 
but the status of those that seek testing.

The alternative to testing 100% of the population on a given 
day—usually, an unfeasible goal—is to test as much as possible, so 
low percentages of the TP are found in many areas and only one (or 
very few) area(s) display high TP percentages. When such a situation 
is found, the prompt removal (isolation) of positive cases located in 
the central area may prevent disease dissemination into neighboring 
areas. Geo-epidemiology could implement such a strategy (39).

To reduce disease dispersal at the lowest cost and/or in the 
shortest period, a double approach could consider (i) county-
level, temporal and geo-referenced data on test positivity.

(TP), and (ii) cost–benefit related considerations (39). This strategy 
could focus not on spending resources equally and constantly across 
all areas but, instead, it could briefly concentrate resources in a small 
area where the TP is substantially higher than the surrounding area 
(Figure 12).

Applications in zoonoses
Geo-referenced, cost-effective decisions may prevent zoonoses 

(40). They can detect more cases in smaller areas than alternatives 
(Figures 13A–D).

Analyses that integrate bio-geo-temporal data could identify 
where and when to intervene at lower cost/greater benefit. As shown 
in Figure 14, when geographical locations that report human and 

FIGURE 10

Benefit /cost analysis of control measures implemented in non-
circular disease clusters. Circles of equal-radius (ER) were centered 
on the location of each of 9 English farms at risk of becoming 
infected (by Foot-and-Mouth Disease A). The location of major 
highways was also considered (A). The length and degree of 
continuity of the road network as well as the overall protection zone 
(which partially included overlapping circles) were estimated 
(142.5 km2, B). Because the connecting road structure was 
interrupted in the south-eastern corner of the control area, an 
alternative solution expanded such area by creating a new circle 
centered on the road segment required to achieve complete (non-
interrupted) road continuity (C). The new strategy (centered on 
roads, not farms at risk) resulted in a 20% smaller (114.42/142.5 km2 
or 0.8) overall area to be controlled (‘cost’), which displayed a 123.6% 
density of farms at risk/km2 (0.078 farms per sq. km/ 0.0631 farms 
per sq. km or ‘benefit’) or 54.5% greater benefit/cost ratio 
(123.6/0.80). Source: reference (36).
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FIGURE 11

Emergency anti-rabies vaccination in northern Tanzania. The north-eastern region of Tanzania is shown, including a satellite photo of Mt. Kilimanjaro, 
on the northern edge, and a red contour that identifies the city of Moshi (A). The rabies outbreak was controlled within the rural area of the Moshi 
district, identified by a yellow contour (A). A two-phase campaign was implemented: after vaccinating along a ‘ring’ outside Moshi (circles, B), 
additional vaccinations were conducted in the countryside (arrows, B). Contrary to classic and static approaches, this campaign did not start where 
population density was the highest but along a ‘ring’ where population density was much lower. Consequently, this strategy could be completed faster 
and a lower cost than a vaccination implemented in a place with 10 times more population. Source: reference (38).

FIGURE 12

Geo-referenced, cost–benefit oriented assessment of Test Positivity—an example based on data collected in Puerto Rico. The county-level data on 
Test Positivity (percentage of positive cases over all individuals tested) reported in Puerto Rico on September 11, 2020 is shown. Area 1 identifies the 
municipality of Jayuya. Area 2 identifies the surrounding region, which includes ~42 times more people and covers an area ~ 8.5 times larger than 
those of Jayuya. Given Jayuya +50% TP, a greater testing effort conducted in this municipality may yield large benefits, which may also include the 
surrounding area (Area 2) and, indirectly, benefit the western half of the island. Vice versa, keeping the same level of testing performed before may lead 
to long-lasting, costly consequences: if the virus circulating within Jayuya reached the surrounding area and the prevalence of COVID-19 became 
similar to the one affecting Jayuya (which is estimated by test positivity), then a much larger number of people (up to 42 times larger) could become 
infected, who would reside in an area 8.5 times larger, i.e., control would then be much harder, longer and costlier. Source: reference (39).
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non-human brucellosis cases are considered, zoonotic sites may 
exhibit a much higher case density and, therefore, should 
be prioritized in interventions (40, 41).

Section III. Teaching that supports inter/
trans-disciplinary research and vice versa

Balancing cost with effectiveness
To ensure feasibility, the implementation of proposed educational 

programs should also address existing systemic challenges, including 
resource availability, interdisciplinary collaboration barriers, and the 
integration of new curricula into established academic frameworks. 
Leveraging partnerships with organizations experienced in GIS education 
and public health could accelerate the development of such programs.

Method development: the DIKW (data, 
information, knowledge, ‘wisdom’) process

To be used, data should be transformed into information, later 
reformatted as knowledge and, finally, applied. The DIKW (data, 

information, knowledge, ‘wisdom’) process could move epidemiology 
from data-based into knowledge-rich inputs that inform decisions 
(42, 43).

To achieve it, new programs could consider learning-related 
aspects, such as: (i) pattern recognition, (ii) knowledge creation/
interpretation/integration, and (iii) knowledge use (44, 45).

Visual language and interdisciplinary 
problem-solving

The aspects mentioned above may develop new interdisciplinary 
language (46). Because visualizations convey information 
interpretable across disciplines, geo-referenced, visual data may 
promote learning, research and problem-solving (47–50).

Georeferenced disease datasets that foster 
research and education

The anticipatory creation of disease-related, bio-geo-
temporal datasets may also foster method development and 
critical thinking. Cognitive skills that foster data analysis are now 
taught even in secondary schools (51, 52). Educational and 

FIGURE 13

Temporal-bio-geographical based decision-making in zoonoses. Based on data on brucellosis collected in the Republic of Georgia, two methods were 
compared: the same data were analyzed by the bio-geographical method (BG) and the Hot Spot analysis (HS). Ruminant data from 2018 show that the 
BG method identified 139 25-square kilometer orange and red squares, which included 583 cases or 4.19 cases/square (583/139, A). In contrast, the HS 
analysis found 521 cases in 194 squares or 2.68 cases/square (521/194, B). Consequently, the case density of the BG approach was 56.3% higher (4.19/2 
than that of the HS). This difference in potential cost-effectiveness was explained by two factors: (i) the HS missed large areas that included numerous 
cases (C) and, (ii) in particular, the HS analysis missed nine mini-areas with a very high case density (D). Such a difference was achieved while the BG 
analysis occupied an area 28.4% smaller (139/194 squares or 71.6%) than the area covered by the HS analysis. If cost effectiveness of interventions was 
measured as the ratio of benefits over costs (here expressed as cases captured/area unit), then the ratio of the BG method would be 2.18 (156.3/71.6), 
i.e., the BG method exhibited a benefit/cost ratio twice as large as the one shown by the HS analysis. Zoonotic sites (geographical locations where 
human and non-human cases were detected) displayed a case density between 2.6 and 2.99 times as high as any site that only included non-zoonotic 
cases (i.e., those that only reported human, cattle, or sheep cases, E). Source: reference (40).
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research programs on geo-epidemiology may emphasize 
problem-solving (53–55).

To optimize learning, the dynamic complexities associated with 
changing epidemic processes should be addressed in the language 
used in educational practices (56, 57). Because they inform on 
numerous and dynamic relationships, visually explicit teaching 
formats seem more appropriate than static alternatives (58). 
Bio-geographical teaching strategies promote inter-personal skills, 
critical thinking, and knowledge discovery (59, 60).

Building and teaching how to use geo-epidemiological tools is 
globally needed (61). Because many health-related graduate programs 
were created before COVID-19 emerged, adjusting learning 
environments to pandemic-related learning needs may be necessary 
(62, 63).

Is global graduate education on 
geo-epidemiology both needed and feasible?

COVID-19 was and still is a tragic lesson: it revealed major gaps 
in scientific knowledge (64). Bibliographic searches provide indirect 
but strong hints on probable omissions: when the keywords 
‘geo-referenced’ and ‘COVID’ were searched for, on August 27 of 2024, 
the Web of Science only retrieved 29 hits. They represented 0.00005% 
of all the literature on COVID-19 published at that time (29 / 524,284). 
One likely explanation for such a cognitive gap is the lack of 
educational programs on geo-epidemiology.

The need for visually explicit, data-driven education on disease 
dispersal has been reported (65). While traditional teaching cannot 
be scaled up, online education can (66). Data- driven, online, student-
centered education may promote critical thinking as well as validation 
and lifelong, question-generating skills (67).

New educational programs on geo-epidemiology may be rapidly 
developed because five conditions or resources are already mature and 
available: (i) a large, inter-disciplinary group of educators/researchers, (ii) 

international libraries on disease-related datasets, (iii) a methodology 
that integrates theory with operations applicable to many diseases 
affecting human and non-human species, (iv) many research publications 
that offer numerous examples of cost–benefit oriented interventions, and 
(v) the ability to develop and use context-specific software.

Based on electronic platforms, new educational programs can 
be  offered at low or negligible costs. Using such formats, 
geo-epidemiology could provide new interdisciplinary programs, 
which also capture One Health dimensions (68, 69).

Limitations

Numerous tools and research findings likely to influence 
geo-epidemiology have not been comprehensively examined here. 
They include: (i) new sources of geo-referenced disease data (70, 71) 
and (ii) new algorithms that address combinatorial problems 
(72–74).

Summary and conclusion

The theoretical foundation, operational consequences, and 
educational needs associated with geo-epidemiology are 
summarized. At least two emphases characterize bio-geo-temporal 
assessments: (1) the analysis of connecting structures established 
before disease emergence, (2) measures that facilitate site-specific, 
cost/benefit-related decision-making. It is suggested that new, data-
driven, participatory educational and research programs may foster 
earlier, less costly, and/or more effective interventions against 
disease dispersal.
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FIGURE 14

A bio-geographical analysis may guide cost–benefit oriented, 
prioritized interventions. Using a bio-geographical method that 
explores the contribution of site types to the data, it is shown that, in 
2018, brucellosis-related zoonotic sites (geographical locations where 
human and non-human cases were detected; Figure 13) displayed a 
case density between 2.6 and 2.99 times as high as any site that only 
included non-zoonotic cases (i.e., those that only reported human, 
cattle, or sheep cases). This metric may inform decision-makers how, 
where and when interventions may be prioritized. In this scenario, sites 
that report a high density of zoonotic cases could be the first priority, 
followed by sites where non-zoonotic cases are reported with a high 
case density, and finally, sites that report a low case density involving 
any species. Source: reference (40).
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