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Endocrine disruptors and bladder
function: the role of phthalates in
overactive bladder

Li Liu†, Xia Li†, Xuexue Hao†, Zhunan Xu, Qihua Wang,

Congzhe Ren, Muwei Li and Xiaoqiang Liu *

Department of Urology, Tianjin Medical University General Hospital, Tianjin, China

Background: Phthalates, widely used as plasticizers, are pervasive environmental

contaminants and endocrine disruptors. Their potential role in overactive bladder

(OAB) pathogenesis is underexplored, necessitating further investigation into

their impact on OAB using large-scale epidemiological data.

Methods: This study utilized data from the National Health and Nutrition

Examination Survey (NHANES) spanning from 2011 to 2018. A weighted

multivariable logistic regression model was employed to examine the

relationship between urinary phthalate concentrations and OAB. Subgroup

analyses were conducted to explore di�erences in associations across various

subgroups. Restricted cubic spline (RCS) analysis was used to investigate the

potential non-linear relationship between urinary phthalate concentrations and

OAB. Additionally, Bayesian Kernel Machine Regression (BKMR) analysis was

performed to explore the overall e�ects and interactions of phthalate mixtures.

Results: In the multivariable logistic regression model fully adjusted for

confounding variables, higher concentrations ofMBzP andMiBPwere associated

with an increased risk of OAB, particularly in the highest tertiles (MBzP: OR

= 1.401, 95% CI: 1.108–1.771; MiBP: OR = 1.050, 95% CI: 1.045–1.056).

Subgroup analysis found that subgroup characteristics did not have a significant

moderating e�ect on the association between phthalates and OAB. RCS analysis

revealed a linear relationship between both MBzP and MiBP and OAB. BKMR

analysis confirmed a positive overall e�ect of phthalate mixtures on OAB risk,

with MBzP identified as the major contributing factor.

Conclusion: In our study cohort, a positive correlation between urinary phthalate

concentrations and OABwas observed, necessitating further research to validate

and refine this conclusion.
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Introduction

Phthalates, a class of synthetic chemicals extensively employed as plasticizers and

constituents of personal care products, have garnered significant attention due to their

pervasive environmental presence and potential health-disrupting effects (1). As phthalates

do not form covalent bonds when mixed with plastics, they are easily released into the

environment and leach from consumer products as plastics age and degrade, leading

to widespread human exposure (2). Phthalates are primarily absorbed via ingestion,

inhalation, and dermal contact, with vapor-phase phthalates representing a significant

route of exposure through skin absorption (3). Furthermore, these compounds have been
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detected in diverse human tissues and biological fluids, including

urine and blood (4, 5). The potential health risks posed by phthalate

exposure have attracted growing concern, especially due to their

function as endocrine disruptors (6). These compounds disrupt

hormonal regulation and are implicated in a range of adverse

health effects, including reproductive toxicity (7), developmental

abnormalities (8), and carcinogenic effects (9, 10).

Overactive bladder (OAB) is a widespread urological disorder

marked by symptoms including urinary urgency, frequency, and

nocturia, which may occur with or without urgency incontinence.

OAB afflicts millions globally, significantly diminishing quality

of life and resulting in physical, emotional, and social challenges

(11). Although OAB is highly prevalent, its pathophysiology is

not yet fully elucidated. Studies indicate a complex interaction

among factors related to the nervous system, bladder smooth

muscle, and urothelial cells (12). While genetic predisposition and

lifestyle factors have been investigated, environmental exposures,

particularly endocrine-disrupting chemicals such as phthalates, are

increasingly considered potential contributors to the onset and

progression of OAB (13).

Earlier research has examined the impact of phthalates

on multiple dimensions of human health, with some studies

highlighting their detrimental effects on the urinary system,

including associations with prostate cancer, bladder cancer, and

testicular toxicity (14–16). The study by Yang et al. demonstrated

that exposure to phthalates may elevate the risk of overactive

bladder; however, it utilized outdated data (13). Comprehensive,

population-based research employing large-scale epidemiological

data is required to clarify the potential association between

phthalate exposure and OAB. The objective of this study is to

evaluate the relationship between phthalate exposure and OAB

utilizing data from National Health and Nutrition Examination

Survey (NHANES) 2011–2018. By capitalizing on this extensive

and representative dataset, we aim to ascertain whether phthalate

exposure serves as a significant risk factor for OAB and may

contribute to the heightened burden of this condition within

the population.

Materials and methods

Data source and study population

This study draws on data from the 2011–2018 NHANES,

a cross-sectional survey intended to evaluate the health

and nutritional status of the civilian, non-institutionalized

U.S. population. The survey employs a complex, multistage

probability sampling design to ensure representativeness of the

U.S. population. Given the extensive scope of NHANES data,

including detailed urinary biomarker measurements of phthalate

metabolites, it provides a unique opportunity to investigate the

potential association between phthalate exposure and OAB on a

broad scale.

The study cohort comprised adults aged 20 years and above

who participated in NHANES between 2011 and 2018 and

had complete data on urinary phthalate metabolites and OAB

assessments. Based on this, individuals who were pregnant or had a

documented history of known diseases affecting bladder function

were first excluded. Ultimately, 6,228 participants were included

in Models 1 and 2. Then, individuals with missing covariate data

were excluded, resulting in a final inclusion of 4,451 participants in

Model 3 (Figure 1).

Assessment of urinary phthalate
concentrations

Isotope dilution high-performance liquid chromatography-

tandem mass spectrometry (HPLC-MS/MS) was employed for the

quantitative analysis of urinary phthalate metabolites. Urine was

processed using β-Glucuronidase for the digestion of glucurnide-

conjugated metabolites, followed by online solid-phase extraction

(SPE) coupled with reverse-phase HPLC-ESI-MS/MS. Detailed

experimental methods can be found in the NHANES 2017–

2018 Laboratory Methods. Urine samples were collected from

participants and analyzed for a range of phthalate metabolites,

including high-molecular-weight (HMW) phthalates such as

mono(carboxynonyl) phthalate (MCNP), mono(carboxyoctyl)

phthalate (MCOP), mono-2-ethyl-5-carboxypentyl phthalate

(MECP), mono(3-carboxypropyl) phthalate (MCPP), and

monobenzyl phthalate (MBzP). Low-molecular-weight (LMW)

phthalates, such as monoethyl phthalate (MEP), monobutyl

phthalate (MBP), and mono-isobutyl phthalate (MiBP), were also

included. The selection of these metabolites was based on their

prevalence in the general population and their potential health

implications (17, 18). Urinary creatinine levels were concurrently

measured to adjust for urine dilution in the analyses, detailed

experimental methods can be found in the NHANES 2017–2018

Laboratory Methods. Quality control procedures involved the use

of blanks, calibration standards, and quality control samples with

known concentrations of phthalate metabolites. All laboratory

analyses were conducted by the Laboratory Sciences Division of

the Centers for Disease Control and Prevention (CDC).

Assessment of OAB

The Overactive Bladder Symptom Score (OABSS) is a

standardized tool developed to quantify the severity of symptoms

in patients with OAB (19). Urinary symptom questionnaire data

from the NHANES survey were translated into OABSS scores to

determine the presence of OAB in study participants (20, 21)

(Table 1). Participants were asked: how often have you experienced

urinary leakage? A score of 0 on the OABSS corresponded to

“Never,” while “Less than once a month” and “A few times a month”

were both scored as 1. “A few times a week” was assigned a score of

2, and “Every day or night” was scored as 3. Nocturia was evaluated

in a similar manner, with scores assigned based on the frequency

of nocturnal awakenings to urinate. “0 times” corresponded to

an OABSS score of 0, “1 time” to a score of 1, and “2 times”

to a score of 2. The total OABSS was derived by summing the

scores across these categories, providing a quantitative measure

of OAB symptom severity for each participant. Individuals with a

total score of ≥3 were classified as having OAB (22). This scoring

approach provides a standardized evaluation of OAB within the
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FIGURE 1

The flowchart for participant screening in this study.

TABLE 1 Criteria for conversion of symptom frequencies recorded in

NHANES and OABSS scores.

NHANES score OABSS score

How often have urinary
leakage

Urge urinary incontinence
score

Never 0

Less than once a month 1

A few times a month 1

A few times a week 2

Every day or night 3

How many times urinate in
night

Nocturia frequency
Nocturia score

0 0

1 1

2 2

3 3

4 3

5 or more 3

OABSS, Overactive Bladder Symptom Score.

study cohort, thereby enhancing comparability and supporting

rigorous statistical analysis. In addition, we performed a sensitivity

analysis using an OABSS threshold of ≥5 to assess the robustness

of our main findings.

Covariates

Our analysis included a range of covariates to account

for potential confounders. The selection of these covariates

was guided by their established or hypothesized relationships

with phthalate exposure and OAB (23, 24). The covariates

considered in the analysis included age (years), gender (male

or female), race/ethnicity, body mass index (BMI, kg/m²),

educational attainment, socioeconomic status, smoking status

(current, former, never), alcohol consumption (light, moderate,

or heavy), hypertension, diabetes, hyperlipidemia, and a history

of cardiovascular disease. BMI, hypertension, diabetes, and

hyperlipidemia were evaluated using physical examination data,

while the other covariates were obtained from self-reported

questionnaire data.

Statistical analysis

All statistical analyses were conducted using Stata 17 and R

version 4.3.1. Survey design variables and sample weights were

integrated into all analyses, with MEC weights adjusted by a
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factor of 0.25 to yield final weights for the four survey cycles

spanning 2011 to 2018. MECweight refers to the weight assigned to

survey participants based on the Mobile Examination Center data.

Descriptive statistics were utilized to summarize the demographic

characteristics of the study cohort. Categorical variables were

represented using weighted proportions and 95% confidence

intervals (95%CI), while continuous variables were presented using

weightedmeans and standard errors (SE).We used SPSS to conduct

Pearson chi-squared tests for categorical variables and t-tests for

continuous variables to assess group differences. The association

between urinary phthalate metabolite concentrations and OAB

was assessed using multivariate logistic regression models, with

subgroup analyses performed to further investigate the findings.

To investigate the potential linear or non-linear associations

between urinary phthalate concentrations and OAB, a restricted

cubic spline (RCS) analysis was employed. The RCSmethod enables

flexible modeling of non-linear relationships without requiring

the imposition of a specific functional form. The results were

subsequently visualized to offer a comprehensive understanding of

the dose-response relationship (25).

We applied a Bayesian Kernel Machine Regression (BKMR)

model to evaluate the potential interactions among various

phthalate metabolites and their collective impact on OAB. The

BKMR approach is particularly effective for studies involving

multiple exposure mixtures, as it enables the assessment of

compound interactions and their combined effects on OAB

risk (26).

Results

Characteristics of study participants

The baseline characteristics of the study participants are

detailed in Table 2. The study included 4,451 participants, with

an average age of 46.46 years (SE = 0.33). Compared to

participants without OAB, those with OAB were more likely to

be older, predominantly female, and have a higher BMI (P <

0.001). Compared to the non-OAB population, the proportion

of individuals with hypertension, diabetes, and cardiovascular

diseases is higher in the OAB population (P < 0.001), while there

is no difference in the proportion of high cholesterol between

the two groups (P > 0.05). Furthermore, compared to non-

OAB participants, individuals with OAB exhibited elevated average

concentrations of specific phthalate metabolites, such as MBzP

and MiBP (9.12 vs. 7.94; 15.67 vs. 13.53; P < 0.05), while the

concentration of MCOP was found to be lower in participants with

OAB (27.29 vs. 37.93; P < 0.001). Compared to the non-OAB

population, the proportion of smokers is higher and the proportion

of drinkers is lower in the OAB population (P < 0.001).

Association between the urinary phthalate
concentrations and OAB

The association between urinary phthalate concentrations and

the risk of OAB was assessed using multivariable logistic regression

models (Table 3). After adjusting for potential confounders, we

observed that when phthalate concentrations were treated as

continuous variables, higher concentrations of HMW phthalate

MBzP were associated with an increased risk of OAB. This

association was more pronounced in the highest tertile range when

phthalate concentrations were treated as categorical variables (OR

= 1.401, 95% CI: 1.108, 1.771). Likewise, an increase in LMW

phthalate MiBP levels was correlated with a higher OAB risk,

especially in the highest tertile (OR = 1.050, 95% CI: 1.045, 1.056).

When using the OABSS threshold of ≥5 to define OAB, MBzP,

and MiBP still showed an association with OAB in model 3, after

adjusting for all covariates, especially in the higher percentiles

(OR = 1.509, 95% CI: 1.041, 2.186; OR = 1.555, 95% CI: 1.088,

2.224). The results of this sensitivity analysis are provided in the

Supplementary Table 1.

Subgroup analysis

To explore whether the association between phthalate exposure

and OAB varies across age, sex, and other covariates, we performed

subgroup analyses of MBzP and MiBP (Figure 2). The results

indicate that no significant interaction was found across all

subgroups (P> 0.05), suggesting that the effects ofMBzP andMiBP

concentrations on OAB are consistent among these subgroups,

and subgroup characteristics did not have a significant moderating

effect on the associations between MBzP and OAB, as well as MiBP

and OAB.

RCS analysis

We conducted a RCS analysis to assess the potential non-

linear relationship between urinary phthalate concentrations and

OAB risk (Figure 3). The results indicated a positive correlation

between MBzP and MiBP with OAB (P for overall < 0.05), with

the relationship being linear (P for non-linear > 0.05).

BKMR analysis

BKMR analysis revealed an overall positive impact of phthalate

mixtures on OAB risk, indicating that higher levels of combined

exposure are associated with an increased risk of OAB. The results

of the BKMRmodel indicate that MBzP has the highest probability

of inclusion (P = 1.00), suggesting that MBzP may be the

primary factor contributing to this effect. The joint and individual

effects of phthalate metabolites on OAB risk as revealed by the

BKMR analysis are presented in Figures 4A, B. Furthermore, the

analysis explored potential interactions between different phthalate

exposures, but no significant interactions were found (Figure 4C).

Discussion

In this study, we leveraged data from NHANES 2011–

2018 to investigate the association between urinary phthalate

concentrations and the risk of OAB. Our findings indicate that

higher concentrations of HMW phthalate metabolite MBzP and
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TABLE 2 General baseline characteristics of the participants by overactive bladder or non-overactive bladder in the NHANES 2011–2018a.

Characteristic Total Non-overactive bladder Overactive bladder P-value

(n = 4,451) (n = 3,416) (n = 1,035)

Age (years), mean (SE) 46.46± 0.33 43.96± 0.36 56.47± 0.61 <0.001

Sex (%) <0.001

Male 50.23 (48.20, 52.25) 54.06 (51.78, 56.33) 34.89 (30.76, 39.27)

Female 49.77 (47.75, 51.80) 45.94 (43.67, 48.22) 65.11 (60.73, 69.24)

Race (%) <0.001

Non-Hispanic White 68.12 (66.54, 69.66) 68.08 (66.3, 69.81) 68.29 (64.84, 71.55)

Non-Hispanic Black 10.50 (9.76, 11.29) 9.74 (8.94, 10.60) 13.56 (11.76, 15.58)

Mexican American 7.77 (7.06, 8.54) 7.96 (7.15, 8.85) 7.01 (5.73, 8.54)

Non-Hispanic Asian 4.63 (4.21, 5.10) 5.11 (4.61, 5.67) 2.72 (2.09, 3.53)

Hispanic 5.74 (5.13, 6.41) 5.77 (5.08, 6.54) 5.61 (4.41, 7.12)

Other Race 3.23 (2.63, 3.98) 3.34 (2.67, 4.17) 2.81 (1.61, 4.89)

Educational level (%) <0.001

Below high school 11.62 (10.66, 12.65) 10.59 (9.56, 11.72) 15.70 (13.42, 18.29)

High school 22.09 (20.43, 23.85) 21.87 (20.01, 23.86) 22.94 (19.46, 26.85)

Some college or AA degree 32.27 (30.44, 34.15) 31.64 (29.61, 33.74) 34.78 (30.76, 39.04)

College graduate or above 34.03 (32.04, 36.08) 35.89 (33.64, 38.21) 26.57 (22.50, 31.08)

Marital status (%) 0.016

Married or living with a partner 36.96 (35.07, 38.90) 36.79 (34.65, 38.98) 37.65 (33.67, 41.81)

Living alone 63.04 (61.10, 64.93) 63.21 (61.02, 65.35) 62.35 (58.19, 66.33)

Socioeconomic status (%) <0.001

Low 20.49 (19.17, 21.88) 19.19 (17.73, 20.73) 25.7 (22.63, 29.02)

Moderate 33.33 (31.51, 35.2) 32.43 (30.40, 34.52) 36.95 (32.91, 41.19)

High 46.18 (44.12, 48.25) 48.38 (46.08, 50.69) 37.35 (32.87, 42.05)

BMI (%) <0.001

<25 kg/m2 29.53 (27.73, 31.41) 32.03 (29.94, 34.19) 19.54 (16.44, 23.07)

25–30 kg/m2 32.42 (30.53, 34.37) 33.03 (30.91, 35.23) 29.96 (25.93, 34.33)

≥30 kg/m2 38.05 (36.10, 40.03) 34.94 (32.79, 37.15) 50.50 (46.11, 54.88)

Smoking status (%) <0.001

Never 57.88 (55.86, 59.86) 59.04 (56.77, 61.28) 53.20 (48.83, 57.52)

Former 23.09 (21.38, 24.90) 22.24 (20.33, 24.27) 26.51 (22.82, 30.56)

Current 19.03 (17.56, 20.59) 18.72 (17.06, 20.49) 20.29 (17.26, 23.70)

Alcohol intake (%) 0.001

Low 10.42 (9.38, 11.56) 9.49 (8.41, 10.68) 14.17 (11.44, 17.41)

Moderate 39.75 (37.75, 41.78) 39.78 (37.53, 42.07) 39.61 (35.33, 44.06)

High 49.83 (47.8, 51.86) 50.74 (48.45, 53.02) 46.22 (41.90, 50.60)

Hypertension (%) <0.001

No 85.76 (84.33, 87.09) 87.57 (86.01, 88.98) 78.54 (74.85, 81.81)

Yes 14.24 (12.91, 15.67) 12.43 (11.02, 13.99) 21.46 (18.19, 25.15)

Diabetes (%) <0.001

No 89.82 (88.59, 90.93) 92.08 (90.77, 93.22) 80.78 (77.43, 83.73)

(Continued)
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TABLE 2 (Continued)

Characteristic Total Non-overactive bladder Overactive bladder P-value

(n = 4,451) (n = 3,416) (n = 1,035)

Yes 10.18 (9.07, 11.41) 7.92 (6.78, 9.23) 19.22 (16.27, 22.57)

Hypercholesterolemia (%) 0.366

No 88.48 (87.05, 89.77) 88.87 (87.26, 90.30) 86.91 (83.58, 89.64)

Yes 11.52 (10.23, 12.95) 11.13 (9.70, 12.74) 13.09 (10.36, 16.42)

Cardiovascular disease (%) <0.001

No 92.69 (91.65, 93.62) 94.67 (93.58, 95.59) 84.77 (81.73, 87.39)

Yes 7.31 (6.38, 8.35) 5.33 (4.41, 6.42) 15.23 (12.61, 18.27)

High molecular phthalates (ng mL−1)
mean (SE)

MCNP 4.43± 0.43 4.2± 0.26 5.33± 1.88 0.733

MCOP 35.8± 1.85 37.93± 2.19 27.29± 2.94 <0.001

MECP 12.25± 0.5 12.23± 0.59 12.32± 0.88 0.062

MCPP 5.93± 0.61 6.05± 0.72 5.46± 0.95 0.610

MBzP 8.18± 0.32 7.94± 0.36 9.12± 0.71 0.031

Low molecular phthalates (ng mL−1)
mean (SE)

MEP 147.31± 12.73 146.5± 14.81 150.56± 23.26 0.702

MBP 16.03± 1.07 16.05± 1.31 15.96± 1.03 0.847

MiBP 15.24± 0.59 13.53± 0.67 15.67± 0.72 0.040

OABSS score, mean (SE) 1.49± 0.03 0.92± 0.02 3.73± 0.04 <0.001

aParticipants included in Model 3.

HMW, high molecular weight; LMW, low molecular weight; MCNP, mono(carboxynonyl)phthalate; MCOP, mono(carboxyoctyl) phthalate; MECP, Mono-2-ethyl-5-carboxypentyl phthalate;

MCPP, mono-(3-carboxypropyl) phthalate; MBzP, mono-benzyl phthalate; MEP, mono-ethyl phthalate; MBP, mono-n-butyl phthalate; MiBP, mono-isobutyl phthalate.

LMW phthalate metabolite MiBP are associated with an increased

risk of OAB. These associations were particularly pronounced in

the highest tertile of phthalate exposure. Subgroup analysis found

that subgroup characteristics did not have a significant moderating

effect on the associations between MBzP and OAB, as well as MiBP

andOAB. Furthermore, RCS analysis indicated a linear relationship

between these phthalates and OAB risk, while BKMR analysis

identified MBzP as the primary contributor to the overall positive

effect of the phthalate mixture on OAB risk.

Our findings are consistent with previous research, suggesting

that phthalates may exert detrimental effects on bladder function.

Specifically, di-n-butyl phthalate (DBP) has been shown to

promote bladder cancer progression through the induction of gene

alterations (15), DBP can be metabolized in the body to form

MBzP and MiBP. Beyond the bladder, phthalates may also have

a range of harmful effects on the urinary system. For instance,

phthalates have been linked to kidney damage throughmechanisms

involving PINK1/Parkin-mediated mitophagy and mitochondrial

energy deficiency (27). Additionally, phthalate exposure has been

associated with an increased risk of urinary incontinence and the

induction of prostatic hyperplasia (17, 28). Multiple studies have

also identified a strong association between phthalate exposure and

the incidence and progression of various urinary system tumors

(29, 30). Furthermore, our study identified a significant association

between MBzP and MiBP and OAB, while the other six phthalates

did not demonstrate such correlations. Considering the substantial

differences in MBzP and MiBP levels between the OAB and non-

OAB groups within the study population, we propose that the

concentration differences of other phthalates may be insufficient

to indicate a statistically significant association with OAB. Our

findings further reveal a stronger association between MBzP and

OABwithin the higher percentile ranges. Previous studies have also

indicated that MBzP tends to exhibit significant associations with

other diseases among phthalates (31, 32), which may be attributed

to its known reproductive toxicity (33).

The biological mechanisms underlying phthalate exposure

and OAB may be exceedingly complex, encompassing multiple

dimensions. Existing relevant research is relatively limited and has

yet to elucidate these specific mechanisms comprehensively. One

of the endocrine disruptors, phthalates are well-known for their

ability to interfere with normal hormonal regulation. Research

indicates that exposure to phthalates can lead to significant

alterations in thyroid hormone levels (34). Furthermore, studies

have found that phthalate exposure is negatively correlated with

the estrogen/testosterone ratio (35). Estrogen plays a crucial role

in maintaining the homeostasis of the urinary system, specifically

by influencing urethral mucosal thickness, enhancing the tone of

the urethral sphincter, and optimizing detrusor muscle function,

all of which contribute to the stability of the urinary system

(36). As estrogen levels decline, particularly in postmenopausal
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TABLE 3 The weighted multivariate logistic regression analysis of the relationship between phthalates exposures and overactive bladder.

HMW phthalates Model 1a (n = 6,228) Model 2b (n = 6,228) HMW phthalates Model 3c (n = 4,451)

OR (95% CI) OR (95% CI) OR (95% CI)

MCNP 0.999 (0.995–1.004) 1.001 (0.997–1.005) MCNP 1.002 (0.998–1.006)

Q1 (<1.1) Reference Reference Q1 (<1.2) Reference

Q2 (1.1–2.7) 1.212 (1.024–1.434)∗ 1.211 (0.977–1.500) Q2 (1.2–2.8) 1.223 (0.979–1.528)

Q3 (>2.7) 0.901 (0.756–1.074) 1.083 (0.833–1.409) Q3 (>2.8) 1.058 (0.808–1.386)

MCOP 0.998 (0.997–0.999)∗∗ 0.999 (0.998–1.000) MCOP 1.000 (0.998–1.001)

Q1 (<5.2) Reference Reference Q1 (<5.5) Reference

Q2 (5.2–17.47) 0.974 (0.823–1.152) 0.818 (0.659–1.017) Q2 (5.5–18.6) 0.783 (0.626–1.002)

Q3 (>17.47) 0.843 (0.710–1.002) 0.827 (0.623–1.098) Q3 (>18.6) 0.782 (0.587–1.042)

MECP 0.998 (0.996–1.001) 0.998 (0.996–1.001) MECP 0.997 (0.993–1.000)

Q1 (<6.5) Reference Reference Q1 (<6.4) Reference

Q2 (6.5–14.7) 1.195 (1.007–1.418)∗ 1.172 (0.942–1.458) Q2 (6.4–14.6) 1.106 (0.884–1.382)

Q3 (>14.7) 1.099 (0.924–1.306) 1.081 (0.821–1.422) Q3 (>14.6) 0.914 (0.698–1.196)

MCPP 1.000 (0.998–1.001) 1.000 (0.999–1.002) MCPP 1.000 (0.999–1.002)

Q1 (<0.9) Reference Reference Q1 (<0.9) Reference

Q2 (0.9–2.4) 1.097 (0.925–1.301) 0.987 (0.791–1.233) Q2 (0.9–2.4) 1.035 (0.824–1.299)

Q3 (>2.4) 0.983 (0.828–1.166) 1.051 (0.793–1.394) Q3 (>2.4) 1.156 (0.867–1.542)

MBzP 1.005 (1.001–1.009)∗ 1.007 (1.003–1.011)∗∗∗ MBzP 1.005 (1.001–1.008)∗

Q1 (<2.2) Reference Reference Q1 (<2.1) Reference

Q2 (2.2–6.4) 1.067 (0.898–1.268) 1.093 (0.889–1.344) Q2 (2.1–6.3) 0.993 (0.803–1.228)

Q3 (>6.4) 1.140 (0.960–1.354) 1.329 (1.041–1.695)∗ Q3 (>6.3) 1.401 (1.108–1.771)∗∗

LMW phthalates LMW phthalates

MEP 1.000 (1.000–1.000) 1.000 (1.000–1.000) MEP 1.000 (1.000–1.000)

Q1 (<19.7) Reference Reference Q1 (<19.5) Reference

Q2 (19.7–68.6) 0.924 (0.776–1.099) 0.824 (0.677–1.003) Q2 (19.5–67.9) 0.808 (0.659–1.110)

Q3 (>68.6) 1.188 (1.004–1.405)∗ 1.060 (0.865–1.299) Q3 (>67.9) 0.944 (0.769–1.158)

MBP 1.000 (0.998–1.001) 0.999 (0.997–1.001) MBP 0.999 (0.997–1.001)

Q1 (<6.3) Reference Reference Q1 (<6.1) Reference

Q2 (6.3–15.4) 1.168 (0.982–1.389) 1.111 (0.875–1.409) Q2 (6.1–15.3) 1.179 (0.924–1.504)

Q3 (>15.4) 1.266 (1.067–1.503)∗∗ 1.171 (0.869–1.578) Q3 (>15.3) 1.281 (0.950–1.728)

MiBP 1.004 (1.001–1.007)∗ 1.004 (1.002–1.007)∗∗ MiBP 1.004 (1.001–1.007)∗

Q1 (<4.9) Reference Reference Q1 (<4.8) Reference

Q2 (4.9–11.9) 0.984 (0.830–1.168) 0.930 (0.741–1.167) Q2 (4.8–11.9) 0.843 (0.668–1.065)

Q3 (>11.9) 0.992 (0.837–1.176) 1.048 (1.043–1.053)∗∗∗ Q3 (>11.9) 1.050 (1.045–1.056)∗

aModel 1: no adjusted.
bModel 2: adjusted for age, sex.
cModel 3: adjusted for all covariates.
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p <0.001. Bold values indicate statistical significance.

women, these protective mechanisms may weaken, potentially

leading to bladder dysfunction (37). Some studies suggest that both

local and systemic estrogen supplementation may help alleviate

OAB symptoms (38). Phthalate exposure has also been linked

to lipid peroxidation, DNA damage, and cellular dysfunction

(39). Emerging research also indicates a close association between

gut microbiota and the risk of progression of OAB symptoms

(40). Studies have found that phthalate exposure can suppress

gut microbiota activity, and these alterations may influence

bladder function through the gut-bladder axis (41). Although

several potential biological mechanisms have been proposed, we

acknowledge that the specific roles of these mechanisms remain
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FIGURE 2

Subgroup analysis of phthalates exposures and overactive bladder. (A) MBzP; (B) MiBP; Each group includes adjustment for all covariates except for

the grouping factor.

to be fully elucidated, necessitating further research to validate

these hypotheses.

One of the main strengths of this study is the use of NHANES

data, which provides a large, nationally representative sample

with detailed information on phthalate exposure and OAB status.

Employing a suite of advanced statistical techniques, including

multivariable logistic regression, RCS, and BKMR analysis, enabled

a thorough and nuanced assessment of these associations.

Nonetheless, certain limitations warrant consideration. The cross-

sectional nature of this study inherently constrains our ability to

infer causality. Additionally, phthalate exposure was gauged using

a single urine sample, which may not adequately capture long-term

exposure. Furthermore, further classification of OAB into mild,

moderate, and severe categories according to the OABSS scoring

system may enhance the assessment of the impact of phthalate

exposure on OAB of varying severity. Moreover, although many

covariates were adjusted for, the possibility of residual confounding

factors cannot be completely ruled out. For example, beverage

choice seems to be a potential confounder; however, it could not be

included in the analysis due to a lack of data. Another limitation

of this study is the restricted number of phthalate metabolites

analyzed (n = 8). Other phthalate metabolites not included in

this research may have a more significant impact on OAB. The

findings of this study bear substantial public health implications.

Considering the pervasive use of phthalates in consumer products,

curbing exposure to these chemicals could be a pivotal measure

in mitigating OAB risk, especially among vulnerable populations

such as women and the older adult. Our findings underscore the

imperative for regulatory actions to curtail phthalate exposure,

particularly in products predominantly used by populations at

heightened risk for OAB. Further investigation is warranted to

elucidate the biological mechanisms underpinning the phthalate-

OAB association, with a particular focus on the roles of endocrine

disruption and inflammation in OAB pathogenesis.
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FIGURE 3

Weighted RCS analysis of the association between phthalates exposures and overactive bladder. (A) MCNP; (B) MCOP; (C) MECP; (D) MCPP; (E)

MBzP; (F) MEP; (G) MBP; (H) MiBP. The model adjusted for all covariates.

FIGURE 4

(A) Mixture overall e�ect in BKMR analysis; (B) single-component e�ect in BKMR analysis; (C) multivariable exposure-response interaction in BKMR

analysis; The model adjusted for all covariates. est: overall risk estimate for mixed exposure; quantile: percentile ranges of mixed exposure.

Conclusions

In conclusion, our study provides some evidence that

higher concentrations of specific urinary phthalate metabolites,

particularly MBzP and MiBP, are associated with an increased

risk of OAB. Given the widespread use of phthalates in consumer

products and their ubiquitous presence in the environment, our

findings carry significant public health implications. Reducing

phthalate exposure, particularly among women and the older adult,

may be a crucial step in lowering the risk of OAB and improving

overall urinary health. Further research is needed to validate

these findings and to explore potential interventions aimed at

minimizing phthalate exposure and its impact on bladder function.
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