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Introduction: Accurate and consistent data play a critical role in enabling health 
officials to make informed decisions regarding emerging trends in SARS-CoV-2 
infections. Alongside traditional indicators such as the 7-day-incidence rate, 
wastewater-based epidemiology can provide valuable insights into SARS-CoV-2 
concentration changes. However, the wastewater compositions and wastewater 
systems are rather complex. Multiple effects such as precipitation events or industrial 
discharges might affect the quantification of SARS-CoV-2 concentrations. Hence, 
analysing data from more than 150 wastewater treatment plants (WWTP) in Germany 
necessitates an automated and reliable method to evaluate data validity, identify 
potential extreme events, and, if possible, improve overall data quality.

Methods: We developed a method that first categorises the data quality of WWTPs 
and corresponding laboratories based on the number of outliers in the reproduction 
rate as well as the number of implausible inflection points within the SARS-CoV-2 
time series. Subsequently, we scrutinised statistical outliers in several standard 
quality control parameters (QCP) that are routinely collected during the analysis 
process such as the flow rate, the electrical conductivity, or surrogate viruses like 
the pepper mild mottle virus. Furthermore, we investigated outliers in the ratio of 
the analysed gene segments that might indicate laboratory errors. To evaluate the 
success of our method, we measure the degree of accordance between identified 
QCP outliers and outliers in the SARS-CoV-2 concentration curves.

Results and discussion: Our analysis reveals that the flow and gene segment ratios 
are typically best at identifying outliers in the SARS-CoV-2 concentration curve 
albeit variations across WWTPs and laboratories. The exclusion of datapoints based 
on QCP plausibility checks predominantly improves data quality. Our derived data 
quality categories are in good accordance with visual assessments.

Conclusion: Good data quality is crucial for trend recognition, both on the 
WWTP level and when aggregating data from several WWTPs to regional or 
national trends. Our model can help to improve data quality in the context of 
health-related monitoring and can be optimised for each individual WWTP to 
account for the large diversity among WWTPs.
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1 Introduction

The Covid-19 pandemic has underscored the importance of 
health surveillance of large populations. Having accurate and 
dependable data on SARS-CoV-2 infection rates is essential for health 
authorities to implement or adjust measures. Previous projects such 
as the EU-funded ESI-CorA (Emergency Support Instrument–
Detection of SARS-CoV-2 in Wastewater) project have demonstrated 
that wastewater-based epidemiology (WBE) can be a valuable and 
cost-efficient addition to clinical surveillance [e.g., (1–7)]. In contrast 
to clinical surveillance, WBE is independent of the current testing and 
reporting regime and able to monitor large populations without their 
active participation. One of the first SARS-CoV-2 wastewater 
surveillance approaches for few German wastewater treatment plants 
(WWTP) was initiated as early as November 2020 (8, 9). Through 
early integration of WBE results into local pandemic management 
systems, participating health authorities gained the advantage of 
drawing information from two independent monitoring systems, the 
clinical surveillance and WBE. The swift transmission of robust results 
to health authorities is challenging but pivotal. The consolidation, 
evaluation, and transmission of data from various stakeholders 
requires significant personnel and time. Consequently, dashboards 
and corresponding interfaces were developed to facilitate the 
automated transmission and visualization of data (10). While such 
automated processes save time and streamline routine tasks, they 
necessitate integrated quality assurance measures.

At present, the project AMELAG (‘Abwasserbasiertes Monitoring 
zur Epidemiologischen Lagebewertung’) aims to improve the ongoing 
SARS-CoV-2 surveillance in Germany and to expand surveillance to 
other pathogens such as influenza or antimicrobial resistance genomes 
of bacteria (11). The surveillance infrastructure and data serve as an 
additional resource for national and regional health authorities to both 
monitor the spread of pathogens and to offer a permanent platform for 
the surveillance of future outbreaks. The project supports the 
development of WWTP specific setups based on common sampling and 
analysis guidelines but without specifying every aspect of the analysis 
chain such as the analysis kits used by laboratories. Within the project, 
more than 150 WWTPs collect samples biweekly at the WWTPs’ 
inflows. The samples are then analysed in 22 laboratories for SARS-
CoV-2 with various methods that are based on Polymerase Chain 
Reaction (PCR). WWTPs and laboratories provide additional parameter 
for the samples, such as the daily inflow to the plant (Q) or the electrical 
conductivity (EC). The participating WWTPs differ from each other in 
many aspects such as capacity, the sewer system expansion, combined 
or separated sewer systems, and population density.

Several studies with different sampling and analytical concepts 
have proven that WBE can be  mapped onto other SARS-CoV-2 
proxies such as the 7-day-incidence rate (1, 12–15). Trends of both 
proxies are similar. Most of these studies compare mid-term to long-
term data but few of them focus on the predictive capabilities of 
WBE. However, these predictive capabilities are key when WBE 
should act as an early warning system (16). Many studies focus on 
quality control along the steps of sampling and analysis and aim to 
establish standardised protocols [e.g., (1, 17)].

The 7-day-incidence rate serves as a relatively precise indicator for 
WBE model fits, particularly during the initial stages of the pandemic 
when testing and reporting was mandatory. However, this precision 
diminished as the pandemic progressed, vaccination rates increased, 
and testing and reporting declined subsequently. In consequence, it 
can be expected that the number of infected persons covered by the 
7-day incidence declined and the relationship between the actual 
concentration of the SARS-CoV-2 gene segments (hereinafter ‘SARS 
concentration’) in wastewater and the clinical data became more 
complex to discern. This also means that WBE, and in particular 
models that attempt to improve the quality of WBE can hardly 
be verified using the current 7-day-incidence rate or other, previously 
used proxies. Using historic 7-day-incidence rate data sets is only a 
suitable option if WWTPs started monitoring early on and include 
phases of high and low incidence.

However, the model’s success can be evaluated by analysing the 
SARS concentration curve itself. The development of the SARS 
concentration in wastewater is assumed to be smooth and not subject 
to abrupt changes, hence we expect steady curves. Nevertheless, a 
“steady” curve is subjective and a quantifiable parameter is needed to 
evaluate the “steadiness.” The reproduction rate describes the average 
number of new infections based on a single infection in clinical data. 
Transferred to WBE, the reproduction rate describes the development 
of the SARS concentration in wastewater. Huisman et al. (18) found a 
good accordance between the reproduction rate from wastewater 
(hereinafter Rw) and the reproduction rate from clinical cases. In 
contrast to indicators based on additional sample information, Rw is 
directly derived from SARS concentration data, making it a more 
straightforward indicator for assessing the plausibility of changes (10). 
In consequence, we  used Rw to assess the validity of SARS 
concentration data points.

The SARS concentrations show short-term fluctuations, their 
degree varies across different WWTPs. The stronger the fluctuation, 
the harder it is to identify clear trends. Trends provide a proxy for 
an increase or decrease of the SARS-CoV-2 prevalence in the 
population. Significant fluctuations in SARS concentrations may 
indeed be  genuine, influenced by changes in the wastewater 
composition induced by precipitation or industrial discharges. But 
they may also stem from errors during sampling, sample 
preparation, PCR detection, or data transfer. Domestic wastewater 
is expected to be the primary source of the SARS concentration 
compared to other types of wastewater such as industrial wastewater 
or stormwater. In theory, the share and composition of domestic 
wastewater is fluctuating and most studies recognise the need to 
process SARS concentration data to account for these fluctuations 
[e.g., (19–21)]. A common approach is the use of additional sample 
parameters, which might give information on the share of domestic 
wastewater, are suitable to identify exceptional events or give a hint 
on sampling or analysis errors. They can either stem from the 
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WWTP (e.g., Q, pH) or the laboratory (e.g., biomarkers). 
Hereinafter, we  call these additional parameters ‘quality control 
parameter’ (QCP).

There are basically two possible approaches: the first is to exclude 
data points that fail a plausibility check due to unusually high or low 
values in certain QCPs. The second approach is to normalise SARS 
concentrations with a factor based on, e.g., QCP variation. 
Normalisation therefore assumes a correlation between the share of 
domestic wastewater and a parameter and adjusts the SARS 
concentration. In contrast to that, plausibility checks use exceptional 
values of parameters to identify and possibly exclude implausible data. 
Developing a normalisation method proves to be significantly more 
challenging than evaluating the impacts of QCP plausibility checks. 
This is largely due to additional uncertainties such as the relation 
between a QCP and the share of domestic wastewater.

Several studies use different QCPs to approximate the share of 
domestic wastewater and to calculate the dilution by other types of 
wastewater. The most common are the daily inflow to the WWTP (Q) 
(22, 23), wastewater quality parameters (e.g., ammonia, electrical 
conductivity) (22, 23), biomarkers such as pepper mild mottle virus 
(PMMoV) (16, 23–25) or population dynamics (23, 26). Specific 
chemical compounds such as pharmaceuticals or the respective 
transformation products might have a good approximation of 
domestic wastewater due to their constant use (27). However, specific 
chemical QCPs are not part of the routine SARS-CoV-2 monitoring 
on WWTP and would require additional effort.

The flow to a WWTP typically exhibits only minor fluctuations 
during dry weather, however, during wet weather events, the flow can 
change significantly. Therefore, normalisation with the flow might 
improve the data quality, although it remains unclear if the relation 
between flow variation and the share of domestic wastewater is linear. 
Overall, most studies indicate a limited success of normalisation, with 
results varying widely among WWTPs. For example, Nagarkar et al. 
(28) show that a normalisation with the flow improved the correlation 
with clinical data for some WWTPs but it deteriorated for others. The 
same can be observed for other QCPs. Joseph-Duran et al. (29) state 
that, e.g., a normalisation with PMMoV does not improve the data 
whereas Wartell et  al. (25) claim that it does. Hence, the 
implementation of a normalisation method or data plausibility checks 
requires a comprehensive and WWTP-specific analysis, given the 
absence of overarching logical relations between parameters.

In addition to wastewater specific QCPs, there are laboratory 
specific QCPs. The correlation between gene segments (10, 12) serves 
as a suitable and readily obtainable QCP for validating data points and 
assessing the precision of PCR-measurements.

Typically, averages (arithmetic or geometric mean) of two or more 
different SARS-CoV-2 gene segments are used in WBE studies. 
According to Marques dos Santos et al. (30), a multigene analysis 
involving three gene segments demonstrates the best fit and the 
highest correlation with reported active cases. Their analysis suggests 
that a dual gene approach did not yield significant improvements 
compared to a single gene analysis. However, these findings are again 
specific for a WWTP and may not be applicable to other locations. In 
addition, a gene segment ratio unequal to 1 (e.g., 0.5) between the 
measured gene segments always creates a weighted mean. 
Consequently, the means of measurements from different gene 
combinations cannot be compared to other measurements without 
using a factor.

However, quantifying multiple gene segments can serve as a 
quality control for sample analysis, e.g., to detect mutations (10). 
Furthermore, not calculating a mean adds another level of complexity. 
With 6 gene segments, there is a theoretical maximum of 63 possible 
combinations (e.g., N1; N1 and N2; N1, N2, and E, etc.), while 4 gene 
segments yield 15 possible combinations. Assessing several QCP 
based on these combinations would result in a large matrix, beneficial 
for the detailed assessment of a single WWTP but overly complex for 
multiple WWTPs. Therefore, we calculated the geometric mean of the 
different gene segments analysed in each sample.

After reviewing the literature, it seems improbable that for 
different WWTPs, a single parameter is suitable to check the 
plausibility of SARS concentration data or is able to improve trend 
recognition through normalisation. Several studies have shown that a 
thorough analysis of the corresponding sewer system, population 
dynamics, industrial dischargers etc. of an individual WWTP provides 
additional information for plausibility checks or helps to choose a 
parameter for normalisation. However, these analyses are time- and 
cost-intensive for large datasets such as the AMELAG dataset. Thus, 
we chose to develop a method that automatically assesses and validates 
the generated data and is independent of background information for 
the individual WWTP. Our model aims to identify SARS 
concentration data that appear implausible and exclude them from the 
trend calculation. Hence, in a first step, it is imperative to establish 
criteria which enable an automated evaluation of data plausibility. In 
a second step, we  identified outliers in available quality control 
parameters (QCP) and compared their coincidence with implausible 
points in the SARS concentration curves. Then, we selected the QCP 
with the highest potential to improve the SARS concentration trend 
recognition based on statistical values. For each WWTP and 
laboratory, we subsequently used the identified QCP to exclude the 
corresponding outliers and assessed the change in the SARS 
concentration trend.

2 Materials and methods

This study is premised on the hypothesis that incorporating 
additional QCPs from both WWTPs and laboratories can enhance the 
quality of SARS concentration trends in wastewater and bolster the 
predictive capabilities of WBE. Initially, we elucidate the common 
sampling and detection methodologies of the research projects 
analysing WWTP samples and detecting SARS concentrations. 
We  then give a quick overview of the dataset and describe the 
statistical method that we have implemented in R (31), a software, to 
identify outliers (see Supplementary material for link to R codes).

2.1 Sampling, sample preparation, and 
detection

In both projects, ESI-CorA and AMELAG, technical guidelines 
were provided to WWTPs and laboratories, outlining general 
instructions for sampling, logistics, analysis, and data transfer. In 
general, 24 h-composite samples were taken either time-or flow-
proportionally at the inflow of the WWTPs. A 1 L sample was sent to 
the laboratory, maintaining it cool. After sample preparation and RNA 
extraction, SARS detection was carried out with qPCR or dPCR.
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Due to the need for a rapid response and the high number of 
participating WWTPs and laboratories, there is a large variety of 
applied and accepted methods, e.g., different PCR systems, extraction 
kits and so on. Detailed information on sampling, sample preparation, 
and detection is provided in the Supplementary material.

2.2 Description of the available data

Alongside the AMELAG dataset, our dataset comprises data 
obtained from the ESI-CorA research project, the Bay-VOC project 
(Molecular Genetic SARS-CoV-2 Surveillance Network in the State of 
Bavaria) as well as the ÖGD-Monitor Rheinland-Pfalz. The data from 
all projects were then consolidated in a unified database (see 
Supplementary material for link to input data). In February 2022, 
ESI-CorA started with 20 WWTPs and the number of WWTPs 
increased to 158 by January 2024. On average, WWTPs participated 
for approximately 347 days (SD = 256), with a mean number of 78 
samples collected per WWTP. The range of samples taken varied 
widely, from a minimum of 2 to a maximum of 244 samples, with a 
standard deviation of 64 samples.

The WWTP added information on sample specific parameters 
such as Q, the electrical conductivity (EC) and pH-value while 
laboratories provided data on SARS concentrations and the so called 
‘surrogate viruses’ pepper mild mottle virus (PMMoV) and 
CrAssphage (CrA). Ensuring a minimum level of data quality is 
essential for evaluating the data from various WWTP and conducting 
statistical analyses. Overall data quality varies among WWTP due to 
differences in, e.g., monitoring periods or wastewater composition. 
The used detection methods vary highly between laboratories; hence 
WWTP datasets were assessed separately if the analysing laboratory 
changed during the analysis period. All subsequent analyses are thus 
WWTP and laboratory (WWTP-Lab) specific.

We initiated our data analysis process by excluding entries outside 
the analysis period, which ranged from January 1, 2022, to January 31, 
2024. Due to the lack of standardisation for limits of detection and 
quantification, we removed data points if one of the measured gene 
segments was below the indicated limit of quantification (LOQ). If 
laboratories did not provide a limit of quantification, we set the limit of 
quantification to 4,000 gc/L (gene copies per litre), representing the 
highest LOQ in our associated laboratory. Out of the initial 12,796 data 
points, 532 were below the LOQ. We excluded all WWTP-Labs with less 
than 15 SARS concentration measurements (above the LOQ). From the 
remaining 157 WWTP-Lab datasets, the flow (Q) and the pH-value are 
the most commonly measured parameters (157 and 140 WWTP-Lab), 
followed by EC and PMMoV (130 and 122). CrAssphage is reported by 
significantly fewer WWTP-Labs (28). The most common SARS gene 
segment is from the envelope protein (E), followed by the nucleocapsid 
proteins N2 and N1 (106, 102 and 100 WWTP-Labs respectively). The 
SARS gene segments open reading frame (ORF) and the RNA dependent 
RNA polymerase (RdRp) are measured in fewer WWTPs (51 and 63); 
the spike protein (S) gene segment was measured in only 2 WWTPs.

2.3 Statistical methods to identify outliers

We identified statistical outliers using an inter quartile range 
(IQR)-method. Outliers are defined to be either smaller than the lower 

bound or larger than the upper bound. The calculation of both bounds 
is as follows:

  1 1.5Lower bound Q IQR= −  (1)

  3 1.5Upper bound Q IQR= +  (2)

Q1 represents the 25th percentile, IQR the interquartile range 
(Q3-Q1) and Q3 the 75th percentile. The scale is set to 1.5, which equals 
a standard deviation of 2.7 from the mean in case of a normal distribution.

Outliers in ratios, such as those of measured gene segments or the 
reproduction rate must be identified distinctively. Regarding ratios, 
particularly those being close to 1 or falling below, the standard IQR 
method tends to underestimate the lower boundary. To address this, 
we first normalise the respective data by dividing each value through 
the data sets median to centre it at around 1. We have chosen the 
median because it is less sensitive to outliers compared with other 
statistical measures such as the mean. Second, we define the lower 
boundary to be 1 divided by the upper boundary:

 

1   
3 1.5

Lower bound for factors
Q IQR

=
+  

(3)

    3 1.5Upper bound for factors Q IQR= +  (4)

This procedure disregards the 25th percentile but results in a 
symmetric definition of outliers. Consequently, both the lower and 
upper boundaries represent the same ratio.

3 Results

First, we analysed and compared the QCPs from WWTPs and 
laboratories to identify any consistent patterns that could facilitate a 
standardised check for data plausibility. Subsequently, we evaluated 
and categorised the WWTP-Lab specific SARS concentration curves 
by detecting outliers in the reproduction rates and assessing the 
number of implausible inflection points. We aggregated data from 
these different WWTP-Lab categories and investigated the uncertainty 
and informative value of the resulting curves.

Moreover, we  conducted a detailed analysis of the QCPs, 
determining their ranges and flagging any outliers that may indicate 
extraordinary events or errors leading to potentially unreliable SARS 
concentrations. After identifying outliers, we assessed the effectiveness 
of our methodology in identifying implausible SARS concentration 
data by calculating the F1-score for each QCP.

Finally, we compared the processed data with the original data 
and examined how both, the WWTP-Lab specific trends and the 
predictive capabilities of the aggregated dataset have been affected.

3.1 WWTP related data: pH-value, EC, Q, 
surrogates

The participating WWTPs are spread across Germany, exhibiting 
a wide range of diversity, regarding capacity, geographical and 
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topographical location, sewer systems, connected industry, and 
commercial dischargers. This diversity is reflected in the quantity, 
quality, and composition (domestic, industrial, groundwater 
infiltration, etc.) of the wastewater. The median flow of the 
participating WWTPs ranges between 16 and 3,545 L/s. As an 
example, Figure 1 shows the normalised flow (WWTP specific flow 
divided by its median) for some exemplary WWTPs. While some 
WWTPs exhibit only minor variations, others show a significantly 
higher variation, which can be  quantified with the IQR of the 
normalised flow values. The Q1 and Q3 for the IQR of the normalised 
flow lie at 0.31 and 0.60, respectively.

The QCPs PMMoV, CrAssphage, pH, and EC were normalised 
with their respective medians and show significant variations between 
the WWTPs. The data can be  found in respective figures in 
Supplementary Figures S1–S5. For PMMoV, the IQR of the normalised 
values ranges between 0.82 and 1.27 (Q1 & Q3), for CrAssphage 
between 0.77 and 1.43. Hence, the so called ‘surrogate’ viruses have 
larger variations than Q. EC (normalised values: Q1 = 0.19 and 
Q3 = 0.34) and the pH-value have much smaller variations 
(normalised values: Q1 = 0.02 and Q3 = 0.05, however, IQR for 
pH-values are not directly comparable due to the logarithmic scale 
and are not further considered here).

We assume that QCPs remain relatively constant in domestic 
wastewater and change is due to dilution from other wastewater types. 
Sampling always takes place on the same working days (Monday & 
Wednesday, usually from the early morning until the early morning 
of the following day), so we assume a relatively constant amount of 
domestic wastewater for a given WWTP. Therefore, an increased flow 
is attributed to non-domestic wastewater and for the QCPs PMMoV, 
CrAssphage and EC we expect a negative linear correlation with the 
flow. Figure 2 depicts the Pearson correlation coefficient between the 
flow and the three QCPs PMMoV, CrAssphage, and EC for each 
WWTP-Lab where they were analysed. For PMMoV, at most of the 
WWTP-Labs, the Pearson correlation coefficient is negative with a 

median of −0.17 (Q1 = −0.32 and Q3 = −0.02). A negative Pearson 
correlation coefficient is in accordance with the hypothesis that the 
dilution of domestic wastewater by stormwater or industrial discharges 
can be observed with the PMMoV concentration. However, most 
correlation coefficients lie between 0 and −0.5, indicating only a very 
weak to weak linear relation.

The correlation of CrAssphage with Q is similar to the correlation 
observed between PMMoV and Q (median: −0.22, Q1 = −0.34 and 
Q3 −0.02). As anticipated, a negative correlation between these two 
parameters is evident in a majority (approx. 75%) of the WWTP-Labs. 
Only very few values lie below −0.5, hence a strong correlation can 
hardly be  seen. For the EC, a good linear correlation (Pearson 
correlation coefficient < −0.75) to Q can be observed for 23% of the 
WWTPs. However, there is still a wide range of Pearson correlation 
coefficients between EC and Q (median −0.64, Q1 = −0.75 and 
Q3 = −0.44).

3.2 Laboratory related data: gene ratios

In contrast to the WWTP related QCPs, an outlier in the gene 
segment ratio influences the result directly due to the result being the 
geometric mean of all measured gene segments. The WWTP-Lab 
specific ratio between the measured gene segments is supposed to 
be rather constant. Hence, from a theoretical point of view, we expect 
an almost perfect correlation between different gene segments 
measured in the same sample.

As with the WWTP related QCPs, there are significant differences 
between the measured gene segments, the WWTPs, and the 
laboratories. For example, the Pearson correlation coefficient between 
two gene segments ranges from a minimum of 0.007 for WWTP 40/
laboratory 7/N1 & N2 to a maximum of 0.998 for WWTP  160/
laboratory 27/E & N2. Most of the WWTP/laboratory/gene 
combinations show a high correlation with Pearson correlation 
coefficients with a median of 0.956 (Q1 = 0.883 and Q3 = 0.986). The 

FIGURE 1

Distribution of the flow at some exemplary WWTP. Q is normalised 
by the corresponding median and ordered from small to large IQR. 
Red dots represent statistical outliers.

FIGURE 2

Pearson correlation coefficient for the correlation between Q and 
QCP for all WWTP. Red dots represent statistical outliers.
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Pearson correlation coefficients for all WWTP, laboratory, and gene 
segment combinations can be found in Supplementary Table S1.

When analysing all correlation data, it becomes evident that no 
single factor can explain the major differences between the Pearson 
correlation coefficients. The coefficients vary between different gene 
segment combinations analysed for the same WWTP and laboratory, 
they vary for samples from the same WWTP with the same gene 
segment combination analysed in different laboratories (although they 
use the same methodical workflow) and for the same laboratory and 
same gene segment combination analysing samples from 
different WWTPs.

To further investigate the variability in gene segment ratios, 
we subsequently examined the 27 laboratories. With some laboratories 
analysing and reporting more than two gene segments (e.g., E, N1, 
ORF, RdRp), there are a total of 68 laboratory-specific gene segment 
combinations (each with 2 gene segments and more than 14 
measurements). There are significant differences in both the ratios 
between two gene segments and the distribution of these ratios. To 
address this, we normalised the gene segment ratios by dividing them 
by their mean. While this normalisation is irrelevant at the WWTP 
level, it facilitates the comparison of different laboratories.

Figure 3 displays the IQR of the normalised gene segment ratios 
(each combination of 2 gene segments is represented as a dot with 
some laboratories having multiple) of the participating laboratories. 
A hypothetical IQR value of 0 represents a constant ratio between the 
gene segments and thus a perfect correlation. A wide IQR suggests 
poor precision in SARS concentration measurements as fluctuations 
in the ratio directly influence the calculation of the geometric mean. 
Consequently, changes in SARS concentration curves may 
be attributed to laboratory-specific influences. A small normalised 
IQR suggests that changes in the curve are likely genuine SARS 

concentration variations and are less likely influenced by 
laboratory factors.

The IQR of the normalised gene segment ratios has a minimum 
of 0.07, a 25th percentile of 0.17, a median of 0.28, and a 75th 
percentile of 0.57 and a maximum of 1.67. Some laboratories, 
exemplified by laboratory 8, measure different gene segments with 
varying IQR, ranging from 0.07 for E & N2 to 0.33 for N2 & RdRp. 
Prioritising gene segments with the highest precision can improve 
overall data quality.

3.3 Trend quality assessment

Besides comparing SARS concentrations in wastewater to clinical 
data, the WBE trend quality can be evaluated with methods describing 
the SARS concentration curve. Following the infection dynamics of 
SARS-CoV-2, we  anticipate that the SARS concentration curves 
exhibit rather smooth transitions without significant fluctuations or 
abrupt, alternating jumps. The reproduction rate Rw is a typical 
parameter to describe the daily increase/ decrease of SARS-CoV-2 
cases in clinical data. According to Huisman et  al. (18), the 
reproduction rate for clinical data is transferable to WBE and does not 
vary dramatically between different outbreaks. Exceptionally large or 
small Rw represent abrupt jumps in the curve. Based on the assumption 
that SARS infection dynamics are neither linear nor exponential, 
we decided to calculate Rw for sample date t as the nth root of the 
quotient of a SARS concentration measurement (SCt) and the previous 
measurement (SCt-n), with n being the number of days between 
both measurements:

 
,

tnw t
t n

SCR
SC −

=
 

(5)

Implausible inflection points (IIP) are data points where a 
significant increase/decrease of the next measurement follows a 
significant decrease/increase of the previous data point. A high 
number of IIPs leads to an unsteady, even ragged SARS concentration 
curve. We  set the boundaries to define IIPs in relation to the 
distribution of Rw for all WWTPs. We defined a SARS concentration 
as an IIP, if the Rw value for the sample date t (Rw,t) is above the 75th 
percentile and the subsequent Rw value (Rw for sample date t + 1, 
Rw,t + 1) is below the 25th percentile or vice versa:

 , ,75% , 1 ,25%: &w t R w t RIIP R Q R Q+> <  (6)

 , ,25% , 1 ,75%: &w t R w t RIIP R Q R Q+> <  (7)

Unlike assessing a SARS concentration value with Rw, an 
implausible inflection must consider the subsequent SARS 
concentration value. Therefore, it cannot be utilised as a method to 
assess the validity of the latest SARS concentration value.

Rw is calculated for all SARS concentrations in the dataset. 
Then, the number of Rw-outliers is calculated with the IQR 
method described previously. The sum of Rw-outliers and IIP (R/
IIP) are set into relation with the number of total measurements 

FIGURE 3

Normalised IQR of the different gene ratios (dots) for the different 
laboratories. Laboratories 12, 16, 17 and 25 have an IQR of 0 due to 
measuring a single gene segment or a sum parameter of several 
gene segments and are not shown here.
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for the WWTP-Labs where SARS concentration measurements 
representing both an R-outlier and an IIP are only considered 
once. The share of R/IIP is a proxy for the trend quality of a 
WWTP-Lab.

To evaluate the impact of the subsequent QCP plausibility 
check, we  analysed the trend quality for each WWTP-Lab 
individually as described previously. However, in this scenario, 
we calculated Rw using only SARS concentrations of the respective 
WWTP-Lab and not the whole dataset. This approach provides a 
higher resolution for the detailed assessment of data quality and the 
implications of removing data points due to QCP outliers.

We subsequently assessed the trend quality of the WWTP-Labs 
and divide them into three categories based on the proportion of R/
IIPs (each category has 33% of the WWTP-Labs). The results for all 
WWTP-Labs can be found in Supplementary Table S2.

Category 1 represents WWTP-Labs classified as having a ‘good’ 
trend with outliers ranging from 7 to 19%. Figure 4A displays data 
from WWTP No.139 and Laboratory No.23 as an example for a trend 
in category 1. Out of the 85 datapoints, four datapoints are flagged as 
R/IIPs, three of them representing IIPs. One datapoint is flagged as an 
R-outlier. The identified R/IIPs are in good accordance with a visual 
identification of outliers in the SARS concentration curve. The trend 
appears generally smooth, although some data points in December 
2023 exhibit an unsteady curve. Three distinct ‘waves’ can be identified 
visually, one in December 2022, one in March 2023 and the other from 
October to December 2023. In summer 2023, most of the measured 
SARS concentrations lie below the quantification limit and the trend 
quality cannot be assessed.

Category 2 includes WWTP-Labs with an R/IIP share between 19 
and 29%. We classify these as having a ‘mediocre’ quality. Category 3 
represents WWTP-Labs we classified as having a ‘bad’ trend with an 
R/IIP share between 29 and 50%.

Figure 4B shows the trend of WWTP No.78, which was analysed 
by two laboratories, dividing the trend into two different quality 
categories. Laboratory No.10 processed samples from February 2022 
to February 2023, 31% of the 86 datapoints are R/IIPs and thus 
exhibit a ‘bad’ data quality (data only shown from December 2022 
on). Subsequently, from February 2023 to January 2024, laboratory 
No.8 analysed samples with 27% of the 71 datapoints classified as R/
IIPs. Hence, we classify this trend quality as ‘mediocre’. There are 
several SARS concentrations below the limit of quantification in the 

dataset from laboratory No.8. The trend exhibits significant 
irregularities, characterised by an unsteady curve and multiple 
isolated spikes comprising concentrations considerably higher or 
lower than the surrounding values. Many of these spikes have been 
identified as IIPs, some also as Rw-outliers. Overall, discerning 
distinct long-term trends visually is challenging; however, slight 
‘waves’ are perceptible in March and autumn 2023.

3.4 Effects of data quality on the 
aggregated SARS concentration curve

We assessed the effects of WWTP-Lab data quality on the 
precision and informative value of a curve which aggregates 
information from nearly all WWTP-Labs that participated at the 
respective time. Therefore, we  averaged the log10-transformed 
SARS concentrations over all WWTP-Labs for each sampling date. 
As a minimum, each sampling date must have data from at least 10 
WWTP-Labs. This procedure reduces the effects of gross outliers 
that are potentially driven only by a single or few WWTP-Labs. The 
data points resulting from aggregation, i.e., means, are subsequently 
smoothed by a LOESS (Locally Estimated Scatterplot Smoothing) 
regression. Weights are applied to the LOESS regression such that 
means with higher standard errors receive less weight than means 
with lower standard errors. The precision of the curve is indicated 
by confidence bands which are calculated as pointwise 95% 
confidence intervals (constructed with the corresponding 
t-distribution quantile) for the smoothed values on the curve. 
Figure  5A shows the aggregated SARS concentrations when 
considering all WWTP-Labs. The smooth curve depicts distinct 
pandemic trends with small deviations of the single mean values 
from the curve and narrow confidence bands.

A similar picture, albeit with slightly wider confidence bands, 
arises if only the WWTP-Labs with few R/IIPs, hence good data 
quality, are considered (Figure 5B). Put differently, the removal of 67% 
of WWTP-Labs not having a ‘good’ data quality does not have a 
substantial effect on the informative value of the aggregated curve. 
However, if only WWTP-Labs with many R/IIPs are considered (‘bad’ 
data quality), the trend is less distinct, mean values generally deviate 
more from the curve and the confidence bands become wider 
(Figure 5C).

FIGURE 4

(A) SARS concentrations in gene copies per litre at WWTP 139, analysed by laboratory 23, (B) SARS concentration in gene copies per litre at WWTP 78, 
analysed by laboratory 10 (black circles) and laboratory 8 (yellow circles). Logarithmic y-axis. Circles with a white filling represent samples with SARS 
concentrations below the limit of quantification. Green stars indicate Rw-outliers, blue squares implausible inflection points.
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3.5 Assessing the success of QCP 
plausibility checks on the WWTP level

The analyses of the aggregated curves in the previous section 
focused exclusively on R/IIPs and did not consider effects introduced 
by identifying and removing outliers in QCPs. Figure 6 shows our 
process to assess the success of these QCP plausibility checks and how 
to identify the QCP with the highest potential to improve the specific 
WWTP-Lab data.

Based on the original WWTP-Lab data (step 1), we assessed the 
data quality (step 2) by identifying R/IIPs (following Equations 5–7, 
marked as green stars and blue squares) and by calculating their share 
of all WWTP-Lab datapoints, yielding the original R/IIP share.

Subsequently, we identified potential exceptional events by 
examining outliers in the QCPs Q, EC, pH, PMMoV, CrA 
following Equations 1–4 (step 3, highlighted with pink circles, 
different types of outliers in different colours). The respective 
QCP may offer insights into the composition of wastewater. 
We also computed the ratios between the concentrations of all 
gene segments measured in each sample (gr). Since all gene 
segments determine the same SARS concentration, their ratios are 
expected to remain relatively stable. Some laboratories measured 
up to four different gene segments, resulting in six unique 
combinations of two gene segments. We classified data points as 
gene ratio outliers if more than 40% of all gene ratios were outliers 
(e.g., 2 out of 4, 2 out of 3).

Separately for each QCP, we then removed the identified QCP 
outliers from the WWTP-Lab dataset (step 4a and step 4b). This leads 
to several alternative SARS concentrations curves.

For each QCP, we  calculated F1-scores (step  5), a statistical 
indicator, which basically describes how well QCP outliers and R/IIPs 
coincide. To calculate the F1-score, we  assigned the 4 different 
categories of a confusion matrix based on the definition shown in 
Table 1.

Based on these categories, we calculated the F1-score as:

 

21
2

TPF score
TP FP FN

=
+ +

The F1-score maximises both the chance that potential outliers are 
identified and that an outlier is an actual outlier. An F1-score of 1 
indicates perfect alignment between QCP outliers and R/IIPs, while a 
score of 0 indicates no alignment between them or that no QCP 
outliers were identified. For each WWTP, the QCP with the highest 
F1-score is deemed the most suitable to improve trend quality. 
Consequently, the best-fitting QCP for a given WWTP-Lab may have 
a relatively small F1-score, but still outperforms other QCPs in 
identifying potential R/IIPs.

In a final step (step 6), we assess the data quality change between 
the original data and the newly generated SARS concentration curve 
based on the QCP with the highest F1-score identified in step  5. 
Therefore, we recalculated the R/IIP share of the SARS concentration 
curve without the QCP outliers and compared it to the original R/
IIP share.

Figure 7 displays the SARS concentration of a selected WWTP 
from December 2022 to January 2024 with both, R/IIPs and QCP 
outliers highlighted (outcome of executing step 3). It can be observed 
that for several datapoints R/IIPs and QCP outliers coincide, especially 

FIGURE 5

SARS concentration in gene copies per litre aggregated over all sites (A), all sites with ‘good’ data quality (B), and all sites with ‘bad’ data quality (C). 
Shown are means over WWTP-Lab (dots), a corresponding LOESS regression curve (black line) and associated 95% pointwise confidence intervals  
(blue area).

https://doi.org/10.3389/fpubh.2024.1497100
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Saravia et al. 10.3389/fpubh.2024.1497100

Frontiers in Public Health 09 frontiersin.org

for prominent R/IIPs in autumn 2023. Nevertheless, there are also 
many QCP outliers where the SARS concentration aligns well with the 
curve and R/IIPs which do not reflect in QCP outliers. In the case of 
this WWTP, the EC achieves the highest F1-score at 0.24, followed by 
Q (0.16), pH-value (0.06), and the gene segment ratios (0.05). 
PMMoV outliers and R/IIPs do not align and the laboratory did not 
analyse CrAssphage. The majority of gene segment ratio outliers occur 
between March/April 2023 and September 2023, coinciding with 
generally low SARS concentrations and potentially volatile gene 
segment ratios, despite values being above the limit of quantification.

3.6 Effects of QCP plausibility checks on 
the WWTP-lab specific data quality

We determined the most suitable QCP for each WWTP-Lab in 
our dataset. Table 2 shows at how many WWTP-Labs the QCP has 
been measured and in how many cases it achieved the highest F1-score 
among all measured QCPs. We found that 140 WWTP-Labs had a 
QCP with an F1-score greater than 0. The F1-score results for all 
WWTP-Lab can be found in Supplementary Table S2.

Overall, gene segment ratios and Q achieve the highest F1-score 
more frequently (in 31 and 26% of all WWTP-Labs) than other QCPs 

but are also more frequently measured. The electrical conductivity has 
the lowest share of rank 1 F1-scores, followed by pH.

Figure 8 displays both the relative change of the R/IIP share due 
to a plausibility check with the QCP with the highest F1-score and the 
F1-score of the used QCP. For the majority of the WWTPs, the QCP 
plausibility checks reduce the R/IIP share. The relative R/IIP share 
decrease is rather small with a median of −10% (Q1 = −16% and 
Q3 = −5%). So is the F1-score with a median of 0.27 (Q1 = 0.20 and 
Q3 = 0.36). Nevertheless, apart from 11 WWTP-Labs, our model 
improves the data quality by removing QCP-based outliers.

The decrease of the R/IIP share of WWTP-Labs with ‘good’ data 
quality has a median of −15%, while the median for ‘mediocre’ data quality 
is −11% and ‘bad’ data quality is −7%. Likewise, the rank 1 F1-scores are 
higher for WWTP-Labs with a better initial trend quality. The medians are 
0.29 for ‘good’ and ‘mediocre’ quality and 0.23 for ‘bad’ quality.

4 Discussion

4.1 Assessing the QCP data

Our dataset consists of approximately 150 WWTPs and reveals an 
extensive diversity among them. This becomes evident when analysing 

FIGURE 6

Data processing scheme to identify the QCP with the highest potential to improve the SARS concentration curve. Empty circles show values below the 
limit of quantification, green stars and blue squares are R/IIP and pink circles highlight outliers in QCP. The different colours indicate the different types 
of QCP.
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the variation within single QCP and the varied correlations observed 
for the QCPs. A precondition for a successful normalisation of SARS 
concentration data and our plausibility check is that QCPs are 
relatively constant in wastewater of domestic origin and therefore can 
be used to approximate its share of the total wastewater. As the flow of 
domestic wastewater is assumed to be rather constant, we expect a 
near-linear relationship to the QCPs.

The variation in the wastewater flow is plausible. Most outliers are 
associated with flows higher than the median flow, whereas there is 
minimal variation in flows lower than the median flow. WWTPs 
typically maintain a relatively constant minimum flow, known as ‘dry 
weather flow’, which largely consists of domestic wastewater, 
continuously discharged industrial wastewater, and a rather constant 
groundwater infiltration. Tourism or vacations can lead to a 
fluctuating population size and therefore have an impact on domestic 
wastewater volumes. Outliers below the median are likely attributable 
to transmission errors or failures in the sewer system. Conversely, 
outliers above the median can be attributed to precipitation, irregular 
discharges from industries, or major social events such as festivals. The 
magnitude of these effects is largely dependent on the sewer system, 
including its type (e.g., combined versus separated sewer systems), its 
size and expansion, and its topographical location. Furthermore, 
we have no additional meta data for the sampling days and a varying 
number of these events might be  covered in the dataset of each 
WWTP. Hence, the direct comparison of flow variability might 
be misleading.

Our data indicates that the ‘surrogate’ viruses PMMoV and 
CrAssphage are not universally applicable indicators for the 
proportion of domestic wastewater. Nevertheless, our data analysis 
shows that there are few WWTPs where we  see a near-linear 
negative relationship between Q and PMMoV. This is in line with 
studies, where normalisation with PMMoV could improve SARS 

data quality for some WWTPs (23) and could not improve the 
SARS data quality for other WWTPs (32, 33, 34). While the 
correlation coefficients for electrical conductivity with Q are slightly 
higher compared to PMMoV and CrAssphage, good correlation 
coefficients (below −0.75) are observed only in very few WWTPs. 
Therefore, the hypothesis of a dilution of domestic wastewater with 
increasing Q cannot be  reliably confirmed with PMMoV, 
CrAssphage, or EC as indicators, this is in line with Nagarkar et al. 
(28) and Maal-Bared et al. (23). Hence, using a single QCP as a 
proxy for the share of domestic wastewater is not suitable for all 
WWTPs and a respective normalisation proves ineffective for our 
entire dataset. However, normalisation with a single QCP or a 
uniform combination is commonly suggested in many studies [e.g., 
(24, 35), or the recommendation of the European Commission for 
a uniform surveillance approach (36)].

It is evident that highly diverse processes within WWTPs and 
sewer systems influence both flow and other QCPs. For PMMoV, 
Kitajima et al. (37) and Hsu et al. (26) present extensive analyses on 
the PMMoV concentration dynamics in the population, emphasising 
socio-cultural factors among others. Furthermore, a varying flow 
indicates different dynamics in the sewer system and together with 
the catchment size has an impact on the travel and thus degradation 
time from the source to the WWTP. This effect may enhance 
non-linear relations between the ‘surrogate’ viruses and Q. Also, EC 
is not necessarily a good parameter to approximate the share of 
domestic wastewater, since a mere dilution by stormwater or 
industrial discharges cannot be assumed. To estimate the proportion 
of domestic wastewater and to interpret the variations in the QCPs, 
a better knowledge on the WWTP level would be  needed. This 
includes additional data (e.g., precipitation data or information on 
industrial discharges) but also expert knowledge. Therefore, 
we investigated irregularities in the SARS concentration curve at 
WWTP 73 to evaluate whether the statistical outliers match with 
properties of the wastewater composition. We  noticed a strong 
phenotypic variability of the wastewater, which on some days 
showed a strong colouration indicating a drastic change in 
wastewater composition and a change in the respective water 
chemistry. This was cross-checked with replicate samples and 
laboratory errors could be excluded. These changes may have been 
related to batch-type industrial discharges or other sources of 
external water but the true cause is unknown. Additional, even more 
detailed investigations would be  necessary to relate these 
observations to outliers in the SARS concentration curve.

We have identified the correlation between different gene 
segments as one possible indicator for the reliability of the SARS 

FIGURE 7

SARS concentration in gene copies per litre at WWTP No.73 with R/
IIP and QCP-outliers. Green stars indicate Rw outliers, blue squares 
IIP. The colour of the datapoints indicates the QCP which was 
identified as an outlier.

TABLE 1 Definition of the components of a confusion matrix to assess if 
our model produces successful results.

True positive (TP) False positive (FP)

Both, R/IIP and QCP are outliers No R/IIP outlier, QCP outlier

False negative (FN) True negative (TN)

R/IIP outlier, no QCP outlier Both, R/IIP and QCP are no outliers

TABLE 2 Results of the F1-score calculation.

QCP Count Highest F1 Share

Gene segment ratio 130 40 0.308

Flow 157 40 0.255

CrAssphage 28 5 0.179

pH 151 20 0.132

PMMoV 122 16 0.131

EC 157 17 0.108

Shown are the number of WWTP-Labs measuring the QCP, number and share of WWTP-
Lab where the respective QCP achieved the highest F1-score in comparison the other QCP.
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analysis. This is in accordance with studies evaluating the 
combination of different gene segments, e.g., Ho et al. (12) who 
excluded N1 based on insufficient correlation to other gene 
segments. Furthermore, the gene segment ratio has a direct 
impact on the SARS concentration curve, where usually mean 
concentrations of several gene segments are used. In 
consequence, unsteady curves may not be related to the WWTP, 
but more to the laboratory analysing the samples. In our dataset, 
the degree of correlation could not be  attributed to specific 
WWTPs, laboratories, or the chosen gene segments. Hence, 
we  assume that multiple factors have an impact on the gene 
segment ratios. The sample preparation and analysis (e.g., 
concentration, extraction, and detection methods) may have an 
influence on gene segment ratios. In addition, inhibitors have 
an impact on the PCR-analysis, they may affect the sensitivity 
of the assay and cause diminished viral recovery and detection 
(38, 39). The inhibition may affect gene segments differently, so 
the wastewater composition has an influence on the ratios. The 
effect of inhibitors may also depend on the chosen 
laboratory methods.

Taking all the factors mentioned above into consideration, 
we  expect that the variation in the QCPs can be  mostly 
attributed to the variability in and between the sewer systems. 
Nevertheless, a standardisation of sampling protocols, including 
PCR inhibition control may improve QCP data and facilitate the 
comparison between different WWTPs. We also recommend the 
standardisation of laboratory methods to improve comparability 
and the correlation between different gene segments. We suggest 
to set a boundary for WWTP-Lab-specific Pearson correlation 
coefficient to at least 0.9 for all gene segment combinations to 
reduce the data spread.

4.2 Assessing the SARS data quality

We used outliers in the reproduction rate of the SARS concentration 
curves to evaluate the SARS concentration data quality for each WWTP-
Lab. Instead of correlating wastewater data with clinical data [e.g., (1, 
12–15, 28, 32, 40)], this method evaluates the course of the curve itself 
and we consider our method a reliable proxy for the SARS concentration 
trend quality as the results align well with visual assessments. Similar 
methods have been applied in other studies, e.g., Sakarovitch et al. (41) 
evaluate the distance of each datapoint to a smoothed LOESS curve. 
Upon analysing the complete dataset of 157 WWTP-Labs, significant 
variations in the share of outliers among different WWTP-Lab 
combinations become evident. When SARS concentrations follow a 
‘good’ trend (as depicted in Figure  4A) it becomes relatively 
straightforward to gauge moments of low or high prevalence and discern 
whether the trend is rising or falling. Retrospectively, outbreaks can 
be identified clearly. Conversely, for WWTP-Labs we classified as having 
a ‘bad’ trend (illustrated in Figure 4B), assessing the SARS concentration 
trend becomes challenging. Thus, the evaluation of trend quality based 
on the reproduction rate is a valuable method and a good alternative to 
the correlation with clinical data, especially when clinical data is no 
longer reliable or susceptible to frequent changes, e.g., through 
mandatory testing.

The ability to discern between ‘good’ and ‘bad’ data is especially 
relevant on the local level. Health authorities need recognisable trends to 
include WBE information in decision-making. Experience from 
previous projects has shown that public health authorities handled the 
data differently in the early and late pandemic. In the early pandemic, 
SARS monitoring was strongly based on clinical data such as the 7-day 
incidence, and wastewater data was primarily used as an indicator of a 
potential change in the infection dynamics. For example, repeated high 
SARS concentrations in wastewater at a site were used as an indicator of 
local infection events (e.g., large gatherings), which then led to an initial 
investigation of the local situation or a targeted campaign of rapid testing. 
As the pandemic progressed, the situation changed to a more holistic 
view of wastewater data. Time series allowed to assess the expected 
variance of the data and estimate the reliability of the data in general. This 
was then used by public health authorities to identify the end of an 
infection wave (e.g., 2022 for the first waves of Omicron), which was 
helpful in recommending or not recommending changes in public health 
policies. However, the collaboration with public health authorities during 
the pandemic was always linked to a direct information exchange with 
experts. An automated assessment of the data quality therefore saves 
valuable resources and supports these experts to give local health 
authorities further guidance.

To observe national or regional trends, SARS concentration data 
from several WWTP-Labs can be aggregated. The aggregation of data 
from various WWTP-Labs is potentially biased as the data was 
obtained through different sampling and analysis methods. However, 
as long as the number of different WWTPs is large enough, differences 
in data quality are averaged out. As the WWTPs are spread across 
Germany, a good approximation of the national average can 
be assumed. Our data suggests that trend recognition improves when 
including a larger number of WWTP-Labs in an aggregated curve, 
even those with high R/IIP-shares. However, we have demonstrated 
that the individual data quality reflects in the aggregated curve. 

FIGURE 8

Relative R/IIP share changes due to rank 1 QCP-plausibility check 
and the F1-score of the respective parameter. The quality category is 
based on the share of R/IIP. An F1-score of 1 signifies that all outliers 
in the selected QCP and outliers in R/IIP match, an F1-score of 0, 
that there is no match.
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Considering only those 33% of WWTP-Labs with lowest R/IIP shares 
yields an aggregated curve that is very similar to an aggregated curve 
over all WWTP-Labs. Hence, ensuring good data quality is crucial 
when setting up cost-efficient WBE monitoring systems and choosing 
WWTP-Labs for aggregated curves. For Bangkok, Sangsanont et al. 
(42) have shown that the 4 largest WWTPs are enough to derive 
reliable trends for all 19 available WWTPs.

4.3 Assessing the effects of QCP data 
plausibility checks

We analysed the effect of data plausibility checks with QCPs by 
comparing outliers in QCPs with R/IIPs in the SARS curve and 
quantifying the fit with the F1-score. The QCP with the highest 
F1-score differs from WWTP to WWTP. Yet in general, gene segment 
ratios and the flow outperform other QCPs. Outliers in gene segment 
ratios may indicate errors in the analysis process, with a direct impact 
on the resulting SARS concentration while outliers in the flow may 
indicate extreme events such as heavy rain. However, both effects 
cannot be observed for all datapoints within a WWTP-Lab with a 
good F1-score for gene segment ratio or the flow, nor regularly for all 
WWTP-Labs. The F1-scores of the top-ranked parameters are 
generally low, suggesting that the trend improvements from 
QCP-plausibility checks are small. This is also confirmed by the 
relatively low improvement of the R/IIP-share after outlier removal. 
However, our model is more successful in removing R/IIPs for 
WWTP-Labs with a good initial quality category, hence with a low R/
IIP share in the unprocessed data.

Low F1-scores indicate that only few potential outliers through 
QCP checks are identified and that the confidence, that these outliers 
are actual outliers is low. As a practical implication for decision-
making processes, we  recommend to consider the QCP with the 
highest F1-score and only if this score is relatively high. However, 
whether an F1-score is high enough and the impact of our model need 
to be assessed by experts for each individual WWTP.

Regarding the outcomes of our model, it becomes evident that the 
majority of implausible datapoints in the SARS concentration curve 
cannot be attributed to irregular events. One possible explanation is 
that these events do not reflect in the available QCPs, for example the 
irregular discharge of PCR-inhibiting substances which are not 
covered in our data. With respect to the temporal resolution, QCPs 
are usually daily averages but they may affect the SARS concentration 
completely different. A long-lasting heavy stormwater event that 
dilutes wastewater during the daily SARS concentration peak has a 
larger impact on the daily SARS concentration compared to a 
stormwater event that takes place at night when the SARS 
concentration is typically much lower. The model treats both cases the 
same, with different success for the plausibility check. Data with a 
higher temporal resolution, as well as specific sewer and wastewater 
treatment system knowledge are mandatory to assess if the influence 
of QCP variations on the SARS concentration is plausible. 
Furthermore, the variation in the SARS concentration data may 
be caused by the applied sampling or analysis methods. The resulting 
uncertainties have been investigated by many studies [e.g., (21, 43, 
44)], yet their systematic integration in our model is beyond the scope 
of this study.

In contrast to normalisation methods, our model reduces the 
number of values in a dataset and the success of our model is related 
to the boundaries for identifying outliers in both, QCPs and R/IIPs. 
The outlier removal functions hinge on the chosen scale (set to 1.5 
of the IQR) and whether the entire dataset should be  used to 
identify outliers or just WWTP and laboratory-specific data. These 
parameters need to be  adapted carefully to find a good balance 
between improving the trend quality and preventing information 
loss in the dataset. An advanced model which optimises the 
boundaries on a WWTP-Lab level may improve data quality even 
further. Hence, the selection of both statistical parameters and the 
QCPs becomes an optimization problem for each WWTP, 
laboratory, and period. Instead of considering only statistical 
relations, additional information can be key to interpret data on the 
WWTP level. Data on sewer systems, industrial discharges, 
population dynamics, or precipitation can help to choose suitable 
QCPs and to set sensible boundaries in the model. Collecting 
additional data and including them in the model may improve its 
success. In addition, there are alternatives to treat QCP outliers. For 
example, instead of excluding them from the SARS concentration 
curve, the specific SARS concentration can be given less weight by, 
e.g., averaging them with previous values when calculating 
the trend.

5 Conclusion

In this study, we  manipulated WBE data to improve the 
recognition of SARS concentration trends and therefore enhance its 
value for health authorities in decision-making processes. We assessed 
whether the additional information provided by quality control 
parameters (QCP) is useful to assess the plausibility of SARS 
concentration data. The analysed dataset includes data from around 
150 participating WWTPs across all Germany.

Our newly introduced quality indicator, the R/IIP share, is suitable 
to evaluate and compare the reliability of SARS trends on the WWTP 
level and is therefore a good addition or alternative to the correlation 
with clinical data. We  set up a model that automatically flags 
implausible SARS concentration datapoints based on outliers in 
QCPs. It becomes evident, that the most successful QCP to identify 
and remove R/IIPs is different for each WWTP, however, flow and 
gene segment ratio outperform other QCPs, such as electrical 
conductivity or the ‘surrogate viruses’ PMMoV and CrAssphage.

Overall, our model enhances trend quality, although only slightly. 
By individually optimising the boundaries of the model, its success 
could be  enhanced for each WWTP. For this, additional expert 
knowledge of the properties of the local wastewater and sewer system 
are pivotal.

The results of our data plausibility checks emphasise the need for 
reliable data when establishing a nationwide WBE system, including 
a high-quality sample analysis. Hence, WWTPs and laboratories must 
be chosen carefully before including them in the dataset. Our model 
enhances the value of WBE SARS concentrations data for public 
health authorities. It can be used to assess and improve the reliability 
of SARS concentration trends when using WBE data for decision-
making processes. Furthermore, it is a helpful tool when choosing 
WWTPs for cost-efficient WBE systems.
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